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Abstract

This paper deals with the decentralized adaptive control
problem of a discrete-time Multi-Input Multi-Output
Linear Time-Invariant system, controlled by many con-
trollers having their own information sets, models and
objective functions. It is shown that the deccentral-
ized one-step-ahead adaptive control scheme with the
projection algorithm (for the deterministic case) or the
stochastic approximation algorithm (for the stochastic
case) will ensure that the behaviour of the closed-loop
system with unknown paramecters gets closer and closer
to that of the closed-loop system with known parame-
ters as time elapses.

1. Introduction

The rapid growth of our society has increzsed the de-
mands of planning, designing and analyzing a “large
scale system” for which a centralized approach requires
excessively powerful computing facilities and extremely
complex information networks. Therefore, it is not sur-
prising that centralized control systems tend to be re-
placed by distributed computer controlled systems g\l]
and many reseatchers have paid their attention to the
various aspects of decentralized control of 2 large scale
system [2-12). On the other hand, the advent of ad-
vanced computer technology has stimulated the devel-
opment of adaptive control theory , the purpose of which
is to find a reasonable method of adjusting the controller
parameters in response to changes or uncertainty in pro-
cess and disturbance dynamics [13-23]. It seems to be
interesting to combine the ideas of decentralized control
and of adaptive control in order to examine the decen-
tralized control problem of unknown large systems. But
it was not a long time ago that there appeared such
an attempt as considering a large scale system from the
adaptive control viewpoint, and there are not many pa-
pers in this direction, some of which are [24], (25], and
(26]. In [24], Davison suggested an algorithm to deter-
mine the decentralized robust controller for an unknown
stable linear time-invariant (LTI) system by performing
some experiments. In [25{, Ioannou established a de-
centralized adaptive controller which guarantees the de-
sired stability properties for a class of large scale systems
formed by an arbitrary linear interconnection of LTI
subsystems with unknown parameters. In 26], Chan
applied the one-step-ahead adaptive controller to deal
with  the multi-controller problem. But, none seems to
examined an adaptive game problem, especially for the
case where the objectives of several controllers are in
conflict and their information is different. The first at-
tempts in this direction seem to be in [27, 28, 29, 30].

In this paper, we shall establish some results of the
adaptive control scheme incorporating thie one-step-
ahead controller with the projection (stochastic approxi-
mation) algorithm for the deterministic (stochastic) case
which is applied to a discrete-time MIMO LTI system
controlled by multiple contollers having their own infor-
mation, models, and objective functions. There are two
special features which distinguish our work from pre-
vious ones: fA) Input decentralization by multi-
modeling: In most papers dealing with decentralized
control, the system to be controlled is modeled as an
input-decentralized form in which each subsystem is not
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affected directly by the other controllers’ inputs. Al-
though such an assumption covers many real large sys-
tems, it may be very desirable to start with a morec gen-
eral model. In our scheme, the system to be controlled
is described by the auto-regressive (AR) miodel in which
each subsystem is affected gireclly by theinputs from all
the controllers. But each controller does not consider the
other controllers’ inputs in his own subsystem model to
predict the corresponding output. This multi-modeling
has the input decentralization effect, which appears in
the following three aspects: (1) Algorithmical aspect:
The real system we are dealing with is essentially a time-
invariant system. But, for the model of each controller’s
subsystem, in which the other controllers’ parameters
are unmodeled, the parameter estimates are affected by
the other controllers’ parameters being updated from
time to time. Thus, the resulting subsystem appears
to be time-varying to its corresponding controller, so
that it is reasonable to apply the time-varying variants
of the standard parameter estimation algorithm like the
least-squares algorithm with exponential data weight-
ing or the projection algorithm. However, it is shown
that in the stochastic case, the stochastic approxima-
tion algorithm works well. (2) Informational aspect: For
the system described by the DAR (deterministic autc-
regressive) model, the input decentralization sets each
controller free from the duty of getting the informa-
tion about the other controllers’ inputs and consequently
makes it possible to get some stability result with the
observation sharing information pattern. The extension
of this feature to the more general ARMA model is quite
desirable, but highly nontrivial. (:2 Computational as-
pect: In the MIMO one-step-ahead adaptive controller
suggested by Goodwin (p. 204, [23]), 2 matrix should
be “inverted” to get a feedback control law at every in-
stant, whether the parameter estimates are updated by
a centralized processor or by several distributed proces-
sors. Besides, there is no systematic way cf keeping the
matrix to be “inverted” to stay away from singularty
or near-singularity which might result in a numerical
instability problem. Thus, the larger the dimension of
our problem is, the more desirable it is to find a way
to exploit some special structural feature of our prob-
lem for the computational purpose. For the case where
the input coefficient matrix of the system equation sat-
isfies a weak coupling type of condition, the input de-
centralization by multi-modeling excludes the necessity
of “inverting” a matrix at each time. The global ef-
ficiency of our scheme in the computational aspect is
comparable with that of the well-known Jacobi method
[31] which can be executed on a parallel processor sys-
tem to solve a set of simultaneous linear equations. (B)
Game Feature: In many cases, the multicontroller
problems with no conflict among the different objective
unctions are considered as a c?a.ss of game problems.

hese problems can be somehow transformed into a one-
decision maker problem which is equivalent to the origi-
nal multi-controller problem in the scnse that they have
the same solution [26]. What is more interesting to us
is the game situation where two or more controllers try
to coutrol the same output for their own interest. Many
researcliers have devoted themselves to developing game
theory [32-35]. Ikeda [10] has examined a problem that
is close to ours, and he established a stabilizing decen-
tralized control law for the overlapping information in
the expansion-contraction framework. However, to the
author’s knowledge, none have addressed such a game
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situation in the context of decentralized adaptive con-
trol.

This paper is organized as follows. In Section II, an ex-
ample is presented to show the motivation for our work.
In Scctions [Il and IV, we show that for a certain class of
discrete-time MIMO LTI systems described by the AR
model, the one-step-ahicad controller (with the projec-
tion algorithm for the deterministic case and with the
stochastic approximation algorithm for the stochastic
case) applied in the decentralized {ramework will ensure
the stability and tracking results with the observation
sharing information pattern under which each controller
does not know the other controllers’ inputs. \What is
different from our previous work [30] is that we con-
sider a wider class of problems which do not necessarily
satisfy the weak coupling type of condition (A3) with
r, = 0 on the structure of the input coefficient matrix
and consequently does include even a game situation
with conflict. We have shown that if the closed-loop
system with known parameters is stable, and if each
controller applies the weighted one-step-ahead adaptive
control (with the projection algorithm for the detem-
inistic case and with the stochastic approximation al-
goritlun for the stochastic case), then the closed-loop
system with unknown parameters will be stable, and its
behavior will get closer and closer to that of the closed-
loop system with known parameters.

2. Motivation
2.1. Information Pattern

The operation of the system can be described chrono-
logically as follows.

Generation of initial state at time 0
-Observation of oulputs yi(1) fori=1 to
N

Estimation of parameters §:(1) for i =1
to N

Application of inputs ui(1) fori =1 to
N
Transition of state at time 1
Transition of state at time t
=1 to

Observation of outputs yi(t) for i
N

Estimation of parameters 0-.'(1) fori=1
to N

Application of inputs u;(t) fori=1 to
N

Transition of state at time t + 1

The information pattern of the problem is the specifica-
tion of the data available as arguments of the estimation
model and. the control law. We have the following def-
initions for the three types of information pattern [12]
which will be used later.

(a) Classical information pattern An information
pattern is said to be classical if all the coutrollers
receive the same information and have perfect re-
call, i. e, if at time t, each controller has the

informatiot{ ?f('t), Uj(t)forj =1to N'}. (2.1)

(b) Dclayed sharing information pattern The n-
step delayed sharing information pattern is char-
acterized by each controller i having the common
data available to every controller at time ¢t

{Y;(t — n), Uj(t = n)forj =1to N} (2.2)
and the additional data known only to himself
at time ¢, {yi(¢), vi(t = 1),...,yi(t — m1); wi(t —
1),...,ui(t—n+1)}.

(c) Observation sharing information pattern
This information pattern is characterized by each
controller ¢ having the common data available to
every controller at time t, {Y;(t)forj = 1to N},
and the additional data known only to himself at

time ¢
{(Ui(t - 1)}. (2.3)

In other words, under the observation sharing in-
formation pattern, each controller shares only the
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obscrvations, but does not know the past histories
of the other controllers’ inputs.
2.2. Example
For the game situation where multiple controllers with
their own information are trying to adaptively control
the output of an unknown system, one might ask such
questions as: -

e Are the paramecter estimates convergent or
bounded?

e Will the prediction error go to zero as time goes
by?

Uuder what conditions is the resulting closed-loop
system stable?

e How arc the inputs, outputs of the closed-loop sys-
tem with unknown parameters related with those
of the closed-loop system with known parameters?

e How is the tracking performance in a non-
conflicting case?

Let us introduce an example. Consider a system de-
scribed by

y(t+ 1) = ay(t) + byuy (1) + bauz(t); y(0) given (2.4)

where b, = b2 = 1 is known, y(t) is a scalar, and u(t)
is excrted by controller 1 to minimize

Ji(t) = (y(t + 1) — ¥l (t+ 1)) + riwi(1)?; ri > 0. (2.5)
Case 1 Known parameter and Classical information

If both coutrollers know the value of the parameter
‘a’ and have the common information set at time ¢,
{y(k), ur(k — 1), uz(k = 1)fork = 1totand y(0)}, they
will exert their control inputs as

[u;(t)] _ [l«l—r; 1 1oyt +1) —ay(
w] = |1 14 vit+1) - ay(
(=] = 1
uz(t) (1+T|)(1+r2)—l
< [ —aray(t) +$l + r;?y{(t + 1; - y;Et + l; ]
—ar y(t) + (1 +r1)ys(t+1) —y;(t+1
and the resulting closed-loop system will be
y(t+1) = Acy(t) + diyi(t +1) + dayz (¢ +1)  (2.7)
where rirs
Ae= e ra) =1 (2.82)
dy = r2 > (2.8b)
YT UF ) +r) -1 -
da L (2.8¢)

(T+n)(l+r)—1
Remark 1 Notice that if each controller does not pe-
nalize the input in his objective function, the problem
becomes singular because for ry = r; = 0, we have
(1+ r;)(l 4+ r2) — 1 = 0. The interpretation of this
observation is that if each controller is allowed to make
his input as large as he wants, he may be selfish enough
to apply even infinitely large input to counterbalance
the other controller’s influence cn the output for achiev-
ing his own objective, especially in the case where their
objectives are conflicting. Hence, the existence of the
penalizing4iftput term on the objective functions may
be appreciated for playing a role as a mediator to make
a compromise possible between the two controllers by
leading them to sclf-constraint.
Now, throughout the following 2 cases, we assume

G) vit+1)=y3(t+1) =0Vt >0,

(i) 1Al = e rrititen=t

which implies that the output reference signals are con-
stants at zero level and the closed-loop system with
known narameter is asvimntaticallv stable,

<l
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Case 2 Unknown Classical

information’

parameler and

If cach controller does not know the parameter ‘a’, bat
knows ry, rz and has the same information as in case I,
he has his model to predict the output as

Pt 4+ 1) = 8(0)y(1) + vy (1) + u2(t)

and, according to his objective function with g(t + 1)
instead of y(t + 1), he applies the input computed by

(2.9)

ul(t)=—“+n)(l+h)_,é(t)y(1) (2.10a)
()= -Grma e ST Wv®  (2100)

Then, the resulting closed-loop system will be

= ri6(t) + r26(t)
vitel) = {“ EETE +2r:) -1 } vt)

Y(e+1) = {Ac - +”“)’(;“ ;’ff)"_ - }y(t) (2.11)

Suppose each controller uses the projection algorithm to
estimate the parameter ‘a’ as

é(t) =é(¢—1)+;ﬂ(‘,;_‘})1
{(t) —6(t — 1)y(t — 1) — wr(t — 1) — wz(t — 1)}

which results in the parameter estimation error equation

(2-12)

6(t) = My(t —1)8(t — 1) (2-13)

" : ) y(1)

t) = —a: =1 H ) = ——————
80 = i) — : My(0) = 1 - A ) = 20
Case 3 Unknown parameter and Observation sharing

information

Suppose each controller knows {y(k);k = Otot} and
neither has the knowledge of the other ‘a’ nor the in-
formation about the other controller’s input so that he
has his own model to predict the output based on his
information as

vi(t+1) = 8:(1)y(0) + ui(t) (2-14)

where he thinks of the system as governed only by his
input and applies the input computed by

wi(t) = —laiT(t')_;y(t) (2.15)
Then the closed-loop system will be
y(t+1) = a(t)y(t) (2.16)
_ _6() ()
- (a 1+r, 1—r; ¥(®)
_ _6i()  6a(
- (A‘ T4+r 1tr5)%0
where

e 6r 6 _ aryra
14n l+f2—(l+r1)(l+f2)—l

(2.17)

ara(l + 1)

it c 1, 67 = .
with 4] < 1 OFm) A +ma) =1

00 — ar1(1 + r2)
T+ n)(F )1

!Notice that the symbols ~ (head) and " (tilde) are used to
stand for the estimate and estimation aror that are obviously
functions of time, whence coataining the time index, though
not expliatly.

. 0..'(!) = é.’(l) —-8;.
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Suppose cach controller uses the modified least-squares
algorithm with exponential data weighting to generate
the parameter estimate as

y(¢) _
X5 amegey VDR (D)
(2.18)

with 0 < A < 1 as.an exponential data weighting factor.
Then it is readily shown that the parameter estimation
error being affected by the other controller’s estimation
error evolves as

6.(t+1) = b:(0)+

6(t+ 1)= M, (1)é(2) (2-19)

where - _ -
6(1)T = 8.(¢), 82()
[1-a@) -8 ]
AL (t) = P I4ra
2() [ SPYU D
_ y(1)*
A(t) = AL+l 4 E:=o Ac—..y(s)j .
Remark 2

(i) The projection algorithm applied to Case 3 also
would bring the similar result only with the dif-

ference (07
=
40 = Ty voe
(ii) Notice that, for A{(t) = M;(t) (Case 2) or Ma(t)
(Case 3),
M) < 1and
[M()] = 1ifand only ifM(t) =1,i. e, A(t)=0

Thus, the transition matrix A{(2) in the parameter
estimation error equation is always non-expansive
and moreover, as long as y(t) and so A(t) does not
vanish, it is contractive, so that the closed-loop
gain A.(t) of the system with unknown parame-
ters gets closer and closer to that of the system
with known paraineters as time elapses. There-
fore, it is not difficult to see that the convergence
of the parameter estimate to some limit and also
the closed-loop stability with unknown parame-
ters are guaranteed by the closed-loop stability
with known parameters.

(iii) For a sufficiently small positive value of the ex-
ponential weighting factor A, the modified least-
squares estimation algorithm brings the conver-
gence of the parameter estimate to the true pa-
rameter with the exception of two cases:

¢ y(t) happens to be zero at some instant;

¢ by any chance, the closed-loop gain A.(¢) is
convergent to zero.

It isimplied that if the exponential data weighting
factor A > 0 is smaller than the absolute value of
the closed-loop gain A. with known parameter,
at least the local convergence of the parameter
estimate to the true parameter is achieved.

Remark 3 Although the above example is very simple
and not all of the ideas carry over to a more general
Case, it provides us with useful intuition about the more
general case.
3. Deterministic Case

3.1. Problem Formulation

We deal with the situation where multiple controllers
are trying Lo achieve their own objectives on the out-
put of an LTI finite-dimensional deterministic system
described by

y(t+1) = A(¢7")y(t)+B u(t), with the initial condition zo.

@3.1)
At time {, each controller ¢ is supposed to have his own
information, objective function and predictor model as
follows.



luformation sct

{(Y,(0), Y, (¢t +1); =10 N}and {Ui(t - 1)}. (3.2)
‘This implies that cach controller knows the past histo-
ries of all the outputs a.n_d output reference signals, but
does not know the past historices of the other controllers’
wputs.

Objective function

J() = (v (t+1) = v (t+ D) + riwi(t)? withri >0
(3.3)
This implies that each controller is trying to make the
corresponding output y;(t) tracking his output reference
signal y(t) which is assumed to be uniformly bounded.

Predictor model

Fit +1) = $i(t) ¥ (1) + baiui(0) (3.4)

where
$1(t) = ¢2(t) = ... — én(t) = ¢(1)
8(t) = [y, (07, yT 1y (0T ¥i (141), w3 (1+1), .., yh(t4+1)]

(3.5b)
8:(1) = [&,(0)7, ...

(0T da(Y), da(t), ..., din(0)]T
biiis assumed to be known to controller 1.

(3.52)

(3.5¢)

This implies that each controller regards lis subsystem
as controlled only by his own input, so that he does
not model the other controllers’ inputs in his subsystem
modecl to predict his output.

Based on this formulation, each controller uses
the following deccentralized adaptive control scheme:
Controller structure

bii

(0 = 52 2+ 1) = 400

(3.6)

(Tlis im:plies that each controller does not need to solve
a set of N linear equations for obtaining this output.)

Parameter estimator with projection algorithm

(1)

8:(+1) = 0:(0 + Togra

{wi(t +1) —gi(t+1)}

Lt (3.7)
67 =", ...  aln i dh, db, ..., diN])T (3.8)
6i(t) = 6:(t) — 67 (3.9)

ei(t) = —o(t) T (0). (3.10)

Then, from (3.1), (3.4), (3.6), and (3.10) with (2.1) and
(2.2), we get

ei(t+1) vi(t+1) = gi(t+1)

N N
Z aij(g™" )y (8) + Z birui(t)
J=1 k=1

N N
= > Gi(a™wi(0) = bawi(9) = Y diwi(t+ 1)

1=1 j=1

N N
== [ai(a™") = {aii(a7") = Y badei™)Mws(0)
Jj=1 k¥l

N N
- Z[d-.',‘ — {6ijhij — Z hacdiiYy; (E+1)

j=1 k1
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N
_¢(¢)T[é.(() + Z hoade(1)
kfe
so that
e(t +1) = He(t) (3.11)

Also, substituting (3.6) into (3.1), we obtain the closed-
loop system cquation

y(t+1) = Acle ™ )u() + Gy (t+ 1) + le(t)  (3.12)

which can be rewritten in the state-space representation
forin as

F(t+ 1) = Ag(t) + Gay (L + 1) + lae(t).  (3.13)

3.2. Assumptions
(A0) The basic structure of the system is known

(A1) An upperbound n for the order of the polyno-
mial matrix A(¢g™") in the system equation (3.1)
is known.

(A2) Every parameter a;j(g™"), bij is unknown, except
that b;; is known to controller 1. :

§A3) Every parameter of the input coeflicient matrix
B in the system equation (3.1) together with the
weighting coefficient r;’s on the input term of the
objective function (3.3) satisfies the weak coupling
type of condition

1
N -1

bijb,,
2 ]
b” + 7

|hijl < Vi # 5 where &;;j

(A4) The closed-loop system with known parameters is
asymptotically stable in the sensc that Det [[ =
¢~ 1 Ac(¢7")] has all its zeros inside the unit circle
(u. c.). or cquivalently the matrix A, has all its

eigenvalues inside the unit circle, where A, was
defined in Section 2.1.

3.3. Results
I’roposition 1 The N-player discrete-time dynamic

game described above with known parameters admits
a (unique) sct of feedback Nash equilibrium strategies

given by

bii

g iy Teo .
b?.-+r.~(‘"(‘+l) (1) **)VYi=1to N.
(3.14)
Proof: For this proof, as well as those of the result to

follow, see [36]. Let us define

w(t) =

v(t+1)=Alg7" )y (1) + Gy (t +1),
with the initial condition zo &

(3.15)

Then, y°(t) is the output vector sequence which would
have been obtained if every controller had known all the
parameters so that controller ¢ had applied u{(t) from
the beginning and {x°(t)}, {y°(¢)} can easily be shown
to be uniformly bounded by the assumption (A4). We
have the following result.

Theorem 3.1 For the system (3.1) subject to lhe as-
sumptions (A0)-(A4), the decentralized weighted one-
step-ahcad adaptive control scheme (3.6), (3.7) yields
(a) [16(t+ 1)ll5< 16Ol V¢ > 0.

g T e 1
(b) lfn— oo (-i+—¢((“)—);'7¢(‘)3 =0.

(c) lime—oo e(t) =0.

(d) lim—oe(t) =0.

(e) {¢#(¢)} is uniformly
{v()}, {u(0)}.

(£) lime—oo{ui(t) — u(€)} =0Vi=1to N.

(8) limi—oo{yi(t) =y’ ()} =0Vi=1to N.

bounded and so are



[.ct us now cousider a special case where the input term
is not penalized in the objective function, i. c. , r; = 0.
lu this case, we have a smaller class of problems for
which our deceutralized one-step-ahead adaptive con-
trol scheme cnsures the closed-loop stability, since the
asswinption (A3) becomes lbi)/b)‘jl < 1/(N = 1), which
doecs not cover the gamne situation where two or more
coutrollers are trying to control the same output in their
own way. But, we have relatively stronger result asymp-
totic tracking performance.

Theoremn 3.2 For the system (3.1) subject to the as-
sumptions (A0)-(A3), the decentralized one-step-ahead
adaplive control scheme (3.6), (3.7) with r; =0 for all
t = 1 to N achieves asymplolic tracking in addition
to the results of Theorem 3.1; lim¢— o |yi(t) — ¥ () =
OVi=11toN-

4. Stochastic Case

4.1. Problemn Formulation

“We deal with the situation where multiple con-
trollers are trying to achieve their own objectives on
the output of a LTI finite-dimensional stochastic sys-
tem described Ly y(t + 1) = A(g7")y(t) + Bu(t) +
v(t + 1) with the initial condition z,. Let F, be the o-
subalgebra gencrated by the obscrvations up to and in-
cluding time (. F, includes the initial condition infor-
mation. Each component of tlie noise vector sequence
{r(1)} is taken to be a recal stochastic process defined
on a probability space (2, F, P) and adapted to the se-
quence of increasing o-subalgebras {Fe; t =0, 1, 2,...}.
The following assumptions are made on the process
{e(n)).

(V1) E{e(t+1)|F} =0a.s.

(V2) E{e(t+1)o(t+ l)Tl.F,] =T withtr’' < oo a.s.

(V3) limy_sup % ZL] lo()]? < oo a.s.

At time ¢, each controller 1 is supposed to have his own
information, objective function and predictor model as
below.

Information set
{Y;(0), Y (t+1); s =1to N} and {Ui(t —1)} (4.1)

Objective (unction

(1) = E{(y(t+1) = ¥l (t+ 1)) + riwi(0)?| 7). (4.2)
Predictor model

Gt +1) = 6()T8:(t) + bisugt) (4.3)

where $(t), 6:(1) are as defined by (3.5). Based on this
formulation, each controller uses the following decentral-
ized adaptive control scheme:

Controller structure

wi(l) = b—zb—;—;—{y:(l +1) - ¢(1)Té.'(l)} Vi=1to N.
) (14)

Paramcter estimator with stochastic approxiination

algorithin _
6i(t+1) = é.—(‘)-*-;—%o‘(l)(&«(&l)—ﬁ;(t+l));«‘z‘.- >0Vi=
(4.5)
(1) = 7(t = 1) + $(0)T8(8); v(—1),= 7o > 0. (4.6)

Subtracting (§(t+ 1)+ v(t+ 1)) {rout both sides of (4.1)
yields

e(t+1) = v(t+1) = A{q™")y(t) + Bu(t)— §(t+1) (4.7)

where ¢(t + 1) = y(t + 1) — g(t + 1). Let

() =c(t—1)—v(t +1) (4.8a)

ei(t) = —¢(1)Tai(0) (4.8b)

where 8:(t) is defined by (3.9) with (2.1) and (2.2).
Then, by the samic argument as deriving (3.11) and from
(4.8) together with (4.4), (4.5) and (4.9), we can get

z(t) = He(t)
e(t) =H""2(1) (4.9)
where the invertibility of the matrix H is guaranteed by

the assumption ﬂAJ). Also, substituting (4.5) into (4.1)
gives the closed-loop system equation

y(t+1)

which can be rewritten in the state-space representation
form as

F(t+1) = AaY(t) + Gay " (t + 1) + Hae(t) + iav(t + 1).
(4.11)
4.2. Assumptions and Results
Ia addition to the noise assumptions (V1)-(V3) and the
system assumptions (A0)-(A4), we can make one more
assuwmption:

(A5) The scalar gains @i’s of the error forcing term
in the parameter estimation algorithm (4.6) are
chosen so that Af > (1 + p)| for an arbitrarily
small p > 0, where

1

M=HTZ"' + A TH T with H, A invertible
(4.12a)
- _f@W>0 ifi=j
14l = { 0 otherwise. (4.12b)

As shown in [36], Proposition 3.1 also holds for the
stochastic case. Thus we can define u°(t), y°(t) in the
same way as in Section 3.3:

W0 = i) - 6T, (413)

41 = Ay )y () + Gy (¢ + 1) + v(t (I

with the initial conditionz,.

Then we have the following result.

Theorem 4.1 For the system (4.1) subject to the as-
sumptions (V1)-(V38) and (A0)-(AS5), the decentralized
weighted minimum variance adaptive control sclieme

(4-3)-(4.7) yiclds
(a) imr— ZT:: ;("—)llz(t)"z < oo a.s.

(6) limr— o 53 S0 (DI <0 a.s.

() limr—e LT 20 <0 2. s.

(d) limr—e £ 57 [le(0)I? <0 a.s.
(e) limr—o % Z‘T:}_E{(y,(t+l)—ﬁ.'(t+l))zlf(} =T

a.s.Yi=1t N.

(JIR..limr—«, ; 2.1;1 lu(t) —«®())> =0 a.s.

(9) limr—os £ "7 Nly(0) =y ()P =0 a. s.
(h) limr_cosup = 7 flg(O? < o0 a. s.
(i) limr—osup £ 7 lu(9)]* < o a. 5.

Also, with r; = 0 for all t = 1 to N, we lLave the coun-
terpart of Theorem 3.2 for the stochastic case:
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Ac(g™")y(t) + Gy"(t + 1) + He(t) + v(t +H1)10)
Acd(g™")y() + G (t+ 1) + HH' 2(t) + v(t + 1)



licorem 4.2 For the system (§.1) subjcct to the as-
amptions (V1)-(V3) and (A0)-(A8) and (A5), the de-
=nlralized minimmum variance adaplive control scheme

4.5), (4.6) with r; =0 for alli =1 to N yiclds

. . T
a) limr—oc sup .;.— Z‘=l Ny(OI? < o0 a. s.
b) limr—cosup £ 37 J[u(¢)]* < o0 a. .

fc) imr—oo 5 Soi_ E{(vi(t+1)=yi(t+1))?|F} = T

a.s.Vi=11to N. :

5. Conclusions

In this paper, we have established a decentralized adap-
tive control scheme which yields the closed-loop stability
ior a class of systems described by the AR model in a
game situation where the objectives of several controllers
are in couflict. As a by-product, our results suggest how
and under what conditions a centralized adaptive con-
trol problem of a large scale system can be decentralized
in such a way that distributed parallel computation can
be executed to decrease the informational complexity
and save on computational resources. One might ap-
preciate the global efliciency of our scheme by recalling
how powerfully the parallelism of the Jacobi iteration
can be exploited for the computational purpose to find
the inverse of a large-dimensional matrix with a domi-
nant diagonal. | .

It is interesting to note that in a situation of conflict,
the decentralized one-step-ahead control without penal-
ization of the input can not make a compromise among
the controllers who have no hesitation in exerting —
even infinitely — big inputs in order to be dominant
over others and to achieve their own objectives. The de-
centralized one-step-ahiead control with penalization of
the input can lead the controllers to seif-restraint and
mutual concession towards a compromise, while causing
the non-exact tracking as a negative effect.

The results can be easily extended to the case where
each controller lias more than one output to control,
which yiclds a relaxation of the weak coupling condition
as a positive effect and an increase in the dimension of
subproblems as a negative effect.

\Ve have tried to extend our results to the ARMA modecl,
but succeeded only with the one-step-delayed sharing
information pattern under which each controller knows
not only all the previous outputs, but also the past his-
tory of other controllers’ inputs, while the computer
simulation results obtained under observation sharing
information pattern are as good as those obLtained with
classical information pattern under which all the infor-
mation is commonly available to every controller.
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