e L LR e W B R e - T

MALEME-CHANA . CRETE, GREECE

A Parallel Method for Globally Minimizing Concave Functions Over a
Convex Polvhedron *

Shih-Mim Liu and G. P. Papavassilopoulos
Dept of Electrical Engineering — Systems
University of Southern California

Los Angeles, CA 90089-2563

Abstract. An algorithm for glebally min-
imizing concave functions over a bounded
polyhedron is deseribed. A crucial feature of
the algorithm is that it can be implemented

in parallel, thus enhancing the rapidity of
convergence, The algorithm generates a se-
quence of nested polvhedra containing chee
polvhedron of the constraint set. The ini--
tial containing polyhedron with N vertices is
abtained by selving some linear programming
problems. Beginning with the vertices of the
initial pelyhedran, the algorithm proceeds si-
multaneously with M subproblems whose s0-

lutions minimize the concave function owver
N successively tighter polyhedra created by
the cutting-plane method. The algorthm is
guaranteed to converge to the global solu-
tion. Computational considerations of the al-
gorithm are discussed.

Key words: Simplex, Cutting Flane, Parallel Al-
gorithm, Glabally Migimizing Cancave Function.

[. INTRODUCTION

[n recent years, a rapidly growing number of papers has
been published pertaining to solving specific classes of
multiextremal global optimization problems {cf. e.g..[3, 8]).
Several of these papers are on the topic of globally mini-
mizing a concave funetion over a polyhedron which Tux[10]
first. addressed in 1964, Mosr approaches that have besn
developed for minimizing a concave function over a polyhe-
dran have been based mainly on. the following approaches:
jcutting planes, successive appreximation, successive par-
fition. or combinations of these methads. Only a few of
the suggested algorithms have heen demonstraced by nu-
merical tests, including the two successive approximation
methods elaborated by Falk and Hoffman(s, 4] and the
three different efficient algorithms discussed by Horst and
Theai[12].

[n this paper. we consider the problem of minimizing a
concave function subject to a linear polvhedron constraime
iz, In our method, an imtial enclosing polvhedren with
N vertices (e.g. a simplex) has to be computed by finding

“supported in pare by NSF under Grant CCR-9223724

some vertices of the feasible set. Then, by suitable par-
tition of this enclosing polyhedron |, we have ¥ indepen-
dent subproblems with the same abjective function. Af-
ter initialization, an upper bound an the objective func-
tion is obtained, and the algonthm proceeds to solve these
N subproblems in parallel. The comparison of the upper
bounds of the concave function for all subpreblems will be
considered during the period of computation, and the al-
gorithm is guaranteed to converge to the global salution.
The algorithm we present here uses a combination of eut-
ting planes, outer approximation, and partitien technigues
with the method of cutting planes playing a dominant roie.
The algorithm must generate the new vertices in defining
the new polyhedran by cut and chis is itz most expensive
computation. Several algorithms for finding all vertices of
a polyhedron are compared in [4], and the method devel-
oped by Mattheiss[1] seems to be the most eficient. [n our
algarithm, we will incorporate che idea propased by Hast,
Thoai and Vries[2] and the mecthod of Mattheiss{l] in tha
calculation of all new generated vertices,

The algerithm introduced in this paper, the methods
proposed by Falk and Hoffman(5). and the algorithm GAA
described by Horst and Thoai[12] have similar characteris-
tics, i.e. successively outer approximation and finite proce-
dures. However, the choices of the cutting plane are differ-
ent in these thiee methods, in particular, our parallal algo-
rithm is much more efficient than the others. The compar-
ison of the computations in seme methods[3, 5, L2] will be
given in Section Y. Generally speaking, our methad has the
following properties: it can find accurately all global opti-
mal golutions in finite iterations, it is & parallel algoricthm,
it can handle the degenerate caze (which iz nat constderad
in [3, 6]} (see Host, Thoai and Vries[2]}, the redundant
constraints do not affect the computation because they will
never be chosen as a cutting plane during the computation,
and it does not require a separable objective funccion.

In the next Section will present the details of the algo-
rthm. In Section 3, we introduce a scheme. In Section
4, we give two cxamples to llustrate the method, Sec
tion § reports some computatienal results. Finally, in the
Appendix we discuss che extension of the method to glob-
ally minimizing a concave function aver a compact convex
feasible set, and a small illustrative example is provided.

II. PROBLEM STATEMENT AND ALGORITHM
Consider the problem

flz)

['P‘l MImize
: Az < b,

subject to >0,

where 4 is an m=n matrix, bE R™ r e B" and fisa
concave function defined throughout . We use a, and
b to denote che sth row of A and b respectively. Assume
D={r| Az <5 = 2 0} is bounded, nonempty, and there
' a point p in the strnct interier of the feasible region .
e pEdriar < b, r>0fors= ... ,m}

The following theerem is well known:

Thearem 1 Jf a globai minimum of a cancave function
over any polyhedron 15 attained. it can always attarned of
iome verter of the pelyhedron,

4. Serwal Algorithm

In the algorithm, we can choose an initial enclasing simplex
D% by solving n+1 linear programming problems of the

form:
1) {

Let oy = 1,2.... . n) and & be the optimal value salu-
tions of (1) occurring ac the points pli=12. . n+1)
respectively which are vertices of [, Then it is easily seen

that

max Z?:LJ:' -

stox e[}

minz, (j=1,2....

1
s.t. reD (1)

E}CI;{IE H“;rflznr[:jzl ,,,,, ﬂ}.z:lgﬂ’} {3}

is a simplex containing D. Denote by V(D) the vertex set

of any polyhedron L. Obviously, the vertex set of D7,
V(D% = {vq, vs, ... Unir}, where vagr = (@, ag,. .. .
and ©, = R R T - i =

-2 n) with @ =a - 3" a.. For n=2, An enclosing
aimplex 5" is shown in Figure 1. Clearly an upper hound

ol

Figure 1: A Simplex containing D for n=2

for (P) is f* = min {fip}, ¢ i+ L} since the
pu are vertices of D, Let vertex v® be a solution af the
problem min{f(v,} : v, € V(D®)}. Then f(v°) < f°
since 0% 2 D{We only need to store vertices v;, where
fle) £ vy 2 VD)) 16 6° € D, then o° sulves

" D*=' where fiv) o i

problem (P). [f«® & D, we find a linear constraint fram
Ar = b, say a,r = b,, sueh that @z = b, and 7 € bound.
ary of D where z = o* +Adp=u"), O <)< i Recail
that p is an interier point of D, and thus A £ 1. Norice
also that A #£ 0 since +° g D). Thus, we get a new poly.
hedron D' = D°M{r € A" 4,z = b}oand VDY,
Following the same pracedure as before with D! assuming
the role of D% the algarithm will generate a sequence of
subproblems, and there will he a corresponding sequence
of palvhedra D* |

Let [* be the subset af {L2... .m}i.e of the constrains
set {a,r < b, i=1,32 co..m}) whose corresponding con-
straints are not used in defining . We can thus state the
following algorithm:

Initialization:

Take an n-simplex 0° 5 0 by solving (1), and find f°, and
V(D). Only the vi3 for which (1) < f°. for v, = Vinn,
need be stored. Sep [° the constraint set of O =
{1.2.....m}.

Iteration k =1,2.. ..

At iteration k, we know 15!

. the promising vertex set of
v for Yo = k=1 i
Choose * by solving min{ f(v) : v & V*="}{if more than
one solution, choose any one). Compute :

: max A

(£*) ¢ st rk;i-.?‘ufp—.ri]-E{:r:a_,zz&_,, je =,
0<Acl,

[f X = Ofif there is no) far problem fﬁ“_:l, sat A =), then

z* is a global minimum solution of {P), and f* = fie*).

Otherwise, set =* = 2* 4 \(p— z*} | and choose any one
constraint such that a,z* -4, =0, j € [*~' | Form

D*= DMV e eBinix < bhI*= 26y (@)

Compute the new vertices generated by the cutting plane
a4z — 8y =0 [only stere the vertices vielding ohjective
function values < f*),

If V* = &, then stop. Otherwise, go to iteration k41,

- B. Parallel Algorithm

312

In order to cast the previously described algorithm in a
parallel form, we assume that we have n+1 processors, and
an initial enclosing simplex D° was obtained by solving {1)
on n+1 processors. For the ith processar (1 = 1, . ..}, set

Le}
{:rER":ZrJ:_’:n,a.{r.

=1

o?

o _{'IJ[IJ——.. Li...,i — l.ifl....,ﬁ]} 4]

and for the {n + 1)th processor, set

B, =-[.rER".'n:r_,£:J. (7= 1..,..n],Zch < al
f=1

[5]

Then,

L

Dcl| D=0 and V(DY) =uvi{i=1,....n+1) (6)
1= |

Sa, problem [P) can be rewritten as follows:

(P minimize fir)

i subject Lo :ED?HD. 1=12...,n+1.

where the solution of (P} = min {the salutions of {P;)
APas1i}. There are n+1 independent subproblems

which are similar ta the serial algorithm stated in Section A,

Thus, these subproblems could be done in parallel. Denote
5* by the set of DfJH {i.e. the number of the active proces-
sors at iteration k > 1)= 5%\ N*=1 where N5~ = {i .
flvl = F5=! fer every v S L"{ﬂlk'h el e},
and let S be the subset of {1,2,... .m} whese correspond-
ing conscraints were not used in defining DF, i & 5%
Let ¥* denote the set of the promising vertices of D7, The
algarithm is then as follows:

Initialization: .
Construct 27(i = 1....,n + 1) and n+1 independent sub-
problems described as (4). (3) and [P,) respectively.

Set /" = min {f(p.), ¢ = 1,....1n + L} (the best upper

bound so far). We keep the 0%'s with i € 5% and go to

ireration 1.

[teration k =1,2....

Ab this iteration, set §% = S¥"LW AR pE-l prk=l he
promising vertex set of the 0*' and a current upper
bound f*=' are known for every i € 5 ', Then, select
the mest promising vertex of the D*~' by choosing min {
fivh: v e V'), and let »¥ be the sclutien{if more than
ane solution, take one of them). Solve

=

max A
stord e AMp=z¥)e{r-a,z =b,,je J5 1,
0= hel

(cHy

Ifh =0 (if there is no A for prablem (L), set A = 0), then
£Fis a vertex of D, and let f* = f{z*)if flz¥) < f*Var
fh= f:‘_l if JT'[J!:‘:I = f*1 (keep £F, it may be one of the
global optimal sslutions).

If A > 0, then set 2F = =¥ + AMp = £F), find all con-
straints of D which are binding at z:" and set I.k = {J .
azf = b, j € J''}. Then add any one constraint
ar=b £0, j& [ta generate D:‘ by using the cutting
plane method. Set 1

D= Df " (z: ayz < by G L8, S =JF 0\ 1

(7
¥* = {the promising vertices of the subset D*}
= {v: flv)< f¥, for v e V(DF)) (8)
Now zpdate the upper bound by
ff=min {7, f¥ (if f¥ available); i€ S5*7'}. (9)

313

Set M* £

o, forte § ']}
If §* = &, then stop the algorithm, and f* is the global
minimum of prablem (P); stherwise set bk = k + 1. and g
ta iteration &,

min(fiv) : v & V*) > f* g uF

Lemma 2 The sequence of upper bounds {f*} 15 mono-
tonically decreasing.

Proof f* = min{f(z), ¥r & V(DMV(DI]},
where V(D*) = |)7 VIDF) and min {fiz) : = =
VIO VDN € min {fiz) - = & V(DMOVIiDY
since DC D*' C DFC ... C DY Thus f5*1 < %

Lemma 3 The algorsthm will tersminate in a finite number
af iterations.

Proof: Because of D is a polvhedron. it has a finite number
of vertices , and at most m cuts will be introduced for
determining D?. Notice also that the number of new poines
generated by the cutting plane methad is Anite. It follows
that the algorithm must terminate in a finite number of
iterations,

Theorem 4 The algorithm converges, and f* is the glabal
mimumum of problem (F) if it terminates af iteration k.

Proof: By lemma 3, assume the algorithm terminates at
the k-th iteration. Thus f* < f*~' < . < §F' < f° by
lemma 2}, but f* =min{_|""",f,"; forie 55 '} = f*is
the global minimum of problem (7). (|

ITI. A SCHEME WITH n® + 1 PROCESSORS

[n the parallel algerithm, an initial enclesing palvhedron
must be computed first. Since the performance of the par-
allel procedure depends heavily on the kind of the initial
containing pelyhedron, other alternatives could be consid-
ered. For instance, we can have an n-rectangular enclosing
polyhedron {with 2" vertices) by solving 2n linear program-
ming problems of the form:

{ {

However, so far, there are no general rules for the construc-
tion of the initial enclosing pelyhedron. Now, we are go-
ing to intreduce an enclosing polyhedren Q° for which the
maximal number of active processors can be up to r¥ + 1
at the firat iteration {in general. the number of the active
processor is less than n® + 1.

First, we compute che following linear programming prob-
lems on 2n+1 processors.

min z; (j=1,...,n)
stz eD

max £, {31 =1,...,m}

st. xe D (1]

ay, = {minz, st z€D}, {j=1,...n} (11)

x = {max Zr;., st r & D} (12)
=]

3 = {maxz, st.zeD}, (j=1,....n) (13}

C}“:Dnﬂ{rEH“:r.id..tzl... .n} {14

?:Df'ﬂ{.rE A" 2. €8} vi=1,...,n

i =Dh (s €R iz <8 i=1....n)

Clearly, there are n vertices in V(QY) the vertex set of Qv
Set v, V(@) and

(13)

(16)

n
':r;]?; = {re ™ =t = l....,n},Z:r < al
=t
[Vzer s <ai
{all constraints of Y binding at v, }, (17
where s, j = 1,2,... n. Therefore,
nel noon
el =JUe Jets (18)
=1 =1 =t

Figure 2 gives the illustration of these subsets far n=3,

: ”.] I| FrL; ,
I___L"j_l L = o
Ql}
ey, L SR PR 1

r@%, [“H‘

n]

oy < r: € 3
I+ TS o

Va4)

Figure 2: Q) for n=2

Equation (18) implies that problem {P) can be repre-

sented hy
(0.1 minimize fix)
Wil subject to :EQ?}ﬂﬂ, Li=12....n
and .
minimize f(r)

{ i

(o) { subject to zeEQ D
where the soluticn of (P) = min {the sclutions of
{9,)57 ="1,...,n), and (@n41)}. Hence, at most n? +1

subproblems will be solved simultanesusly by a procedure
similar to the one stated in Section B

[V, ExamPLE

In order to illustrate the method, we present two examples
here. [noexample 1, we will introduce both serial and par-
allel algorithims. Only the parallel method will be applied
to example 2,

314

Exampls 1:

==y -lil]—i!; Tg+(Eg =27y

minimize T

subject to: =3z, 4 =0 £
=45 —£; £ -7, {3
3£y 4 222 € 23, Cx
Sry —d4r; < 20, 2
2ry 4 3r; < 22, Cs
—fx — 953 < —18, Ca
—15z, + 5r; < 10, I
Ty, >0

serial algorithm: the initjal enclosing simplex DY was

T}
e £l Ty %
1
| G _
"o k4 N T TR

Meraclan A 5 ami%in reging

Figure 3: Serial algorithm for example 1

abtained by generating the vertices v, =
{1L,Bvs = (1,0, and PL= iL3lp = (300
(5.4) are the vertices of D vielding function valyes
2.50.-1.333, and 2.0 respectively,. Thus f* = _{ 11
N = & since flo) = —3.778, flug) = =10.0, f{ua) =
=20 < f° je. §% ={123}. Let f9 ={1,2,....7}, and
interior point p =(2.600,1.867),

[teration 1: obviously, ' = w. To solve {£'). we get
A = 0457 and z' =(1.732,5.1935). Therefore, the cutting
Plane is £, and the new vertices are (2,256.75),(1.3) hav-
ing function values of 1,385.2.5 respectively. 5o, no new
points will be kept, and [' ={2,3,... 7}, V! ={{9,0).1.0)},
fl' = =1.333;

[teration 2: r? = o), thus :* =(4.946.1.187) with } —
0.633. It follows that the cutting plane is ¢y, and the new
vertices are (4,0}, (6.222,2.778). The objective function
values are —1.6250.538 respectively, Hence, [4,0) need to
be stored. [? = {2,3,5,8, 7). V2 ={(1,0).{4.0)}. The up-
per bound does not improve. ie. f? = —] 333,

Iteration 3; choose ©¥ = uy, then = =[1.732.0.849) with
A = 0.455. Therefare, the cutting plane is 3. The new ver-
tices and corresponding function values are F(3.0) = fipay,
and f(1,1.333) = 1.111. Then, we have /° ={2,56,7},
V¥ ={(4,01,{3,0}}. The upper bound is still the same.
lteration 4: since ' ={4,0}, we get A =0 (4.0) is feasi-
ble and f* = f(4,0) = —1.825. [t implies V' = g, The
algorithm terminates here, and (4.0} is the glabal saluticn.

[2,0],

I

(]
S

Table 1: Iterative Results for Example 2

! Frocessars (1) —

x| 2 3 4 ET A A g
fli Fip] ﬂﬂ ﬂasﬂlj LEY AR RLE) . T T 465?;”935”%&] : y
= - = -5 = "i1za4) | -soo0 |
. Tiv.T ; Eﬁ_q}g }1331- r;n._si-éllés_ig‘] 'rn_-:riaus} :_[:J] cn,. — | ' : |
N p 0 am5] TE0IT TATES = = il
I i (1.497,1.227,0.945) [D 833.2.176.0.845) '0.4%3,0.650,3 346] (0,0.0) il
wutbing Flane L] 4 |
| s] = CEEREEEEN) h.zu,a,t 171 | !
MWew Varrices (-4 879, 10.244,0) ?':. 3. |:-:]u R io.2 823 2,534 {1234} | =780 i
, (288402561} (03,8051 5101 10.0.4 000) e agiz| eiodnt|
i [FIE."IC'PanTII:"I; g (3 000000 "'Eﬂlﬂﬁu] 4.4 0, T.17TT i
| R H
| Lawer Bound | =7350 =750 Y =T 75U i
i 1 AT i U S) =]
[A | (1 5%4,0578.0.446) (0,3000.0) {1.607.1,127.1.07T6) |
| Tuthing Flane | i9 . 7 5]
! T e | AT TES T008) T | i
| 2 Maw Vertices | (2.333,0.1.0000 12.727.0,2.182) {123} | -7250 :
| (8.000.8.07 1 2.854.0,2 861}
The premising :,I:I.'Sl.-i] 1
!__| Verticns i
| nwerltlcuunu =6 750 =7.2a0 — 7 280 I 1
| e L. Sl e s T T T T i
[i = 27 (0,0,4.000) 7250 |
! — Lowar Bound = — il) — T W i3] 250

Figure 3 illustrates the sequence of containing polyhe-
dra generated by the serial algorithm. In this example,
constraint > 1% redundant.

parallel algorithm: we need 3 processors to solve this

W M r, 1.

L B L 1LC

i p
Prareassr T 0 Takilalinaaken

-._{:F

S -
i 5.
=

I

frislaibaniinn

Brasranss 1 -

Figure 4: Parallel algorithm for example 1

problem. After initialization, we proceed as follows:
[teration 1:

Processor 1: choose :r§ = m. Solving [I:.H: we have
z! ={4.946,1.182), and A =0.633. Therefore, the cutting
plane is {4. The new vertices and corresponding function
values are f{4,0) = —1.625 and f{6.222,2.778)=0.528. 5o,
the lower bound is —1.623, [! ={4}, J{ ={1.2,3,56,7},
o= {(40)}. Processor 2 take ri = w3, Then,
s =(L.732,5,195) with A =0.457. Thus, the cutting
plane is {1, and the new vertices and their objective func-

tl':m values are f|:2 25.8.75)=1.38% and f(1.3)=2.50. Hence,
={1}, Ji = {2,. ..'.T}x Vo' = m. Processor 2 stops,
chessur 3: for =i = va, we get z) =({1.727.0.849) with
A =0.4535. Therefore, the cutting plane is ¢, and the
new vertices are {3,0], {1,1.333) vielding function values
of —1.333, 1.111 respectively, /3 = {3}, Jf =[1.2,4,567},
W ={(3, 0)}. At the end of iteration 1. the upper bound

doea not improve, ie. f' = f© = —1.333 N ={2].
5 ={1,3}.
lteration 2:
Processor 1: with A =0, =} =(4.0) is feasible. Then,

= _fl:-I-
Processor 3:
V=, stap.

0) = =1.625, ¥{® = ¢, and processer 1 stops,
similarly, we have f_r? = f[{3,D = —1.333,

Now, since N% ={1,3}, 5 = &, the algorithm stap, and
f* = f? = —1.625 iz the global minimum soluticn. The
history of these processors is shown in Figure 4.

Example 2 was constructed so that it has three global
minimizers, and a redundant constraint ¢s is included in
the constraint set.

Example 2:
minimize ={z; = 1)? = {2z = L.5)% = (23 = 2)®
subject to: 3r, + 2r; =r3; <6, £
Iry — 4D £ 3, g2
4z 4+ 3z; + 623 € 24, {3
2,25z, + dzrz + 3ra < 17 &y
ry+3r 41 <10, s

Ti1.%2,. 73 2 0.

After the initialization (inter point p = {1.04, 1.37, L.DE]).
the algerithm required three iterations to find all the glabal
solutions {0,0,0), (0,3,0), and {0.0.4) with the same func-
tioh value of —7.250. All che calculations can be found in
Table 1.

315

V. CoMPuTaTIONAL ItESULTS The interior point P ol each test problem s the zame fi
algonithms SA, PA, and QAL o owr computational exper-

In this $ECLION, we prosent scveral computational experi. :
ments, Computational results far ﬁilni]a.r':!rublcms Lo L?m“ ::c:}'.:';;:jz?rﬁnﬁ DF.S'&" P.,q“ an.ti{Qﬁ. heavily depend
considered here are also presented in (5] and [12]. Our al- HEET i Lt::;:ﬁ::?:: pomt p. However, we have ng
gorithm seems to perform very well in comparison ta the ;
results reported in [5, 12], hasically due to its parallel char. Table 2: Computaticnal flesults for 54, PA, QA
acter. The largest problem solved in [5] is & 12-variable,
13-canstraint probiem and the algorithm OAA in [12] was Sl m o r..a T iy Loy T
run only for problems with n< 3. But, using our parallel | (]3'1 g 7, d ! z i] e
algorithim, we can efliciently salve similar test prablems of j s AR i H r2 ad ‘__"’_'55'_"
different size witls up to 50 vanables and 30 linear con- 4 PR i bt i 12 H?ﬁ' '
strants (aside from nennegativity constraints), 1 Iﬁ: o5 :|5 :-l, -E |:E :;E g E% |
Here we first compare the results using our algorithm en i 2 L4 <] }ﬁ' B = Fae 1
the examples in [3, 5, 12]) as fallowing: : E.‘i gl % 'ﬂ i & :f;.la Ig fﬁ I
(1) example in [5], we have D® = r € B . s o6 T 6 & w1 s
ni2 07286, =z 2 0, Tz o< 31303, 12 e B e . R 1
p =(0.8981,0.0800,0.7743), global ‘solution={1,0,0) with e T L |
value —1. SA: [ter=11, Vmax=7, Vgen=12, Viotal=25, P & - L g] i a _ﬁ-_
Time=2.2848 sec; PA: [ter=4, Vmax=6, Vgen=10, Qi 3184 & unm x4 3
Vtotal=26, N. = (4,4,4,2, 1), Time=0.3990 sec, s{fA ¢ s § N T IU T
{2) example on Page 249 or 306 in [3], we have D® = " g{ — I?E 7?? e % .3.1'3
[reR':z>0 ! z <5.0755), p =(0.5,0.5,0.15,2.0), T rg—;:*-é—.-“' R Tl T e
global solution = {u.?goq,u.4324,n.3.auz?} with wvalye 0| Pa g II]T-‘I 1131 |u2= 2995 13074 0 ﬁ”é 81
—7.6558, redundant constraint: L2xy + 1423 + 0.4x5 + ——_Eiﬁ"———ﬂf——ﬁ— Th-245e8 1%
08z, < 6.8. SA: Iter=4, Vmax=3, Vgen=8, Vtotal=20, G o1 St Sinq B byl A -
Time=1.9761 sec: PA: [ter=4, Vmax=2, Vgen=8§, 2| By T 1 Ihy LI -
Viotal=20, M, = (5,2,1,1, 1}, Time=0.5932 sec. ga ° " 3 ® 7 I
(3) example in [12], we have D° = {z e B 3| Pa g fi 11D sk Ths 315a 15476 10
B2 00715, 3z >0, x> 02820, 2, > 2 B e M ¥
0.3606, 57 ri < 12.5720], p =(1.5,2.0,3.0,0.7,1.0), global i T I o R L Rl v
solution =(0.4096.5.6011,6.1354,0, 0.4258) with value WA 18 12 3 8 1B Tz ST
—=21.1220, redundant constraint: 0.7620xy — 0.3048z; — A X131 3 a7 55 5
0.0123z; — 03940z, — 0.792lrs < 12057, SA: L1 S I P S - O TR £
[ter=7, Vmax=10, Vgen=45, Vtotal=120, Time=1.6049: a8 T g I« S 4'
PA: [ter=8, Vmax=8, Vgen=35, Vietal=130, N, = b I T S S o6 a5
(6.4,4,3,3,2, 1), Time=1.1598 sec, — 8¢ S R L S - M
All computational results including Table 2 are obtained " Ei a4 ead 3 ' 305 §
JI;J];D% M?}?IE&A%[“BG ;'I.I.Im.ing anj?l:m 4,/50 [SISARCth’iI?n o ﬁa — ;’é i‘l }mJ T B aig.llg :
X wi MB of memary, e Lest problems for Ta- ! — T T ——
ble 2 are randomly constructed by h,andp nggl We use a i F’i 12 20 : i 'Zﬂlg NG .';I!Pl;nl-a"g! ill Llﬁ;q'.*::?ﬂ I
definition of speedup which is the ratio between the time 22 2wl . Ll R ¥ 240
taken by a given serjal computer executing the sarjal algo- a E; P j} E{ ?g? Gﬂ';',—"."; ’éﬁﬂ E.' :_-‘;%3 '!I
rithm and time taken by the parallel computer(imitated by 2| pa W W § 1T el aagh B0 «;.-1 :
the same serial computer) executing the parallel algorithm ga_ "~ - ST 237 Grd (g1 st 56
using N processors. In erder to imitate the parallel alga- #n[fA w0 3 WO 31 IS400 17630 41 g7eg li
rithm by serjal Femputer, we assume that all active proces "ﬂ' 3 ??dIJ 'I;I'EIE -?:EE:: I?F,GT?{ 1326 . :IJI_?‘E
sors have the same computing time in the same iteration. T, T T S 1 el wlist X 3
“Then, the CPU tima executed by parallel algorthm will be =l 2 A n-:*_ — : IH. _ _I_.
Time = Z:::q Talt)/Wa(i); where Ta(s) is the time taken ga : 3N ef s Tasu i ‘-:5-% b 1
by all active processors running at f-th iteration, N, is the "
nember of active processors at i-th iteration. [n our com- SA: serial algorichm described in Section A
oo ghraey mente, the perfrmance of PA is prety B Pl e S ST
good in general, and QA is often a very efficient algorithm m: nimber of constraints{not including nannegativity constrani)
for problem {P)] when A is symmetric, Table 2 shows the f: number of variables

Iter: aumber of iterations (not including initialhzation)
] s = A

M: E';r Mo, Mald) = number of actjve Progessars at §-1h fer
Ymax masimal number af vertices stoved in mamary
" VEen: maximal sumber of mew vectjces genaracad in ane iger

, 1 1}—' 2 Wiataltotal pumber of Eenerated vertices by cutling
flg)== r-: r, — 1 [19) Time: approximated CF U.gime {1 secomds)

Sk Sne: number of global salutisn

results for the test prablems af dilferent size which have
the same cancave objective function of the farm

Lok
=
[SRN

I Table 2, 5A may be not run in some test problema
because SA always requires a significantly large memory
than the two other methods,

Lssentially, the parallel algorithm introduced in Sec-
ton M and Section [[lis an asynchronous parallel proce-
diire; wliere processors can communicate with one anathar
at all times. Although they are independent subproblems,
the prownising vertices of some subproblems may overlap
some times. Motice that it can not guarantee that a partic-
ular number of parallel subproblems will need to be solved
at each ileration {1.2. the number of active processors may
vary asywhere from O to the maximal number at each itar-
ation}. For example, in the test problem ne.12, the num-
ber of active processors in each iteration will be 11 (ini-
tial},10,10,6 for PA, and 21 (initial), 10,9 for QA. Actually,
it is possible that the inactive processors could share com-
puting with the active ones which have meore subproblems
(i.e. more promising vertices) to be solved, and the per

centage of processor utilization can be improved.

Finally, there is one point worth noting in the practical
implementation of our algorithm, i.e. in seme computa-
tional results of Table 2, QA with n? + 1 processors takes
more time than 5A with n+1 processors since the same ver-
tex maybe appears repeatedly in some procesors. [n order
to avoid too much overlapping in the computations of pro-
cessors, the initial enclosing polyhedron must be carcfully
partitioned.

VI ConcLusion

In cutling plane algorithms for solving concave minimiza-
tion problems the number of new vertices generated Ly
cul in each ileration is rapidly increasing with n (cf., eg.,
[2, 5, 6. 7, 12]). The serial algorithm in this paper, of
course, requires much time in computing and a large mem-
ary in sterage. For cach processor in our parallel algorithm,
however, we decrease both the number of new vertices gen.
erated by cut and Lhe sterage memory using the method
of partition and the comparison of the upper bounds of all
subprobilems,

Computational resulls in Table 2 have shown the effi-
cient performance of our parallel algorithm in minimizing
a concave lunction over a polyhedron constraint set by the
cutting plane method, due tg the reasonably short cem-
puting time. In the future, we believe that paraliel algo-
rithm will play a significant role in solving the nonconvex
uptimization problems, especially in improving the parfor-
mance of computing in large scale nonconvex optimization
problems.

ﬁPPENDIX In this Section, we will extend the

method propesed in this paper to a problem of globally
minimizing concave function over a general convex sst. As
we know, nonlinear convex set can be assumed to be con-
structed by infinite number of linear constraints. There

fore, we can apply the algorithm mentioned here to the

Table 3: Iterative Results for Example 3

P e Processors (1] 1
k| 1 2 3 3 _ 5* 1 |
HLETY [T 0054, 307T0) LTI A0 L7238, 18544 i
o = 32,4615 = —2.8332 = —1.2310 {t,2,3}) | -z8332 |
a a A 8 3l . ' I
| 2703 kA = =3.2104 = =3.1860 i
A 0.5933 .7 lad 02455 |
| Constraimt [[T4 |
H ITTH f{1.9508,0.8095) f{1.2268,1 4B32) f(1.0840,0 5576) :
I = = | 4769 = —1.5%82 = —2.7271 |
[{ Cutting Plane | 3.9767X, —-0.381TXg — 1 3 =35I T — [T !
11 < 7.509 < —21 < _T77.7921 (2 - 18332 |
| Maw Vartices 1.95[3,&.4&24} fl:'l\ﬁ'ﬁ,i.l'."ﬂd.; EL.JEQD,D.Al}Edg |
| 2.0632,1.5549 1.0034 08070 L.0094 0 6580
| Tha Pr:.:mulng |:|..1E|9l:|.|.‘_| 40'}4} |
| Vectices |
It Lowar Bound | —2. 2071 =3 4015 - Lre I
| A | O.0T55
| T ONELraInt Ta
fi=0) f(1.1921,0 4185)
= -2.8723 ,
Cutting Plane —JFATETR Y — 3% QUG A7 '
Il 2 - < — 57,0476 {31 | -28332 |
| mew Wertices A RETI ”TTE i |
| 1.9068,0.4024
| The promsing 1. 0068,0 4024
Vartices |
Lowsr HBound | — TR :
A i 5 1696 [0~
me!.i;mnt- [:.
I [{1.20569,0 4027) |
oseasai i = 28390 | i
Tiutting Plane | B T P e 1) D e
| 1 | £ —-50.7779 oy {3} -2.83112 |
| [New Vertices | TG INFEFEILEY
| 1.2072,0.4024) “
" The promasing | [R T §] Il
| WrLaCEs | Il
i | =T 07 i
i i [1 3540% 107 1
o4 Tonstramnt A =2 8333

fiz)s i

it

=

mnTea40247
-2.5332

problem of minimizing concave lunction subject to con-

vexsel, and terminate until the enclosing polyhedron is suf-
ficiently close to the feasible set, i.e. A is sufficiently small.
S0, if we give an appropriate tolerence ¢ > 0 for A, then
the algorithm will converge to the global solution in a Anite
iLerations,

Consider the constrained global concave minimization
prablem
minimize]
(PP inj fiz} :
! subject o 2 G

where [is a concave function on A", D = {reR*: Azr=<
bor 200, & ={xre R, gf) 2 0. i=1,...,p} g
Is a convex functien on A" whose gradient is continuous,
Ais an mxn matrix, b € A™ | and DG # o, bounded.
Assume thae there is a strict interjor point in the feasible
set. Mow, we will apply the algorithm described in Sec-
tion Bwith the following modifcations which incorporate
the idea of Hoffman{8] to solve problem (PP,

¢ Compute

min riyj=1.....n)
st.r & DG

by Kelley's methad[13] with old cut deletion pro-
cedure proposed by Topkis[14] and Eaves and
Zangwill[15]. :

Ll
max 30, 1,

stz DG (20)

* For the nonlinear constraints, we use the golden sec-
tion algorithm ro abtain A,

* In the algorithm, the cutting plane is either a,z —
& = O for the active linear constraint or the lin.
eanzation of g;{z) i.e. g,(2/)+ Vg, (2f) (z—:5 =0
for nonlinear constraine gi{z)

* Given a tolerance number ¢ = 0,if A < ¢ then
algorithm stops,

Inn order to illustrate how extend the method developed in
this paper Lo compact convex sets, we give a small example
as follow:

Example 3.

minimize {21 —2)? — (£ =151 = 1

subject tor —28r) + 914 + 21 =0 {1
9rf = 72z, + 1622 <0, Cz
zf+:§-1650,. . &3
64rf — 1927, — 3672 + 15350, ¢,
Iy =3z <0, {s
-I.rf-121:1+::§—2;:=+9£ﬂ. Ca
ry,rz = 0.

Applying Kelley’s method in 3 processors, we have
P = (1.0094,0.8070), p» = (1.2072,0.4024), and
Py o= (1.T236, 1.8944) vielding function values af =2.4615,
~2.8332, and =1.2320 respectively. Therefore, o=
—2.8332, and we obtain the initial enclosing simplex D°
with vertices v, = (32158, 0.4024), v = [1.01}9'&.2.606-6).
and vy = (L0094, 0.4024), N? = &, since fle1) = =3.8825,
flrzh = =3.2104, fivy) = =3.1860 < f°, je., 5° ={1,2,3}

Let interier point p = (1.3134, 1.0346) and ¢ = 10~%.
Additional iterations are described in Table 3.

(1] T H. Mattheiss: An Algorithm for

[2]

(6

[7]

(8]

(10]

(11]

(12]

(13]

[14]

(15]

218

REFERENCES

Determining [rrels.
vant Constraints and all Vertices in Systems of Linea
[nequalities. Operations Research 21, 247-260, 197

R. Horst, N.V. Thoai and J. de Vries: On Finding New
Vertices and Redundant Constraints in Cutting Plane
Algorithms for Global Optimization. Operations Be
search Letters 7, 55-90, 1988,

R. Horst and H. Tuw:
Springer- Verlag 1990.
T H. Matheiss and DS, Rubin: 4 Survey and Com-
parison of Methods for Finding all Vertices af Convex
Polyhedral Sets. Mathematics of Operations Research
3, 167185, 1980,

J.E. Falk and K.L. Hoffman: A Successive Underest.
mation Method for Coneave Minimization Problems,
Mathematics of Uperations Research [, 251.250, 1975

J.E. Fr:l.lk and K.L. Heffman: Concave Minimizarion
Via Collapsing Polytopes. Operations Research 34
919-029, 1086,

T.V. Thiew: [mprovement and lmplementation of
Some Algonthms for Nonconvex Optimization Prob-
lems. Optimization — Fifth French-Cerman Confer-
ence, Castel Novel 1988, Lecture Notes in Mathemat.
ics 1405, 159-170, Spring Verlag 1989,

P.M. Pardalos and J.B. Rosen: Methods for Global
Coneave Minimization: A Bibliegraphic Survey,
SIAM Review 28, 367-379, 1986.

K.L. Hoffman: A Method for Globally Minimizing
Concave Functions over Convex Sers, Mathematical
Programming 20, 22-32, 1981,

Global Optimization. Berlip

H. Tuy: Concave Programming under Linear Con-
straints. Dokl Akad, Nauk. SSSR 159, 3235, 1964,
[Translated, Soviet Math. Dokl. 4, 1437-1440. 1964]

P.B. Zwart: MNonlinear programming: Counterexam-
ple to Twa Global Optimization Algorithms. Cpera-
tions Research 21, 1260-1266, 1972,

R. Horst and N.V. Thoai: Modification, Implementa-
tion and comparison of Three Algorithms for Globally
Zolving Linearly Constrained Concave Minimization
Prablems. Computing 42, 271-289 1583,

J.E. Kelley: The Cutting Plane Method for
Convex Programs. S1AM. . 8, T03-T12, 1960,

D.M. Topkis: Cutting Plane Methods without Nested
Constraint Sets. Operations Research 18, 404-413
(1970).

B.C. Eaves and W.I. Zangwill: Generalized Cutting
Plane Algorithms. SIAM. J. Control 9, 528-542, 1571

Solving

