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Abstract

A distributed asynchronous algorithm that mini-
mizes a functional whose minimum drifts with time
is discussed. The communication delays among the
processors are assumed to be stochastic with Marko-
vian character. We present conditions under which
the mean square and almost sure convergence to the
sought nonstationary solution are guaranteed.

1 Introduction

Solving large scale problems efficiently has engen-
dered the rapid progress of parallel processing by
which fast computation is achieved. Algorithms can
be executed either synchronously or asynchronously
in a multiprocessor system. In a synchronous par-
allel algorithm, the exchange of messages has to be
synchronized at the completion of each update which
may cause a significant performance degradation. Dis-
tributed asynchronous iterations, however, allow pro-
cessors to operate while adhering to little coordination
of computation and maintaining a low frequency of
message propagation. The attractive prospects gained
from the distributed asynchronous implementation in
parallel processors are the reduction of processor idle
periods, enhanced efficiency, resource sharing and load
balancing [4, 9]. '

Distributed asynchronous implementation of iter-
ative algorithms has recently been an active area of
research [1, 4, 18]. The range of applications that
these algorithms span is quite diverse. Symbolic com-
putation, artificial intelligence [18]-and computer net-
works [4, 15] have been influential in shaping the de-
velopment of distributed asynchronous iterations. Qur
scope of interest is in the numerical computations re-
lated to the solution of general systems of equations
and optimization problems. Chazan and Miranaker
[5] introduced a distributed asynchronous iteration

to solve linear systems of equations which were then
called chaotic iterations. Baudet [1] obtained a con-
vergence condition for nonlinear problems. Tsitsiklis,
Bertsekas and Athans [16] presented the initial work of
the current investigation in which they formulated and

- proved the convergence of distributed asynchronous it-

erative gradient algorithms to solve problems of min-
imizing a certain cost function. Kaszkurewicz, Bhaya
and Siljak [8] implemented distributed asynchronous

. iterations to solve a class of nonlinear problems and

derived results that retained the quasi-dominance con-

- ditions previously studied by Siljak [13] for the syn-

chronous case. In Beidas and Papavassilopoulos [3], a
general linear model of distributed asynchronous iter-
ations was studied, the communication delays of which
were Markovian. Under these assumptions, a number
of sufficiency conditions for convergence were devel-
oped that do not require the usual nonexpansiveness
conditions contained in [4, 14]. Almost all of the nu-
merous works addressed to minimize cost functions

" (e.g., [10]-[12]) are confined to dealing with locating
_ minima that do not change with time. In that respect,

Polyak and Tsypkin [12] developed a unified approach
to problems that rely on the pseudogradient notion.
The first work that studied algorithms with drift, i.e.,
where the minimum changes with time was first in-
troduced by Dupac [6], where a method of stochastic
approximation was treated under a condition of drift
that is close to linear. Tsypkin, Kaplinskiy and Lar-
ionov [17] developed a more general type of adaptive
approach in training under nonstationary conditions.
The work of [6, 17] deal with the synchronous compu-
tation models.

In- this. paper, we present an algorithm of dis-
tributed asynchronous iterations that minimizes a
finction when the sought minimum no longer remains
stationary but is rather a vector that shifts in time.
This may be attributed to the drift in the characteris-
tics of systems which renders the optimality condition



time variant. Cases of interest are pattern recogni-
tion problems where the probabilistic characteristics
evolve with time [7]. Another assumption used in de-
vising the algorithm in this paper is that the com-
munication delays among cooperative processors are
stochastic. The stochastic delays are pertinent when
the intercommunication network that the processors
use behaves unpredictably due to, for instance, vary-
ing load conditions, temporary failure of some of its
links or overloading a certain number of its nodes.
Other cases that incorporate the Markovian stochastic
delay assumption are achieved by imposing a reason-
able restriction on our models where we assume that
the order of the received information is preserved ac-
cording to the manner it was generated. This will en-
able the number of transmitted messages of the models
with stochastic delays to remain under control.

The structure of the paper is as follows. In Section 2
we provide a description of distributed asynchronous
algorithm and using an example give a comparison
against its synchronous counterpart. In Section 3 we
introduce distributed asynchronous algorithms that
treat nonstationary optimization problems, i.e., prob-
lems where the sought solution is a function of time.
In Section 4 we discuss their convergence analysis.
A comparison between our results and. the ones con-
tained in [17] for the synchronous case is given in Sec-
tion 4.1. Finally, conclusions and possible extensions
are listed in Section 5. The proofs of our result can be
found in [2].

2 Description of Distributed
Asynchronous Iterations

Consider a system of n processors that is utilized
to solve a fixed point problem. Suppose that each
processor i updates the variable z;, where z; € R™
according to

z; = fi(z1,22,...,2n), fori=1,2,...,n, (1)

where the initial values for this problem are provided.
Implementing a synchronous algorithm of equation
(1) requires that processor i can not proceed in its
computation at time ¢ unless the arrival of the up-
dates from all other processors at time ¢ — 1 is at-
tained. Figure 1 depicts the behavior of system of n
processors where processor ¢ upon updating z; must
remain idle while waiting to receive the messages from
the others. In particular, the sluggish communication
would impede the progress of the entire computation.
It can also be shown that at synchronization points,
processors have to wait for the slowest processor.

To overcome this difficulty, we resort to distributed
asynchronous iterations where the close attention that
should be paid to receiving the most recent informa-
tion is downplayed. Hence, in this case after a proces-
sor completes its computation it broadcasts its infor-
mation and starts on the next update with any avail-
able data. Figure 2 depicts the behavior of the dis-
tributed asynchronous algorithm that a system of n
processors carries out. In essence, the idle periods en-
countered in the synchronous case are dispensed with
at the possible expense of reducing the quality of com-
putation. Here, we allow the communication delays to
be stochastic in order to gain those merits discussed in
the previous section and our intention next is to eval-
uate conditions under which the convergence of these
distributed asynchronous algorithms is maintained.

3- System Model

We employ a model of n processors working asyn-
chronously on minimizing a function, the minimum
of which exists under conditions of time drift. Let
F(t,z) be a continuously differentiable cost function
to be minimized. Notice that the optimum of F(t,z)
with respect to z changes with time and is written as
z*(t). Assume that the trajectory of the minimum is
described by the difference equation

S+)=REL2W), Q)

where R(t,.) is a known nonlinear transformation and
the initial value z*(0) is unknown. If the initial value
z*(0) is known, then the minimization problem be-
comes superfluous as equation (2) can be explicitly
evaluated. We, therefore, expect the arbitrariness of
the initial value to stress the errors in tracking the
minimum at the early stages of the algorithm. The
assumption of parameterizing the drift was also made
by Dupac [6] and Tsypkin, Kaplinskiy and Larionov
[17].

We let z;(t) € R™, where y;_;n; = N and al-
low each processor i to update z;(t). We denote d;i(t)
as the delay incurred by transmitting a message from
processor j to processor i at time ¢. We let the commu-
nication delays {d;;(t)}, for all j and i, be stationary
Markov chains with state space

S=1{1,2,...,B},

where B is the maximum allowable communication
dglay for the transmitted messages. We let the prob-
ability transition matrix corresponding to dji(t) be
Pj; = (pji(l,m)), i.e.,

pj,'(l, m) = Pr{dj,‘(t) =m| dj,'(t -1)= l}



forlm=1,2,...,B, (3)

where here and in the sequel Pr{C} denotes the prob-
ability of event C.
As a result of the communication delays we expect

that the processors are unable to obtain the most re-

cent information from the others. In particular, pro-
cessor i has knowledge of the vector y*(t)

zy(t + 1 — dyi(t))
y'(t) = o B N ¢
za(t + 1 —dni(t))

We consider an algorithm in which the processors per-
form the updating according to the recursive scheme

zi(t +1) = Ri(t, ¥' (1) — 1(®)si(t, R(t, ¥ (1)) ()

Convergence is studied with the use of the Lya-
punov function defined as the squared norm of the
distance away from the desired minimum, i.e.,

Vi) =glle-= @5, (©)

where -here and in the sequel || .'|| is the Euclidean
norm.

Let Z, define the previous information of the algorithm
until time ¢ such that

T, = {dji(7), si(r, R(7, (7))
, for‘r< tand j,i=1,...,n}. (7)

T, includes the initial condition information. We note
that z;(¢) is uniquely determined by the random vari-
ables defined by Z;.

The basic assumptions are introduced, the form of
which is expressed in terms of y*(¢) which is the infor-
mation available to each processor. This permits the
individual verification of the basic assumptions by the
various processors. It is important to note that the
ability of such verification is an intrinsic property of
distributed asynchronous iterations.

Basic Assumptions:

1. There exists deterministic positive K;(t) such
that for all ¢, we have

E [(gi(t) - =i @))'si(t, ' (1)) | Zi]
> Ki@E[ly'@) -« @I [T].  (8)

2. There exist deterministic nonnegative K2(t) and
K3(t) such that for all 7, we have

E [lls:t, ' OI* | Z¢]
< K(t) + Ks@E [ly'() — ="t + DI | ] -
©)

*3. There exist nonnegative a(t) and B(t) such that

(1 + a@®)llz(@) - z* (@)l
< |R(¢, 2(t)) — R(t, z* ()] <
1+ BE=(t) — =* ()l (10)

4. For the initial approximation, we have
E||z(0) — z*(0)||? < oo and [|z*(0)|| < 0. (11)

Given the previous history of the algorithm, in-
equality (8) requires that the expected direction of
—s(t,y*(t)) is one of decrease with respect to the Lya-
punov function V'(¢,y*(t)) while inequality (9) places
growth conditions on the update s(t,3'(t)), respec-
tively. The inclusion of K(t) in inequality (9) is in-
dicative of the presence of additive noise with variance
that is not necessarily finite.

A special case of the system defined in equation (5)
is the gradient algorithm where the update consists of
the distorted version of the gradient, i.e.,

st ¥'(0) = ViF(L ¥ () +G().  (12)

Here, the measurement error {;(t) is an independent
identically distributed random vector. Other cases can
involve a scaled form of the gradient algorithms where
D(t) is an invertible scaling matrix such that

si(t, ¥ (1) = (D) ' ViF (¥ (1) +Gi(t)-  (13)

4 Convergence Analysis

We formulate the main convergence results of pro-
cess (5). Let us denote

a(t) = (14 B(®))? + Y2 (t)Ka(t)(1 + A(2))?
- 2y() K1 () (1 + (1))’ (14)

We say that a sequence v(t) of random variables con-
verges to a random variable v almost surely if

P; {tl_i.rgu(t) = u} =1. (15)

The analysis is carried out in the sense of exploiting
the proper Lyapunov function that is based on the re-
duction of the error defined in equation (6) and mould-
ing this error equation to fit the form of an easily man-
ageable vector inequality.

Theorém 1 Consider the sequence {zi(t)} generated
by equation (5). Suppose that the cost function F(t, )
has a unique minimum at z = z*(t) for any t. Let the
basic assumptions (1) - (4) be satisfied. In addition,
assume that



L a0 <0 1) 20,

t=0

2. Zﬂ(t) < o,

- t=0

5. SIRG, omz < oo,

t—O

i Z‘y (t)Kg(t) < co. ,'

t=0.
Then for every initial condition the sequence {z:(t)}
converges to z(t) in the mean square and aImost
surely for all i i

Proof: See [2]. '
It can be shown tha.t the condxtlon needed for a.l-

most sure convergence, i.e., Et-o 72(t)K2(t) < oo is

more stringent than lim¢—co 7*(t) K2(t) = 0 whlch is

required for convergence in the mean square.

4 1 ‘Comparison with the Synchronous '

.. Case

" A little reflection is needed to show the imderlying
relationship between our results and those obtained
for the case of synchronous iterations. The specializa-
tion of our model represented by equation (5) to the
synchronous case indicates that

Pr{d;i(t) #1} = 0, for all i i t (16)

and, therefope, ) . _ ‘
: y(t)—-r(t) - (17
Tsypkin, Kaplmskxy and Larionov [17] consxdered the
synchronous version of the gradient algorithm that

minimizes. a cost function under nonstationary con-

ditions where from equations (12) and (17), we obtain
(t+1) =

The sufficient conditions for convergence in the mean
square of the synchronous iterations represented by
equation (18) are the following:

1. for q(t) defined in equation (14) such that 0 <
q(t) < 1, it holds L

Sa- (t))— L)

t=0

L%%)-é(?(f—) - @

R(t, z(t)) —7(t) (VF (t R(t, =(¢)))+C((t))),_

For our dlstnbuted asynchronous model as q(t) < 1,
conditions (1) and (4) of Theorem 1 are stricter than
and imply those given by equations (19) and (20).
We, therefore, realize that resorting to the distributed
asynchronous schemes may be accomplished at the ex-
pense of fulfilling a stronger criterion of convergence.

5 ‘Conclusions

We have proposed and investigated the behavior
of distributed asynchronous iterations with stochas-
tic delays that solve optimization problems with non-
stationary minima. The plausibility of the notion of
stochastic delays stems from the fact that it models
the case of an unpredictable communication network
among the processors and therefore addresses various
reliability aspects and prohabilistic load descriptions
of the communication network. The analysis that es-
tablishes the sufficiency conditions required to guar-

- antee mean square and almost sure convergence is

based upon utilizing a Lyapunov function that reduces
the distance away from the minimum point defined in
equation (6) and showing that the adverse effects in-
flicted by the communication delays are negligible.

This work was further extended [2] to implement
our model of distributed asynchronous iterations with
stochastic delays in solving constrained optimization
under conditions of time drift and to invoke the
gained machinery in different applications. Further-
more, with the aid of simulation studies we evalu-
ated the performance of distributed asynchronous it-
erations with stochastic delays and obtain comparison
results with their synchronous counterparts.
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, Figure 2: Depiction of typical behavior of the dis-

tributed asynchronous implementation of a system of
n processors where the computation time is one unit.
Note that the idle periods are dispensed with at the
possible expense of reducing the quality of computa-
tion.



