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Abstract

A distributed arvachronous algorithm that solves an optimal rout-
ing for a network :hat connects various U.S. cities is considered.
The communicaticz delays among the processors are assumed to be
stochastic with Masxovian character.

Results of the extensive simulation that we implemented assert
the practical appizbility of distributed asynchronous algorithms
with stochastic deays. Comparison ‘results for varying the probabil-
ity distribution of :ese delays are provided. The impact of varying
the communicaticz delay bound and the stepsize is also assessed.

1 Introduction

The recent emphasis on parallel processing is motivated by the com-
pelling need to acceiezate compu'.ations' whea -olvini large dimensional
problems in which grea: memory storage and immense computation capa-
bilities may hinder the performance of centralized algorithms. A number of
processors are utilizec :=at operate simultaneously in a =ollaborative man-
ner on several subprotizms decomposed from the original one. To further
amend the enhancemez: of performance, the processors are permitted to
communicate asynchrczously such that little coordination of communica-
tion is maintained. It is shown that dispensing with the synchronization
points at the end of ezc= iteration induces improved efficiency, load balanc-
ing among processors aad reduction of processor idle ﬁeriodl (4. 6, 8, 18].

Tsitsiklis, Bertsekas and Athans [15] proposed asynchronous implemen-
tation for solving optimization problems which seems to offer the initial
work of the current investigation. Since then, several algorithms suitable for
operation in a multiprocessor environment emerged such that diverse areas
are covered. Kushner aud Yin [9] studied stochastic approximation tech-
niques for parallel processing using the ODE approach. In their analysis,
the approach of weak ccavergence was utilized. Kaszkurewicz, Bhaya and
Siljak [10] implemented asynchronous iterations to solve a class of nonlinear
problems and derived results that retained the quasi-dominance conditions

- previously studied by Siljak [12] for the synchronous case. Furthermore,
Uresin and Dubois [16; proposed asynchronous algorithms that deal with
nonnumerical methods such as symbalic computation and artificial intelli-
gence applications. : )

In this paper, we provide a computational experience of utilizing dis-
tributed asynchronous algorithms with stochastic delays that solve min-
imization problems over a constraint set. The plausibility of the notion
of stochastic delays stems from the fact that it models the case of unpre-
dictable delays in the coinmunication amoug the processors and therefore
addresses various reliability’ aspects [3]. Constrained optimization prob-
lems are prevalent in actual applications, where the nature of the problems
solved necessitates imposing natural conditions. Other cases are when the
designer often wishes to confine the acceptable values of processors’ iterates
to lie within a certain region in order to further prevent the processors from
straying away from the correct solution. Our main interest in this paper

is to measure performance and estimate efficiency of the distributed asyn-
chronous algorithms with stochastic delays. We also obtain comparison
results of distributed asynchronous algorithms with stochastic delays and
their deterministic delays counterpart algorithms of the same problem un-
der duplicate conditions. In particular, we apply these algorithms to treat
optimal routing of data communication that best exemplifies nonlinear mul-
ticommodity network flow problems. It is often the norm to find that the
size of these problems is overwhelmingly large that a set of processors op-
erating in distributed fashion is required to provide the anticipated solu-
tion. See (2] for further results on distributed asynchronous algorithms with
stochastic delays. .

The paper is organized as follows. In Section 2 we devise the distributed
asynchironous algorithm that solves optimal routing of data communication
networks. A test problem of a network that routes data among several
interconnected U. S. cities and its computational results are given in Section
3. Finally, we discuss conclusions in Section 4.

2 ' Routing Network

Suppose that we are given a network of nodes and arcs and a set W of
ordered pairs w of distinct nodes referred to as the origin-destination (OD)
of w. We are also given that r, (measured in data units/séqonds) is the
arrival rate of traffic entering the network at the origin and exiting at the
destination of w. We denote P, as the set of all simple paths that connect
the origin and destination of w, z, as the flow routed through path p and
z,, as all the path flows £, € P,. The fundamental constraints imposed
on this problem require the conservation of the load when shared among
the various paths and maintaining the nonnegativity property of the path
flows which yield v

Z T, = ruYweWw, (1)
rEr, :
z, 2 0,Vpe P, ,YweW. (2)

Define F;; as the total flow of arc (i, j)
Fj= S s (3)
all paths conlaining (i j)
Consider a'cost function such that
D(z) =} Dij(Fy;). 4
(J)
Our objective is to find the set of paths for each origin-destination pait
and the amount of flow routed along each path such that the cost function
defined in equation (4) is minimized.
The distributed asynchronous algorithm of this section is carried out
along the lines of the one studied by Tsitsiklis and Bertsekas [14]. It takes

the gradient projection form in which processor w is responsible for updat-
ing £,. Al every step the update isin the direction opposite to the gradient



of the cost function and whenever a processor detects that its iteration is
excluded from the constraint set, it enforces feasibility by projecting its
iteration back onto the feasible set.

In a manner reminiscent of the ARPANET algorithm{11], the end node
of any arc ascertains the amount of flow through that arc by averaging of
some previous values of the total flow of the arcs F;j. We therefore write

Fi®)= Y a(t,t)F;(t), (5)

t'=t=-T
where c;;(t,t') are nonnegative scalars such that

t
Y ailtt) =1
t'=t=T
and T is the bound over which the averaging is implemented. The averaged
value of the total flow of arcs F-;,- is then propagated to all other nodes. Due
to the distributed asynchronous nature of the algorithm, this information
may be received with a delay. Conseguently, processor w computes

M) = D Di(Fi(t+1-d"(1)), 6
(i.j)€p

where ' denotes the derivative and A, is all the A, for the paths p € P,.
We note that d¥(t) is the communication delay encountered when sending
information to processor w at time ¢t. The next step casts the equality
constraints inx a form that is forthcoming to parallelization by means of
transforming the equality constraints to nonnegativity constraints. Then
each processor would be able to p‘z:oject onta the positive orthant at its own
pace and independently of the other processors. Conseq tly, p w
finds the minimum first derivative length (MFDL) (5] path py(t) such that

Xt = P“i'l},‘: Ap(t) (W)

In practice, there exist transients in the total flows F*/ that occur as the
routing changes. This'contributes to having a settling time quite substantial
to be ignored that renders processor w incapable of computing actual flows.
Processor w will in turn use A (t) to compute desired path flows Z,(t),
whose components are Z,(t) for p € P,. Therefore, the actual values do
not assume their desired values instantaneously. Instead, the actual flow
z2,(t) takes some value between Z,(t) and z,(t — 1). We assume that there
exist scalars a > 0, ap(t), such that

ap(t) 2 @, Yp.t, ®
and .
z,(t + 1) = ap(t)2,(t) + (1 = ap(t))z,(t), Vp,t. (9)
The distributed asynchronous algorithm is described as follows. For any
PEP,, P#iﬁ(t)
= 7 -1
30 = mac {0,500~ ZLoO0 =S} . ()
where H,, is the second derivative length

Hit)= Y. Di(Fi) Coan

(1J)€L,

and L, is the set of arcs belonging to either por the corresponding minimum
first derivative path je, but not both. For p = pu(t), we have

Bl =re= 3 ) (12)

PEP., phpL(t)

1. Seattle 10. Cincinatti
2. San Francisco 11. Detroit

3. Los Angeles 12. Cleveland

4. Minneapolis 13. Pittsburg

5. Milwaukee 14. Boston

6. Chicago 15. New York

7. St. Louis 16. Philadelphia
8. Dallas ©17. Washington
9. Houston ~18.  Atlanta

Figure 1: The network topology.

3 Simulation Studies

In this section we use computer simulation to measure performance and
estimate efficiency of distributed asynchronous algorithms with stochastic
delays in the context of data communication optimal routing networks.

In our test problem, we considered the network topology depicted in
Figure 1 where all the connections are assumed to carry the Aows bidirec-
tionally. This network connects various U. S. cities with the intention of
routing data as follows.

ry : load to be routed from Seattle to Detroit

ra: load to be routed from Detroit to Seattle

r3: load to he routed from Chicago to Washington
ry: load to be routed from Washington to Chicago
rs : load to be routed from Houston to Atlanta
rs: load to be routed from Atlanta to Houston.

In all the simulations, we considered the cost function at every arc to
be quadratic

Dij = 3(Fi?, for every (i), (19

the traffic loads ry for all w were equal to 3.0 aad the parameter T in (5)
was chosen to be 4. In addition, the parameter « in (8) was chosen to be
0.25. The distributed asynchronous algorithms with stochastic delays were
tested on different initial conditions to show the uniqueness of the minimum
point. )
In our simulation, the delays d*(t) assume their values from the set
{1,2,---, B}, where B is the communication delay bound and the delays
were eitlier sequences of Markov chains or independently generated with
probabilities equal to the limiting behavior of these Markov delays. The
delays were generated according to several probability distributions and
the initial delays were chosen at random with equal probabilities. The
probability distributions of these delays are relegated in the Appendix.



It is assumed that the algorithm terminates at time t if the termination
function TF(t) meets the tolerance level of 0.001, i.e.,

TE(t) = | Ell=(r) = 2(~) < 0.001 (14)

v.r'e(ngil‘---.t
We computed E|| . || by averaging over 100 trials of the experiment. For
each trial a different computer realization of the delays was used. Since
the previous values of the iterations that lie within the delay bound affect
the value at which the algorithm stands, the above termination criterion is
necessary to ensure that all of these values have also been stabilized.

We started by simulating the behavior of distributed asynchronous al-
gorithms with bounded delays. In essence, the delays were independently
generated from a uniform distribution on the set 1,2, -,B}. Figure 2
plots the performance of these algorithms as measured by the termination
time in terms of varying the stepsize for the delay bounds B = 4, 8 and 12.

Next we tested the case of ordered scheduling that is discussed in Beidas
and Papavassilopoulos [3]. A reasonable restriction is imposed where we
assume that the information is received in the order it was produced.

We assume that each processor w has a local memory where the latest
z., geperated at time instant t is kept and when the new information ar-
rives it is labelled using a time stamp as to when it was computed by the
other procéssors. If it happens that this processor acknowledges that the
information it receives was generated at a time instant earlier than t, then
processor w will discard it. Therefore, the probability distribution enforces
that

Pr{d“(t) > d“(t—1)+1} =0, for all w and ¢, (15)

which entails that the entries of the probability matrices for the delays that
are above the superdiagonal to be zeros.

We simulated the distributed asynchronous algorithms with Markov de-
lays having the property defined by equation (13) and the distributed asyn-
chronous algorithms with independent delays whose probabilities are equal
to the limiting behavior of these Markov delays. Figure 3 and Figure 4
illustrate the perfortnance of these algorithms for different probability dis-
tributions and for B.= 4 and B = 8, respectively.

In general, we make the following observations. Firstly, for small step-
size 7, changing the probability distribution has little discernible effect on
the termination time. Secondly, the performance curves of the algorithms
with Markov delays follow those of the algorithms with independent de-
lays, corroborating our intuition. Thirdly, the performance curve which
corresponds to the probability distribution PD1 that places emphasis on
recent values of the delays spans more values of stepsizes before the eventual
divergence. '

From Figure 3 and Figure 4, we notice that the performance curves of
the Markov delays lag those of the independent delays. This is attributed
to the fact that the tiine needed to bring the Markov delays to their lim-
iting behavior causes the algorithms with Markov delays to converge more
slowly than the algorithms with independent delays. This effect is more
prevailing for the case of B = 8 where for some stepsizes the algorithms
with independent delays converge while their Markov delay counterparts
do not.

To underscore the above phenomenon, we obtained Figure 5 and Figure
6 by plotting one run of the performance of algorithms with Markov delays
for v = 1.095, probability distribution PD1 and v = 0.845, probability
distribution PD2. The same was done for the algorithms with independent
delays. From both figures we notice that while the independent delays case
converges to the minimum value of the cost function, the Markov delays
case exhibits severe oscillatory behavior around the minimum.

Next, we examined the effects of the stepsize v and the communication
delay bound B on distributed asynchronous algorithms with Markov delays.
Figure 7 depicts the termination time as the delay bound B and stepsize v

1700

are varied. Noteworthy of mention is that Figure 3 and Figure 4 show !h;l
algorithms with stepsize y chosen to be 0.05, 0.1 and 0.2 display constant
termination time as the probability distribution is changed. We note that
the termination time grows quickly with decreasing stepsize . In addition
it grows faster with increasing delay bound B when stepsize v is smal] lhan'
it does when 7 is large.

4 Conclusion

A With the aid of simulation studies we estimated the performance of dis-
tributed asynchronous iterations with stochastic delays and obtained com.-
parison results as the probability distribution of these delays changed. We
also assessed the impact of varying the communication delay bound and the
stepsize on the termination of these algorithms and it was shown that the
performance of distributed asynchronous algorithms is in fact predictable.

Appendix

We provide the probability distribution for the delays that result from
the distributed asynchronous nature of the algorithms when solving the
optimal routing network of U.S. cities given in Section 3.

First, when the communication delay bound B = 4, the probability
matrices that characterize probability distribution PD1 are given below.

75 250 0
65 2 15 0
1 _ p4

P=P=15% 2 1 1
25 25 25 25

6 4 0 0

: s 15 2 3 o
PP=P=1 95 25 25 25
625 125 .125 .1%5

82 0 0

s e |43 30

P=P=17%5 2 2 1
1 34 25 31

Second, the probability matrices that characterize probability distribu-
tion PD2 are given below. :

5 5 0 0°

c o o |4 3 3 0
(Phi=1-6)=1 55 95 25 .25
25 25 25 .25

Third, the probability matrices that characterize probability distribu-
tion PD3 are given below.

2 8 0 0
i |2 25 550
pi=F 1 2 1 6

25 25 25 25

375 625 0 0

: s |3 2 5 0
PP=P'=1 95 25 25 .25
125 125 125 625

55 0 0

13 6 0

P=P=|""% o 4
1 34 25 31

Now we provide the probability distributions when the communication
delay bound B = 8. First, the probability matrices that characterize prob-



ability distribution P D1 are given below.

Pl=pi=
Pl=pi=
PP=pé=

75
.55
.25
.33

[ O O CRVA )

.125

125

tribution P D2 are given below.

5

O TR

Pi=

.1667

1429

125

125

fori=1,---,6.

Third, the probability matrices that characterize probability distribu-

5
3
.25
2
.1667
.1429
125
125

0

0
.25
.06
.25

125 -
Second, the probablhty matrices that characterize the probablhty dis-

coco

1
.1
.05
1
1

o 0o o
3 0 o0
25 25 0
2 2 2
1667 -.1667 .1667
1429 1429 1429
125 125 125
125 125 125

tion PD3 are given below.

P2=P5

P3= PG

-

i

2 8
35 .1
25 .25
03 .33
118
115
125 .025
2 0
3 7
25 .1
13 .05
225 125
1 0
11
125 .025
05 .05
[ 4 6
2 .
2 .25
05 .24
2 2
2 .15
05 .2
| 05 .05

0 0
b8 0
25 .25
21 .06
05 .25
A3 1
.025 .025
0 1
0 0
65 0
35 45
125 525
2 .05
0 0
025 .025
05 .05
0 0
T 0
1 45
0 31
2 1
.1 .08
1
.03 .05

25

125

coooo

.1665
1429
12§
125

0o 0
0 o0,
o 0
3T 0 -
2 .25
12
025 025
1 1
0 o0
o 0
0o o0
0 0
05 6
.15 15
025 025
15 .05

0 0 0

0 0 o0

0 0 0

4 0 0

1 20

05 15 .3

1 1

05 05 .0

=
W

125

cCooo

0
.1426
125
125

omwmOOOOOe e eeococ
Y :

aweecocoo

125 |

0
0
0
0
0
0

125

125 |

ameOePOoco

maaeeocooo

N
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1) Distributed asynchronous algorithms with- B =4
2) Distributed asynchronous algorithms with 8 = 8
3) Distributed asynchronous algorithms with B = 12

Figure 2: Performance curves for distributed asynchronous algorithms with
bounded delays for different communication delay bounds. 100 runs were
considered. i )

Termination Time

Q 02 0.4 0.6 0.8 1 12 - 1.4
Stepsize (gamma) ) ’

1)  Algorithms with Markov delays for probability distribution PD1

1')  Algorithms with independent delays whose probabilities equal the
limiting behavior of PD1

2)  Algorithms with Markov delays for probability distribution P D2

2')  Algorithms with independent delays whose probabilities equal the
lumiting behavior of PD2

3) Algorithms with Markov delays for probability distribution PD3

3') Algorithms with independent delays whose probabilities equal the
limiting behavior of PD3 .

Figure 3: Performance curves for distributed asynchronous algorithms with
stochastic delays under different probability distributions. B = 4 and 100
runs were considered. '
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Termination Time
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Stepsize @m:) )

"l) Algorithms with Markov delays for probability distribution PD1
1') Algorithms with independent delays whose probabilities equal the
: limiting behavior of PO1 .
2) Algorithms with Markov delays for probability distribution P D2
2') Algorithms with indépendent delays whose probabilities equal the
limiting behavior of PD2 .
3) Algorithms with Markov delays for probability distribution PD3
3') Algorithmns with independent delays whose probabilities equal the
limiting behavior of PD3 ’

Figure 4: Performance curves for distributed asynchronous algorithms with

- stochastic delays under different prebability distributions. B = 8 and 1€0

runs were considered. .

Cost Function (D(x))

o oW 232U

63
! 200 250 300

350 400 450 500 SSO 600 650 700

Number of lierations (1)

1) Algorithms with Markov delays
2) Algorithms with independent delays

Figure 5: Performance curves for distributed asyuchronous algorithms \Vilh
stochastic. delays under PD1 for vy = 1.095. 5 =8 and 1 run were consid-
ered.
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1) Algorithms with Mackov delays. -

2) Algorithms with independent delays.
Figure 6: Pecformance curves foc-distributed asynchrdnous alg&rithms with
stochastic delays under
er=d.

PD2fory=0.3845. 8 =3 aad 1 run were consid-
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1) Algorithms with Markov delays for stepsize 7 = 0.05-
2) Algor}thms with Mackov delays for stepsize 7 =0.1
3) Algorithms with Markov delays for stepsize v = 0.2

Figure 7: Effects of stepsize and delay bound on performance l"or distribut
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- asynchronous algorithms with Mackov delays. 100 runs were consideced



