On the Parallel and VLSI Implementation of the
Interior Point Algorithm for Linear Programming

Mehran Mesbahi and George Papavassilopoulos

Department of Electrical Engineering—Systems
and Center for Applied Mathematics

University of Southern California
-Los Angeles,CA 90089-2563

Tel: (213) 740-2351; email: mesbahi@nyquist.usc.edu

Sixth TASTED-ISMM International Conference |

Abstract

We present various aspects of the parallel and VLSI implementation of the Kar-
markar interior point algorithm for the Linear Programming problem. Various architec-
tures, based on different partitioning of the input data, is proposed and the complexity
of their implementation is discussed. An economic interpretation of the partitioning
scheme is then presented which might prove useful for further improvements in the
efficient parallelization of the interior point methods.

Keywords: Numerical Algorithms, Optimization, Parallel Computing, VLSI.

1 Introduction

The linear programming problem (LP) is to find vector z € R" to,

minc’z (1)

subject to:
Az =b; (2)
>0. (3)

where A € R™*"*, b € R™, c € R* and m < n. LP is one of the most important problems
in optimization theory. This is mainly because many problems can be formulated easily and

0This work was supported in part by the National Science Foundation under Grant CCR-9222734.

1

rather naturally as LP. In addition, linearity of LP makes it a good candidate to approximate
the solution to the wider class of nonlinear optimization problems. Despite its importance in
optimization theory, LP has not received adequate attention in parallel and VLSI literatures.

In this paper we present and discuss parallel and VSLI implementation of the Karmarkar
interior point algorithm for solving LP. Various partitioning schemes are considered in con-
nection with different architectures and the complexity of these implementations is also
analyzed. In addition we give economic interpretations of parallel schemes presented.

1.1 Related Works

The two main computational methods employed to solve LP are the Simplex method, devel-
oped by Dantzig in 1963 and Karmarkar’s interior point method proposed by Karamarker
in 1984. The Simplex method, although highly efficient in practice, was proved to run in
exponential time in the worst case. This result has had little effect on the wide acceptance
of Simplex as the main method used to solve LP. LP was later proved to be in class P by
Khachiyan, but the method developed by him, known -as the Ellipsoid method, was shown
to be inefficient in practice. Interior point algorithm was developed by Karmarkar as a com-
petitor to Simplex, while being also polynomial in the worst case.

The Simplex algorithm for LP is an inherently sequential algorithm and not easily par-
allelizable. This is due to the fact that during the course of the algorithm the solution
is improved by introducing one basic variable at a time. Nevertheless, Simplex was imple-
mented on an O(mn log m log® n) chip (in the bit model) using the mesh-of-trees architecture
in [2]. In [11], the dual affine version of the interior point method was studied for parallel
implementation. In this work, after presenting the algorithm, the authors noted that the
main computational task of the method lies in the solving of a system of equations with
positive definite symmetric coefficient matrix. In [9], the authors provide certain insights
pertaining to the solution of positive definite symmetric (PSD) linear equations arising in
the interior point algorithms. As both papers pointed out, the efficient implementation of
any version of the interior point method lies in an efficient scheme to solve the PSD system
of linear equation in each iteration.

1.2 The Interior Point Algorithm

In this section we briefly describe the original Karmarkar algorithm for the linear program-
ming problem. We then present a simplified version of the algorithm which will be analyzed
and implemented in this paper. The motivation for the algorithm and why it works is ex-
plained in the original 1984 paper of Karmarkar [6].

Karmarkar first reformulated the general LP, equations-1 and 2 to,

min f(z) = 3. log(T2/2;) 4)

i=1

subject to:
Az =0;eTz =n;z > 0. (5)

where e = (1,1,..., 1)T € R™. He also requires that Ae = 0 so that e is a feasible solution.
Starting from the initial solution e, the algorithm changes the solution z* at time k according
to the following steps:
1. Construct diagonal matrix D such that D™lzk =e. \
2. With this D construct z* by applying a projective transformation z*+! = nD~1z*/eT D~1z*,
3. Go to step 1.

The original interior point algorithm was proposed to prove convergence in polynomial time.
In this paper we consider and implement a variation of the interior point method called the
primal affine version or the Rescaling algorithm. This is the most direct method among the .
various versions of the algorithm and brings out the most important computational require-
ments of the general method without being too concerned with having polynomial worst case
running time, although in practice it runs very well.

Let us briefly describe the primal affine version of the interior point method which will
be implemented and discussed in this paper. Consider the original formulation of LP in
equations 1 and 2. As in the original interior point method, one can formulate the problem
such that z° = e is an initial feasible solution. At time k the algorithm proceeds as follows:

1. Construct diagonal matrix D from the components of z* such that D~*z* = (1,1,...,1) =
e. ‘ ‘

2. With this D, compute-the projection (not a projective transformation used in the
original method) PDc by solving for y in

AD?*ATy = AD%c (6)
d letting,
I PDc= Dc— DATy (7

3. Determine the number § such that e — §PDc has a zero component.

4. Reduce § by a factor a (usually taken to be 0.96) and call it s, i.e., s = a3.
5. Let z*¥*! = z¥ — sDPDc.

6. Go to step 1.

Note that D = diag(dl, ceeydn). As mentioned previously, step number 2, which involves
the solution to equation 6, is the most time consuming part of the algorithm and its effi-
cient parallel implementation is the key to an overall efficiency of the parallel interior point
method.

2 Architecture and Analysis

In this section we present various architectures that can be employed for the parallel imple-
mentation of the primal affine variant of the interior point method. First we discuss the case

3

where O(mn) processors are available. Mesh-of-Trees architecture [13] has been employed
for this case. We will also discuss the case where O(m) processors are available and provide
some economic insights for behavior of the parallel scheme.

2.1 Implementation on O(mn) PE’s

In this section we present the implementation of the primal affine version of the interior point
method discussed in the previous section. The architecture that is used is the mesh-of-trees
(MOT) which has certain important features such as an O(logn) diameter. It has been
known that MOT is a powerful configuration for implementing various basic operations like
sorting, Jacobi iteration, vector-matrix multiplication, etc., in O(logn) time [8]. What is
new about our presentation is that MOT is also a suitable architecture for the sequence of
basic operations involved in the primal affine algorithm.

In all subsequent sections it will be assumed that real-valued messages can be transferred
along the connections. One can get around this unrealistic assumption by working with a
finite precision arithmetic which can be chosen for any LP problem [10], [6]. We will also
assume, without loss of generality, that m < n (for problems with m > n, one can consider
the dual of the original problem with m < n).

Consider an m x n MOT corresponding to the constraint matrix A € R™*". A 2x4 MOT is
shown in Figure 1. We will assume that m and n are both powers of two.

For ease of referencing we will use the following notations. A; and A ; will denote the i-th
row and the j-th column of the matrix A, respectively. For referencmg the nodes. of the
MOT we define the following sets. Let R(j) denote the set of nodes which are the roots at
level j in column :. Similarly let R7(j) denote the set of nodes which are the roots at level
J in row i. By this notation all the leaf nodes in row ¢ belong to R} (0) and all leaf nodes in
column ¢ belong to R(0). The i-th row root is the only element in Rf(logn) and similarly
the i-th column root is the only element in R{(logm). We note that the cardinality of the
set R7(j) is n/27 and that of R$(j) is m/2? for all 4.

Let us now present the implementation of primal affine algorithm on an m x n MOT. Ini-
tially, z;, its inverse d;, and ¢; are stored in Rf(logm) (the i-th column root). Then d; is sent
down to the i-th column leaves R{(0). This will take O(logm) time. To find the projection
(AD)(AD)T and AD?c we proceed as follows. At the beginning of the step we have (AD);;
stored in Rf(0) N R5(0). We proceed to form (AD?*AT); on R}(logn/m). Since (AD?*AT);
is found by (AD), (AD), , one can simply square the entries and sum the square in O(log n).
For (AD?AT);;, i # j, one can sum along the i-th column in O(log m) time and then sum all
the corresponding term in O(logn) time. If one uses the fact that AD?AT is symmetric a
more efficient algorithm can be found, although not asymptotically better. Similarly AD%c
can be found and be stored in R} (logn).

Now c¢;d;, which is originally stored in R¢(logm) is sent down the i-th column leaf nodes
in O(log m) time. Summing along the row roots we obtain (AD?c); at R (logn) in O(logn)

Figure 1: A 2x4 Mesh of Trees

time.

Up to this step of the algorithm, we have obtained the system of equation (AD2AT) = AD?*c
in O(logn) time and place them on an m x m subset of the original m x n MOT. It
can be verified that the diameter of this new subset can be O(logn). Now one solve the
system AD?ATy = AD%c in O(m) + O(logn) by using Gaussian elimination followed by
back-substitution using pipelining [8]. We also note that since AD?AT is positive defi-
nite symmetric matrix, no pivoting strategy is necessary for the LU decomposition. After
O(m)+0O(log n) steps, y; will be stored in R} (logn) and the computation proceeds as follows.

Having found y € R™ in O(m) + O(logn) time and place it such that y; is in Rf(logn),
we find (AD)Ty in O(log n) steps by sending down y; to the i-th leaf nodes in O(log n) and
then sum the entries in the i-th column along the i-th column tree in O(logm) time. Then
after O(log n) steps , the i-th column root R¢(log m) having access to d;c; and ((AD)7T); can
obtain PDc;.

The next step involves determining § such that e — 3(PDc) has a zero component. Therefore
on can obtain § = min; 1/(PDc); in O(logn) time using the fact that sorting on MOT can
be done in O(logn) time. Having found 3, each eolumn root calculates s = a3, where a can
be taken to be 0.96. Then each column root performs the iteration zf*! = ¥ — sd;(PDc);

in O(1).

From the above discussion the total running time for each iteration of the primal affine
version of the interior point method is found to be O(m) + O(log n) using the O(mn) PE’s
of the m x n MOT. An examination of the serial algorithm, assuming that only conventional
algorithms are available for matrix multiplication (i.e. modolu Strassen’s type algorithms),
shows that the serial running time is O(m?n) + O(n®). Therefore the efficiency is ©(1) and
our implementation is asymptotically cost-optimal. '

Let us now briefly compare our implementation with that obtained for the Simplex method.
Each iteration of the primal affine algorithm in our implementation takes O(m) + O(log n)
which is more time consuming than the corresponding pivoting in the Simplex algorithm,
which was done in [2] in time O(logn). But since exponential worst case behavior of the
Simplex is absent in the case of the interior point method, our total worst case running time
is better than that of obtained in [2], in the worst case.

In view of the fact that the computational efficiency of the iteration of the Karmarkar
interior point method is determined by the efficiency of solving the equation 6, which is a
system of m equations in m unknowns, it seemed natural to implement the algorithm on
an m x m MOT. We have implemented the algorithm on an m x m MOT, using block
partitioning schemes. Since the implementation is similar to that described above we do not
present the details in this paper.

2.2 Implementation on O(m) PE’s

It is not always realistic or feasible to assume having access to an O(mn) PE’s, especially
when the size of the problem is very large. In these situations, one might consider a par-
titioning of the constraint matrix among O(m) PE’s using row partitioning or O(n) PE’s
using column partitioning. In this section we present this issue for the implementation of
the primal affine algorithm on O(m) processors. This discussion also provides a frame work
for implementing the algorithm using O(n) PE’s by applying the same scheme to the dual
of the original LP, which has the transpose of the original matrix A as its constraint matrix.
At the end of the section we also provide certain economic insights into the behavior of the
parallel version of the interior point algorithm when row partitioning is employed.

2.2.1 Row Partitioning and Its Economic Interpretation

In this section we consider row partitioning of the constraint matrix among m processors.
Extensions to block-row partitioning on m/k processors, for some positive divisor k of m,
would also be clear from this discussion.

Consider A € R™*", and‘suppose that A; is known by processor P.. P; also has in its
memory, a copy of the current feasible solution and a ¢opy of the vector c. At each iteration
the parallel algorithm proceeds as follows.

Having access to (AD);, P; would like to calculate (AD?AT);. First, all processors cal-
culate (AD?AT);; which requires no communication and takes O(n) computations. Next, in
order to find (AD2AT);;, i # j, the contents of the row j has to be communicated to P;. To
find this inner product, one cannot really do better than sending the vector (AD);,, by the
result of Abelson [1]. To find this inner product for all ¢, we require an all-to-all broadcast
of n values, which takes O(mn) on ring, mesh or hypercube [7].

Having found (AD?AT); in O(mn) steps and store it in P; we proceed to find (AD2c);.
This can be done locally at P; with O(n) arithmetic operations. At this stage, the system
of m equations in m unknowns can be solved which has been row partitioned. This system
has a positive definite, symmetric coefficient matrix and therefore can be solved using LU or
Cholesky factorization and does not require any pivoting strategy. This can be done in O(n?)
time by pipelining the computation and communication on the linear array of processors.
Since the linear array can be embedded into a mesh or a hypercube, similar time bound can
also be achieved on these architectures [7].

At the end of the previous stage of the algorithm, the distribution of data is shown in
Figure 2. We now proceed to compute the projection PDc = Dc — DATy = Dc — (AD)Ty.

P1

I
-t
)
g
o
>
&
S

P2 1 (_row 2.ofAD) J:

Pn i(rownofAD)J:

Figure 2: Distribution of the input and y;’s

As Figure 2 demonstrates this step is equivalent to vector-matrix multiplication problem
with columns partitioned among the processors (it is rather interesting that we started with
a row partitioning and ended up with column partitioning; the reverse situation also holds).
Using multi-node accumulation of n/m blocks, taking O(n) time on linear array, mesh and
hypercube, each P; ends up with a block of size n/m of the vector (AD)Ty. Since each P,
has access to Dc, PDc can be found in O(n/m) time with no inter-processor communication
necessary. To find the minimum of (PDc); (among the positive components only), each P;
finds the minimum in its block (in time O(n/mlogn/m) using for example merge sort) and

7

then compares the block minimums with others using all-to-all broadcast in O(m). This
takes O(n) time. Having § and subsequently s, each block of z* of size n/m, is updated.
At the end of the iteration an all-to-all broadcast of n/m blocks puts us back to where we
started at the beginning of the iteration. The total running time of the algorithm on linear
array, and subsequently on mesh and hypercube can therefore be bounded by O(n?). Since
m processors are used this parallel implementation is also cost-optimal.

The linear programming problem was originally studied because many problems in pro-
duction and management could be formulated as LP. There are economic interpretations of
the behavior of the Simplex algorithms and terms such as “prices” and “marginal profits”
_are common in LP literature. Motivated by the ideas related to decomposition principle of
Dantzig and Wolfe [5], [4], we now give a brief description of the behavior of the parallel
version of the interior point method described above from an economic stand point.

Let us consider P; as the coordinator of a subdivision of a multi-divisional corporation.
P; only has knowledge about one of the corporate constraints A; (by constraint we mean
something like a minimum production level to keep the overall corporation running or the
maximum expenditure allowed on any given day). Each component z; can be considered as
the production level of item 7, and the corresponding component of the vector ¢, i.e., c;, can
be considered as the cost (in which case we want to minimize) or profit (in which case we
want to maximize) of producing one unit of item :. Each coordinator can suggest a produc-
tion level by looking at his/her own constraint. But since there are m — 1 more constraints
on the problem which the coordinator has no knowledge of, each coordinator has to take
into account other coordinators’ constraints by projecting them into his own constraint set.

More specifically, consider an iteration of the parallel implementation of the interior point
method. Starting from the current production level z, each coordinator initially scales the
constraint set by the current production level. Then through a tele-conference, each coordi-
nator suggests a change of policy in the direction of his/her own constraint vector. How this
suggestion is used in the final decision depends on the coefficient y; that each coordinator
attaches to his/her suggestion. This corresponds to.the equation 7. To come up with the
coefficient y;, the coordinator P; not only relies on his/her own constraint AD;, but also on
other coordinators constraints AD;, j # ¢, by projecting them onto AD;.

At the end of the above tele-conferencing between the coordinators, a mutual direction of
change is found and each division updates the production level. Finally, the tele-conferencing
stops when an optimal production level is reached.

A more elaborate description of the behavior of the algorithm can also be given for the
column partitioning scheme. We shall present this in the future work.

3 Conclusion

We have presented various implementations and the related issues pertaining to the parallel
and VLSI implementation of the interior point method for solving the linear programming
problem. Implementing the algorithm on mesh-of-trees architecture with O(mn) processors
was described. We also discussed the problem of decomposition along the rows of the con-
straint matrix and the efficiency of this implementation. Certain economic interpretation of
the behavior of the parallel version of the interior point method was given which might be
- useful for designing more efficient parallel algorithms for solving LP.

There are many directions along which this research can be continued. One promising
direction is to employ iterative methods for solving the positive symmetric system of equa-
tion 6 and their efficient parallel implementation on VLSI. Karmarkar himself pointed out
that since an exact projection is not required for the algorithm to converge, one might be
able to use iterative methods such as Jacobi or Gauss-Seidel, or algorithms such as the con-
jugate gradient method, to improve the efficiency of the implementation [6]. In these cases
the stopping criterion for the iteration to guarantee convergence has to be studied in greater
detail.

On the more theoretical side, it is of interest to obtain certain bounds on the communi-
cation complexity of solving system of linear inequalities. In particular, one can consider the
following problem: Having two processors, each having access to two different inequalities,
Az > b; and Bz > b,, determine in a distributed manner whether or not the set determined
by both inequalities is empty with minimum amount of communication.

References

[1] Abelson, H., “Lower Bounds on Information Transfer in Distributed Computations,” in
Proceedings of the 19th Annual Symposium on Foundations of Computer Science, 1978.

[2] Bertossi, A.A., Bonuccelli, M.A., “A VLSI Implementation of the Simplex Algorlthm,
IEEE Transactzons on C’omputers, Vol. C-36, No.2, Feb. 1987, pp. 241-247.

(3] Bertsekas, D.P., Tsitsiklis, J.N., Parallel and Distributed Computation, Prentice Hall,
1989.

[4] Chvatal, V., Linear Programming, Freeeman, New York, 1983.

[5] Dantzig, G.B., Wolfe, P., “Decomposition Principle for Linear Programs,” Operations
Research, 8, 1960, pp.101-111. :

[6] Karmarkar, N., “A New Polynomial-Time Algorithm for Linear Programming”, Com-
binatorica,4, pp. 373-395, 1984. v :

[7] Kumar, V., Grama, A., Gupta, A., Karypis, G., Introduction to Parallel Computing,
The Benjamin-Cummings Publishing Co; Inc., 1994.

(8] Leighton, F.T., Introduction to Parallel Algorithms and Architectures: Arrdys, Trees,
Hypercubes, Morgan Ka.ufmann, San Mateo, California, 1992.

[9] Lustig, I.J., Marsten, R.E., Shanno, D.F., “The Interaction of Algorithms a.nd Architec-
tures for Intenor Point Methods, in Advances in Optimization and Parallel Computing,

P.M. Pardalos (ed.), North-Holland, 1992.
[10] Papadimitriou, CH, Steiglitz, K., Combinatorial Optimization, Prentice-Hall, 1982.

[11] Saltzman, M.J., Subramanian, R., Marsten, R.E., “Implementing an Interior Point LP
Algorithm on a Supercomputer,” in Impacts of Recent Computer Advances on Opera-
tions Research, R. Sharda, B. Golden, E. Wasil, O. Balci, W. Stewart (eds.), Elsevier
Science, New York, 1989.

(12] Strang, G., Linear Algebra and its Applications, Third edition, Harcourt Brace Jo-
vanovich, 1988.

[13] Ullman, J., Computational Aspects of VLSI, Computer Science Press, 1984.

10

