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Abstract. Sufficiency conditions for Stackelberg strategies for a class 
of deterministic differential games are derived when the players have 
recall of the previous trajectory. Sufficient conditions for Nash strategies 
when the players have recall of the trajectory are also derived. The state 
equation is linear, and the cost functional is quadratic. The admissible 
strategies are restricted to be affine in the information available. 
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1. Introduction 

Stackelberg and Nash differential games have received recently a lot of 
at tention and have been studied by several researchers. The reader  can find 
in Refs. 1 and 5 surveys of basic concepts, definitions, and results concerning 
Stackelberg and Nash games, respectively. These two types of games seem 
to be very promising in studying large-scale systems, hierarchical systems, or 
situations of conflict in an engineering, economic, or social context. The 
definitions of Stackelberg and Nash equilibrium can be found in the liter- 
ature, but we repeat  these definitions here for the sake of completeness of 
the presentation. Let  U, V be two sets and J1, J2 two functions J~: U x V -~ 
R, i = 1, 2. Consider the set-valued mapping T 

T 
T : U-> V, u --> Tu C_ V, 
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defined by 

Tu = {v Iv = arg inf[J2(u, zT); ,5 c V]}. 

Clearly, Tu = O if the infimum is not achieved. We also consider the 
minimization problem 

inf Jl ( u, "v ), subject to u ~ U, v ~ Tu, 

where we use the usual convention J~(u, v) = +0o, if v ~ Tu = Q .  

(1) 

Definition of a Stackelberg Equilibrium. A pair (u*, v*)~ U × V is 
called a Stackelberg equilibrium pair if (u*, v*) solves (1). 

In Stackelberg games, it is standard to say that a leader chooses u ~ U 
and has cost J1 and a follower chooses v ~ V and has cost ./2. 

Definition of a Nash Equilibrium. A pair (u*, v*) ~ U x V is called a 
Nash equilibrium pair if (u*, v*) satisfies 

Jl(U*, v*)~J1(u,/)*), 

J2(u*, v*) <- 12(u*, v), 

for all u ~ U, 
(2) 

for all v ~ V. 

It is a known fact that, in Stackelberg and Nash differential games, the 
resulting trajectory and strategy values vary with the admissible strategy 
spaces. By strategy spaces, we mean the information available to each player 
together with a set of functions with this information as domain.  These 
functions are actually the permissible ways in which the players are allowed 
to use that information. For  example, open-loop strategies, where at each 
instant of time t the players have knowledge of the present time instant t and 
the initial condition x (0), result in different equilibrium from the strategies 
where at. each instant of time t the players have knowledge of x( t ) ,  t, x(O). In 
the latter case, the players might be restricted, in addition, to using only 
a n n e  functions of x (t). Most of the results available until now deal with cases 
where the current state or the initial state or both of them are the only 
available information to the players. A more general situation is to assume 
that, at each instant of time, each player knows something about the 
previous values of the state of the system and about the previous values of his 
and the other player's decisions. The first at tempt to derive necessary 
conditions for zero-sum games where the strategies depend at each instant 
of time t on the part of the state trajectory between t - r and t, where r > 0, 
appears to be in Ref. 2. In Refs. 3 and 4, the zero-sum case is considered 
where one player has a time lag information on the value of the state. In Ref. 
4, a Hamil ton-Jacobi  theory is developed for such games. 
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In the present paper, we consider a continuous-time, two-player, 
deterministic differential game with a tinear state equation and two quadra- 
tic cost functionals. We consider the case where the players have, at each 
instant of time, recall of previous values of the trajectory, i.e., they have 
memory. What they remember about the previous values of the trajectory is 
allowed to change with the elapse of time. In our model, a wide range of 
delayed information structures is included, from perfect recall of the pre- 
vious trajectory to recall of only one previous value of the trajectory. Cases 
where information about the past strategy values is available to the players 
are also considered. We consider strategies affine in the available informa- 
tion and represent them by using Lebesque-Stiettjes integrals. Both 
Stackelberg and Nash equilibrium concepts are considered, and sufficient 
conditions are developed for a particular, but quite interesting, class of 
problems. Particular emphasis is placed on the Stackelberg case. 

In Ref. 7, the Stackelberg differential game is solved when the leader's 
information at time t is x(t), x(O), t, and he is not restricted to use a linear 
function of x(t). It is shown there that the leader can in general restrict 
himself to strategies affine in x (t) and that use of nonlinear strategies in x (t) 
will not improve his cost. The arguments of Ref. 7 can be extended to the 
case where the leader's information at time t is {x (0), to -< 0 -< t} and one can 
show that the leader does not in general deteriorate his cost if he uses 
strategies affine in {x(0), to -< 0 -< t}. Therefore, one is motivated to restrict a 
priori the strategy of the leader to be of the form 

ill [d.~7 (t, s)]x(s)+b(t), 

in which case r / and  b are what the leader will actually choose. For given rt 
and b, the follower solves his probtem. Necessary and sufficient conditions 
for the follower's problem can be found in Refs. 10 and 11 (Theorem 5.2), 
respectively. On the other hand, the leader's problem is quite difficult, since 
his unknowns are r /and  b. It was also shown in Ref. 7 that the principle of 
optimality holds in Stackelberg games iff the leader's problem can be treated 
as a team problem for both leader and follower. This does not necessarily 
mean that J1 = J2. These remarks motivate us to study Stackelberg games 
where the solutions are linear in {x(0), to -< 0-<t} and constitute a team 
solution for the leader's problem. 

The structure of the paper is the following. In Section 2, we give an 
example of a Stackelberg game where the leader, by using previous values of 
the state, forces the follower to such a reaction that the leader's final cost is 
the same as it would have been if both leader and follower were striving to 
minimize the leader's cost. The main steps in solving this example serve as an 
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illustration of how a more general case should be analyzed. In Section 3, we 
derive sufficiency conditions for optimality for a control problem of a special 
form (of interest on its own), which are used in the next sections. In Section 
4, we apply the results of Section 3 to a Stackelberg game where the leader 
has recall of the previous trajectory and the game is such that the solution of 
the Stackelberg game (u*, v*) minimizes the leader's cost over all admissible 
(u, v), i.e., the leader's problem is actually treated as a team problem of both 
the leader and follower. In Section 5, we consider certain special cases and 
generalizations of the Stackelberg game of Section 4. In Section 6, we apply 
the results of Section 3 to a Nash game where the two players have perfect 
recall of the whole previous trajectory. Finally, we have a conclusions 
section and one appendix. 

Notation. Let 

C([to, tr], R" )  = C. 

denote the Banach spaces of continuous function q~: [to, tr] ~ R ", with norm 

II~PI[ = sup{[~,(t)]; t e [to, tf]}, 

where I [ denotes the usual Euclidean distance in R".  Let 

Ll([to, t~], R")  = L I . .  

denote the Banach space of Lebesgue integrable functions g,: [to, tf] ~ R",  
with norm 

IMI-- f"lq,(t)[ at. 

Let 

L~(Et0, tr], R ~) = L~o,~ 

denote the Banach space of Lebesgue measurable functions which are 
almost everywhere bounded, with norm 

11911 = ess sup{Iq~(t) [, t e [to, tr]}. 

And let 

NBV([to, tf], R")  = NBV 

denote the Banach space of normalized functions of bounded variation, i.e., 
continuous from the right on (to, tr), zero at t r, and 

It~ll-=Var(~) for q~ ~NBV. 
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A norm in one of these spaces is denoted sometimes by 
It' IIc, I1" lkl, II" ItNBv. B* denotes the conjugate space of a Banach space B. If 
x* e B* and x e B, we write (x*, x) = x*(x). The prime denotes transpose for 
vectors and matrices. 

2. Introductory Example 

In this section, we provide an example of a Stackelberg differential 
game where the leader uses the previous values of the state in calculating his 
control values. The game considered is such that the leader, by using this 
type of strategy, forces the follower to such a reaction that the leader's 
optimal cost is the one that he would achieve if both leader and follower had 
as their common objective the minimization of the leader's cost; i.e., the 
leader's problem to minimize J1 is actually treated as a team problem where 
the team is composed of both the leader and the follower. A similar idea 
occurs in Ref. 9. The strategies found provide a Stackelberg equilibrium 
pair, with the property above, for any xo. Also, the dependence of the 
leader's control values on previous state values is not trivial, in the sense that 
the same result (team solution of the leader's problem) cannot be achieved 
by strategies depending only on current state value information. We develop 
the example in such a way that the proof of the optimality of the indicated 
strategies is clear. Actually, we do not give only one example, but provide a 
way of constructing a whole class of Stackelberg games with the above 
properties. 

Consider the following state equation and cost functionals 

2 = 2 x + u + v ,  x(0) = x0, te[O, 1], (3) 
1 

J1 =4x(1)2+ fo (6x2+u2+v 2) dr, (4) 

1 

J2=2x(1)2+ ! (qx2 +rv 2) dr, (5) 

where x, u, v are scalar-valued. The solution of the problem 

minimize J1, 
t t ,  v 

is 

where k solves 

subject to (3), 

= -2kx ,  ~ = -2kx ,  

- k  = 3 + 4 k - 4 k  2, k(1)=2,  

(6) 

(7) 
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and is given explicitly by 

k ( t )  - 
15 + exp[8(t - 1)] 

1 0 -  2 exp[8(t - 1)]" 

We want to show that there exist q, r, 11, 12, SO that the problem 

has the solution 

and that 

minimize J2, 
t~ 

subject to 2 = 2x + tlX q- 12Z + V, 

(8) 

v* = tzlx +/z2z, (10) 

l l(t)x*(t) + 12(t)z*(t) = -2k ( t ) x* ( t ) ,  t ~ [0, 1], (11) 

v*[t = tz~(t)x*(t) + IX2(t)z*(t) = -2k ( t ) x* ( t ) ,  t ~ [0, 1], (12) 

12(t) ~ O, t ~ [0, 1], (13) 

for any Xo, where x* is the common optimal trajectory of the problems (9) 
and (6), since (11) and (12) will hold. 

It is clear that, if conditions (11) and (12) are satisfied, then the pair 
/ .  t 

u = l l ( t )x( t )+ 12(t) J0 x(~') dr, v = - 2 k ( t ) x ( t )  

constitutes a Stackelberg equilibrium pair for the Stackelberg differential 
game associated with (3)-(5) and where 

U={utva lue  of u at time t is given by u(xt, t), where x ,e  
C([O, t ] ,R ) , x t (O)=x(O)  for all O ~ [ O , t ] , u ( x , t )  is Frechet 
differentiable in xt and piecewise continuous in t ~ [0, 1]}, 

V = { v l v  is a function of x(t)  and t, at time t, v(x, t) is continuous in 
x ~ R and piecewise continuous in t e [0, 1]}. 

We set 
a (t) = 2 - 4 k ( t ) ,  (14) 

and thus the optimal trajectory for the problem (6) is 

x*(t) = exp [I0t a(~ ") d , ] ' X o ,  

t t 

fo (oxp[ o 
(15) 

x(O) =xo,  

2 = x, z (0) = O, (9) 
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The  solut ion v* of  (9) is 

where  

v* = - ( 1 / r ) ( p l x  +p~z) ,  (16) 

F r o m  (21) and (22), sett ing 

w g P 2 + ¢ P 3 ,  

we obtain 

= - 2 r k 1 2 -  ( 2 - 4 k ) w ,  w(1) = O. (26) 

Solving (20) for  p2 + ~pp3 and substi tuting into (26), we obtain finally the 
fol lowing system, equivalent  to (20)-(25):  

[2~ork + I2[rk + 2(1 - 2 k ) ~ r k  + (d /d t ) (~rk)]  

+ [ (d /d t ) (2rk  2 + 3r - ~k) + 2(1 - 2k) (2rk  2 + 6r  - 2 ik) ]  

+ [(1 - 2 k ) q  - ½~] = 0, (27) 

- / 5 ~ = 2 ( 2 + l l ) p a + 2 p z + q - ( l / r ) p ~ ,  p 1 ( 1 ) = 2 ,  

- /sz  = 12pl + (2 + lt)p2 + P3 - (1/r)p~p2, p2(1) = 0, (17) 

-/53 = 212p2- (1/r)p~,  p3(1) = 0. 

Substi tuting ( t5)  and  (16) in (11) and (12), we obta in  

Pl = 2rk  -pzq~, l l  = - 2 k  - [2@, ( 1 8 )  

where  

u,(t) = (/o~eXp[j~*,~(o-)do'] d r ) ( e x p [ f o t ~ ( r ) d r ] ) .  (19) 

Since ~ = z / x ,  it is easy to see that  

~b = 2 - (2 - 4k )¢ .  

Substi tut ing pl ,  ll f rom (18) into (17), we obtain fur ther  

212~ork - ( pz + ¢p3) - q + 4rk  2 + 6r  - 2*k = 0, (20) 

-P2  = t2(2rk - P 2 ~ )  - (2 - 2k  - I25~)p2 +P3 - (1 / r ) (2rk  - P2~)P2, (21) 

-/53 = 2t2P2 - (1 / r )p  ~, (22) 

2 r ( 1 ) k ( 1 ) - p z ( 1 ) ~ ( 1 )  = 2, (23) 

p2(1) = O, (24) 

p3(1) = O. (25) 
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-{~3 = 212(w - ~¢p3) - (1/r)(w - ~p3) 2, 

w = 212~prk - q  +4rkZ+6r-2ik,  

P2  "~" W Jr- ~ P 3 ,  

/2(1) = ½(-11 + 4i(1) + q (1))q~ (1) -1, 

p3(1) = O, 

r(1) =}. 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

We can choose now r, q, 12, ll SO as to satisfy (27)-(33) and (18). We 
choose r(t) to be a twice-differentiable function of t ~ [0, 1], with 

r ( t ) > 0 ,  r(1)=½, 

and q(t) to be a differentiable function of t. Obviously, q and r can be chosen 
so that the linear differential equation for 12 [Eq. (27)] with initial condition 
(31) has the solution Iz(t) ¢~ O. For example, let 

1 
r = ~ ,  q -= constant ~ 11. 

Notice that the differential equation (27) for 12 can be solved explicitly for 12 
as soon as r and q are specified, since ¢ and k are known. Nonetheless, since 
~p(0) = 0, the point t = 0 is a singular point of this differential equation. The 
singularity was sort of expected to appear, since (as it has been shown in Ref. 
7) the leader's problem is singular with respect to the partial derivative 
O(u (x (t), t)/Ox of his control; and arguments similar to those in Ref. 7 can be 
used to show that this holds even for the case where u is allowed to be of the 
more general form u (xt, t). Notice also that the only essential restriction on 
the follower's cost, in order  for the leader to achieve his team solution 
(allowing even 12 = 0), is that r(1) = ½. 

If the leader were allowed to use a strategy u(x, t) which is perhaps 
nonlinear in the current state x(t), but he was not permitted to use previous 
values of the state, then it should again be true that 

u(x*(t), t)=-2k(t)x*(t) ,  for every Xo, 
i.e., 

u(exp[ f fa(z )drJxo ,  t )=-2k ( t ) exp[ f fa ( r )dr ]xo ,  for all Xo~ R, 

f rom which we obtain that u is linear in x. Therefore,  we conclude that, for 
the given example, if the leader wishes to achieve his team solution (for any 
Xo) when he applies his Stackelberg strategy and cannot do that with a linear 
strategy in x(t), he cannot do it with a nonlinear strategy in x(t) either. 
Therefore,  use of memory is his only way to achieve his team solution. 
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In the example presented here, the two crucial steps were the 
identifications (11), (12) and the use of the fact that the conditions (16), (17) 
are sufficient to characterize completely the optimal reaction of the follower 
to the leader's strategy 

t *  t 

u = ll(t)x(t)+12(t) J0 x(~') dr. 

Therefore, in order to generalize the procedure presented to cases where 
more general types of strategies are used by the leader, one should provide 
sufficient conditions for the problem faced by the follower, in addition to 
imposing identifications similar to (11) and (12). In the next section, we 
prove sufficiency conditions for a special type of control problem, which we 
will use later in guaranteeing the optimality of the follower's reaction, when 
the leader uses strategies represented as continuous linear functionals over 
the whole previous trajectory. 

3. A Control Problem with State-Control Constraints 

Consider the following problem [Problem (P)]: 

minimize J=½[x'(tr)Fx(tf)+ Io~(x'(t)O(t)x(t)+ u'(t)R(t)u(t)) dt 1, (34) 

subject to 2(t)=A(t)x(t)+B(t)u(t), x(to)=Xo, (35) 

ftlr[djl(t,s)]x(s)+ftie[d~rll(t,s)]u(s)=q(t), (36) 

U E L~,m, 

where the matrices A, B, O = O ' ~  0, R = R ' - -  0 are piecewise continuous 
functions of time, x(t)e R n, u(t)~ R m, and where the interval [to, tf], the 
matrix F = F '  >- 0, and q ~ Lt.k are fixed. The solution x (t) of (35) is assumed 
to be absolutely continuous, so that (35) holds almost everywhere with 
respect to the Lebesgue measure in [to, tf]. The integrals in (36) should be 
interpreted as Lebesgue-Stieltjes integrals. The matrix-valued function 

~(t, 0), rl: [to, tf]xR ~ R  kx~ 

is measurable in (t, 0), normalized so that 

0, for 0 -> tf, 
n(t, 0)= n(t, to), for O<-to. (37) 
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rt(t, 0) is continuous from the left in 0 on (to, tr), 7/(t, 0) has bounded 
variation in 0 on [to, tr] for each t, and there is a c e LI,1, such that 

I]Itl r [dsrl (t,s)]~ (s),,Ll<-c(t)['~1 c '  (38) 

for all t ~ [to, t~] and for all ~p ~ C,. Exactly the same assumptions hold for 

n l :  [to, tr]x R -> R k~m, 

with cl replacing c in (38). *7 and r/1 are given for Problem (P). The 
dimension k is arbitrary but fixed. 

Problem (P) is of interest to us, since we will use the results of this 
section in the next ones, where we will consider games with delayed 
information structure. Nonetheless, it is of interest on its own. It is worthy to 
point out that Problem (P) is of a quite general form, since for example 
Problem (P'), 

minimize ½[ x'(t~)Fx( t~) + I£ f (y'(t)Oy(t) + u'~ (t)R (t)u~(t)) dt] , 

subjecttox(t)=I~ir[dsrll(t,s)]x(s)+Itlr[ds712(t,s)]a(s), 

y(t)=Iti~[d, rl3(t,s)]x(s), (39) 

ul(t)= I, if[d, rln(t, s)]bt(s), 

x (to) = Xo, 

can be brought to the form of Problem (P) by introducing 

u2(t)= I,i~[d~l(t, s)]x(s), 

u3(t)= It£~[d~rl2(t, s)]x(s), (40) 

U4(t) = y(t). 

Using (39), (40), Problem (P') can be written equivalently as 

f minimize ½ x'(tr)Fx(tr)+ (u~Ou4+u'~Rul) d , (41) 
~ r O 



JOTA: VOL. 31, NO. 2, JUNE 1980 243 

subject to 2(t) = u2(t)+ u3(t), 

gll  = [d ' r l4 ]  ~'l, /,/2 = [d '~  1]x, 
o o 

u3 = [d~72]x, u4 = [d@]x, 
o ¢o 

(42) 

where the role of x and u in (35), (36), is played now by x and 
(/~, /~l, U2, U3, b/4), respectively. Clearly, (42) is of the form (36). 

In the following theorem, we give sufficiency conditions for optimality 
for Problem (P). The proof is carried out by reformulating Problem (P) as a 
constrained optimization problem in a Banach space and is given in the 
Appendix. 

Theorem 3.1. Consider Problem (P), and assume that there exist 
functions 

/x : [to, q ] ~ R  ", A ¢ L~,k, x* : [to, t r i eR  ~, u*~Lo~,,~, 

where/x is of bounded variation on [to, tr] and continuous from the right on 
(to, q), and x* is absolutely continuous, which satisfy (35), (36), and 

f, f i r ,  - q(R('c)u*(r)+B'(r)tx(~')) d r +  ~1 (% t)A(r) dr = 0, (43) 
o 

tz( t)-  (O(~')x*('r)+A'('r)tz(r)) dr+ r/(r,  t)Z(r) dr=Fx(te). (44) 
o 

Then, u*, x* solve Problem (P). 
It is easy to see that, in the case 7, ~71 - 0, (43) and (44) reduce to 

R (t)u*(t) + B'(t)l~(t) = 0, 

-t2(t) = O(t)x(t)+A'(t)lx(t), tz(tf) =Fx(tz), 

as should be expected. 
Theorem 3.1 can be easily extended to the case where cross terms u 'Lx 

exist in the integrand of (34) and to cases where more general convex cost 
functionals (34) are considered. 

4. A Stackelberg Game with Delayed Information 

Consider the dynamic system 

2(t)=Ax(t)+Bl~(t)+Bag(t) ,  X(to)=Xo, t c  [to, tr], (45) 
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and the cost functionals 

Jt =½[x'(tf)Flx(tf)+ Itl f (x'(t)O~x(t)+ 6'(t)R~a(t)+ ~'(t)R~z~(t)) dt] , (46) 

Y2=½[x'(tf)F2x(tf)+ Itlr(x'(t)Q2x(t)+ g'(t)Rzla(t)+g(t)'R22g(t)) dt], (47) 

where the matrices A, Bi, Qi = Q~ ~ O, Rii = R ~i >- 0 are piecewise continu- 
ous functions of time over [to, tr] and Rl l ,  R22, R12 are nonsingular, 
for all t e [to, tr]. The matrices Fi =F~-> 0 and the time interval [to, q] 
are fixed. 

Consider the Stackelberg game associated with (45)-(47). The admis- 
sible strategies of the leader are of the form 

t *  t 

u(xt, t) = | [dsrl(t, s)]x(s), (48) 
to 

where r/is as in (37) and (38), so that u ( •, t) is a continuous linear functional 
on C([to, t],R"t), for each te[to, tf]. The admissible strategies of the 
follower are of the form v(x, t), x e R n, t e R, where v is continuously 
differentiable in x and piecewise continuous in t. All the matrices in 
(45)-(47) are considered to be of appropriate dimensions. By xt, ~7, ~, we 
mean 

xt: [to, t] ~ R n, xt (0) = x (0), for all 0, t e [to, tf], (49) 

~( t )  = u(x~, t) ,  ~( t )  = ~ (x ( t ) ,  t) ,  (50) 

where x (t) is the trajectory of (45) for given u and v. For each choice of u and 
v, the behavior of the dynamic system (45) and the values of Jr, J2 are 
unambiguously defined, assuming that the solution of (45) exists over [to, tf]. 
Actually, when the strategy (48) is considered, one might without loss of 
generality restrict , / t o  be 0 for s ~ t, t c [to, tf]. The costs of the leader (J1) 
and of the follower (./2) are functions of u and v. We denote by U and V the 
sets of admissible strategies for the leader and follower, respectively. With 
these explanations, the Stackelberg game associated with (45)-(47) is clearly 
defined. 

In the sequel, we single out a subclass of Stackelberg games with the 
nice property that the leader achieves the best possible outcome for himself; 
i.e., the leader's and follower's strategies constitute together an optimal 
control law for the control problem with cost functional J~(u, v) subject to 
the constraint of the state equation. A similar idea occurs in Ref. 9. The 
interest of the authors in Ref. 9 is to solve the Stackelberg game (discrete 



JOTA: VOL. 31, NO. 2, JUNE 1980 245 

time) when the leader's strategy depends on information about the present 
and the past values of the state. The procedure followed is the following. 
First, solve the leader's problem as a control problem with controls u, v. Let 
(~7*(t), O*(t)) ,x*(t)  be the optimum control pair and trajectory, where 
a*(t), ~7*(t) are piecewise continuous functions of time. Consider any 
function ~7 s U, such that 

~7(x~*, t) = a*(t), for all t e [to, tj]. 

Second, solve the following inverse control problem: with u = ff in the 
follower's cost, and the state equation, minimize Yz(~, v), and seek condi- 
tions so that v* solves this problem, and the resulting optimal trajectory for 
this problem is again x*(t) .  So, if these conditions are assumed to hold a 
priori, then the pair (a, ~*) constitutes a Stackelberg pair. One may derive 
conditions by solving the inverse control problem, where ~ depends only on 
x(t) ,  or on almost any subset of {x(~'); to < ~"-< t} for each t. One may also 
single out a whole class of Stackelberg problems where the inverse control 
problem does not have v* as its solution, whatever is the tL For example, if 

f~f 
J2 = !5'(t)F(t) dt, 

0 

then v* will be optimum iff 6*(t) -~ 0. It is trivial to exhibit now a class of Y~'s 
and A, B1, B2, so that tF*(t) ~ 0. 

Consider the control problem 

minimize Yl, 
(5t) 

subject to ~7, g piecewise continuous functions of t and (45). 

Then, (51) has the solution 

gt*(t) = - R I ~ B ' I K x ( t ) ,  f* ( t )  = - R - ~ B ; K x ( t ) ,  

where K is the continuous solution of 

(52) 

- I ~ 2 = K A  + A ' K  + O1-[~'[B1RllBI-1 ' + B2RT~B'2]K, 
(53) 

K(t f )  = F1, t e [to, tr], 

which is assumed to exist. Let ~(t, to) be the transition matrix of the resulting 
closed-loop system in (45), i.e., 

O~(t, to)/Ot = ( A - B 1 R I ~ B ' ~ K  -1 , - B 2 R  12 B 2 K ) ~ ( t ,  to), 

qb(to, to) = I, t e [to, tr]. (54) 

Then, the optimal trajectory x* and control values of ~7", zT* for (51) are 
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given by 

x*(t ;  to, Xo)= gP(t, to)Xo, (55) 

Yt*(t) = - R  [~B'~Kdp(t, to)xo, (56) 

f*(t) = -R-;d B'zK d~(t, to)xo. (57) 

Let  7 /be  as in (37), (38), with r/(t, 0) = 0 for 0 - t, and let r / sa t is fy  the 
identi ty 

t 

It [dsrl (t, s)]qb(s, t) ~ -R:I~ (t)B~ (t)K(t), t ~ [to, tf]. (58) 
o 

If 7/satisfies (58), then 

t ,  t t / ,  

fi.*(t) = [ [d, rl(t, s)]qb(s, to)xo = [ [dsrl(t, s)]x*(s). (59) 
at  o `lto 

Equat ion  (58) characterizes all the r/'s which result in the same tT*(t) [Eq. 
(56)], i.e., it provides a class of different representat ions of t~*(t) as a linear 
continuous functional  of 

x* = {x*(0); to<-O<-t}. 

This class of r/'s is not  empty,  since for example 

0, for 0 -> t, t ~ (to, tr], 

O(t, 0 ) =  R~)(t)B' l ( t )K(t) ,  for O<t, t~(to, tr], (60) 

and for 0 <- to, t = to, 

satisfies (58). For fixed t, the set of all rt(t, .  ) which satisfy (58) is the 
hyperplane 

Ht = {r/(t, • )[r/(t, • ) ~ NBV([to, t], R"~I×~), r/(t, • ) perpendicular  to qb(. ,  t)}, 

shifted by r/(t, • ) f rom the origin in the dual space of C([to, t], Rn×~). A 
useful class of rt 's which satisfy (58) is given by 

P 

rt(t, s) = ~(t, s) + Ho(t, s) + • Ai(t, s)d(s - pi(t)), (61) 
i = 1  

where Ho is absolutely continuous in s for each t, Ai:  [to, t~] × R -~ R"U×" is 
continuous,  p~: [to, tr] -* R is continuous,  d(s) = 0 for s -< 0, d(s) = i for s > 0, 
and 

I ' [OHo(t,s)/Os]~(s,t)ds+ ~, A~(t,o~(t))~(oi(t),t)=O, on [to, tf]. 
t o i = 1  

(62) 
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Another  ~/which satisfies (58) is 

0,  for 0 -> t /2, t ~ (to, tr], 

0, for 0 > to, t = to, 
$ 

¢1 (t, s) =' - R  ~ ( t )Bi  ( t)K(t)  Io dO(t, o') dcr " [ 2 / ( t -  to)], (63) 

for 0 < t/2, t s (to, tt.], 

-R-;~ (to)B~ (to)K(to), for 0 -< to, t = to. 

Notice that 
f to+(t-- to)/2 

ti*(t) = [ds~(t, s)]x*(s); (64) 
.~ t o 

i.e., only the first half of the trajectory up to time t is used in calculating 
a*(t). 

Theorem 4.1. Assume that there exists a function *7* as in (37), (38), 
with rff(t, 0 ) = 0  for O>-t, and an n x n  matrix function P:[to, t~]-~R ~×n 
which satisfy 

t 

f [d,,?*(t, s)]dO(s, t) = - n - ~ )  (t)B~ (t)K(t) ,  t ~ [to, q], (65) 
o 

g'z~ (t)B'2 (t)P(t) = R-[~ (t)B~ (t)K(t),  t ~ [to, t~], (66) 

P(t) + { - A ' ( r ) P ( r )  - Oz('r) + rl*'(r, t )B i  (r)P(z) 
t 

+~*'(r,  t)R21(r)RT~ (z)B[ (~')K(~')}dO(r, t) d~" = F2dO(t~, t), 

t ~ [to, tr]. (67) 

Then, the pair 

t* t 

u*(x ,  t) = | [dsrl*(t, s)]x(s), (68) 
at o 

v*(x(t),  t) - 1  , = - R  t2 B t ( t )K (t)x (t) (69) 

constitutes an equilibrium pair for the Stackelberg game associated with 
(45)-(47) for any xo with strategy spaces U and V. 

Proof. We set 

£(t) = P(t)do(t, to)Xo. (70) 
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Then, the vector 

and the control 

A (t) = ( -  1, A(t)')' 

R - 1  t :'/t" v = -  22Bza t )  (71) 

satisfy the sufficiency conditions of Theorem 3.1 for the problem 

minimize Y2(u*(x, t), v), 
(72) 

subject to v ~ V and (45), 

where u is kept fixed equal to u*. That the u* in (68) is the leader's best 
reaction to v* in (49) is an immediate consequence of the fact that the pair 
(68), (69) solves the problem (51). 

The case where the leader's strategy is allowed to be of the form 

t 

f [d, rl(t, s)]y(t, s), 
to 

where 

y( t , x )=C( t ,x )x (s ) , (d /ds )C( t , s )=O,  a.e. to<_S<_t<_tf, 

with rl(t, s).  C(t, s) as in (37)-(38) can also be considered. The property 

(d/ds)C(t, s) = 0, a.e. to - s -< t -< t I, 

allows one to write 

t r 

I o o 

and thus to use directly Theorem 3.1. We only mention that, in this case, the 
leader has restricted memory and rt* • C should play the role of rt* in 
(65)-(69) in the corresponding sufficiency conditions. 

For given rt*, (67) is an integral equation for P(t). Since it has a Volterra 
kernel, if in addition it holds that A'(r)  - ~q*'(r, t)'Ba(r) is bounded by some 
M for any to <- 7" <- t, to <- t <- tr, then the Neumann series for (67) is always 
uniformly convergent and furnishes the unique solution of (67); see Ref. 13. 
If rt*(t, s) is of the form 

k 

rt*(t, s) = Z H'i (t)" H*'(s), 
i = 1  

H,( t )~R  p×~, H i ( s ) e R  "×p, (73) 
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then (67) can be written as 

P(t)+ {-A'(r)+~,Hi(t)H~(r)Bi(r)}P(r)dP(r,  t) dr = F2dP(tf, t) 

+ {O2(r)-  r/*'(r, t)R21(r)R-[~(r)Bi(r)g('r)}cb(r, t) dr, (74) 

which is an integral equation for P with a kernel of finite rank; thus, its 
solution is of the form 

k 
P(t) = EoCb(to, t) + ~. H~(t)EflP(to, t), (75) 

i=1 

where ~o, ~ . . . . .  Ek are constant matrices which can be found as solutions 
of algebraic linear equations. In this case, checking (66) is easy as soon as the 
~i 's  in (75) are found. 

If (B;KB2)-I exists over [to, t,] (it suffices that rank B2 = m2 and F1 > 0), 
then (66) is equivalent to 

P(t) = M(t )  + Y(t),  M( t )  = , -1 -1 , KB2(BzKBz) R~zR 12BzK, (76) 

B'a(t)Y(t)=-O, on [to, tf], (77) 

and (67) can be transformed into an integral equation for Y. 
Theorem 4.1 suggests that, for a Stackelberg game with given A,  Bb 0~, 

R~i, F~, one may try to find rt* and P which satisfy (65)-(67) and then consider 
(68), (69) as a solution. Also, by solving (67) for Oz, one can exhibit a whole 
class of Stackelberg games with solution (68), (69), where r/*, P, K, A ,  B1, 
B2, FI, R n ,  R12, R22 are chosen so as to satisfy (53), (54), (65), (66), 
Fz = P(tf), and R21 is chosen arbitrarily. 

5. Special Cases and Generalizations 

We first apply the results of Theorem 4.1 to two special cases. 

Case (i). Let 

rt* = ~, 

as in (60). Then, u* in (68) assumes the form 

u*(xt, t) = - R  ~B~Kx( t ) .  



250 JOTA: VOL. 31, NO. 2, JUNE 1980 

Equation (65) is satisfied and (67) simplifies to 

- P ( t ) = P ( A  -1 , -1 , , - B 1 R l l B 1 K ) + ( A - B 1 R l l B 1 K ) P  +Q2 
--I --5 : --1 r +KB1Ri lRa2Ri lNiK-PB2R22BzP,  P(tr) =F2. (78) 

If (B~KB2) -1 exists and is differentiable on [to, tr] and if B2, KRz2R 12-1BzK' 
are differentiable on [to, tt] and of constant rank, then all the R22, Q2, F2, P 
with R22 > 0, P > 0 which satisfy (66) and (78) are given by (see Ref. 8) 

R22 = VFV' ,  (79) 

P = M + Y, (80) 

Q2 = -16 -P(A-B1R-~B~K) - (A-B1RT~B '~K) 'P  (81) 

-KBIR-l~R12R[~B~K -t , + PB2R z2 BEP, (82) 

Fz = O2(tr), (83) 
where 

B'zKB2 = VA V -s, A = Jordan diagonal form, (84) 

FA = AF, F = F' > 0, (85) 

B'Y=O,  Y =  Y'>-O. (86) 

If F and Y do not satisfy F > 0, Y -> 0, then one cannot conclude that R22 > 0 
and P-> 0, respectively. Y and R12 have to be chosen properly differenti- 
able, so that P exists and is piecewise continuous. The above construction 
does not guarantee that 02 >- O, F2 >- O. 

Case (ii). Let  

~l* = ~ i  + "172, 
where 

I-R~l~ (t)B~ (t)L~(t), 

_ } - R - I ~  (to)B i (to)Ll(to), 

nl(t,.s) - lo,O' 

rl2(t, s )={ (oS -t)L2(t)' 

for s<t,  t~(to, tt], 

for s - to, 

for s - t, t ~ (to, t¢], 

for s > to, t = to, 

for s<t,  te[to, t~], 
for s >-- t, 

(87a) 

(87b) 

where L1, L2 are real-valued matrices. Then, u* in (68) assumes the form 
t 

u*(xt, t) = -Ri l l  (t)Bi (t)Ll(t)x(t) +L2(t) It x(s) ds, (88) 
o 
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and (65)-(67)  simplify to 

t 

-R-(~ (t)Bi (t)Ll(t) + L2(t) f dp(s, t) ds = - R  T~ (t)BI(t)K (t), (89) 
a t  o 

n ~ (t)B;(t)P(t)  = - R  T~ (t)B'2 (t)I£ (t), (90) 

P(t) + A '  , -1 { -  ( r ) P ( r ) -  O e ( r ) - L i  ( r ) B I ( r ) R  11 (r)B~ (r)P(r) 

+ ( t -  r)L'2(z)B' , -1 -1 , 1 (z )P( r )  -LIO')BI( ' r )R 11 ( 'r)R21(r)R 1~ (~')B a (z)K(r)  
l \ - 1  + ( t - r ) L e ( r ) R 2 1 ( r ) R u  (r)B~('r)K(r)}gg(r, t) dr = F2dp(tf, t). (9 t )  

Cases (i) and (ii) are special cases of  the case considered in the previous  
section. We  will consider  now cases where  the leader  uses the previous 
s trategy values as well. In the Stackelberg game considered in Section 4, the 
value of  the leader 's  s t ra tegy at t ime t was al lowed to depend  on the previous  
t ra jec tory  xt={x(O); to<_O<_t}. M o r e  generally,  one  may  allow that  the 
values ~7 (t) of  the admissible strategies of  u of  the leader  at t ime t depend,  
not  only  on the previous  values of x, but  also on those of v. Assuming  this 
dependence  to be linear, we have 

t t 

a(t)= ~ [d,~h(t,s)]x(s)+ ~ [d~713(t,s)]v(s), 
o o 

or  more  general ly 

t t t 

o o o 

q E Ll.k fixed. 4 The  rtl, rlz, W~ in (92) are as in (37), (38). So, for a given 
choice rll, rt2, r13 by the leader,  the fol lower is faced with the p rob lem 

L ' d minimize } l X'(tf)Fzx(tf) + (x'(t)OzX(t) + ~'(t)Rzlfft(t) + f( t)Rzz~(t)  ) d 

subject  to i ( t ) = A x ( t ) + B l g t ( t ) + B z f ( t ) ,  X(to) =x0,  (93) 

(92), and ~7, f piecewise cont inuous  funct ions of  time. 

T h e o r e m  3.1 can now be used to derive sufficient condit ions for  p rob lem 
(93). 

4 Notice that, in (92), ~7(t) depends on its own previous values. If a(t) was allowed to be any 
function of x(O), ~(0), to <- 0 ~- t, then the dependence of t2(t) on its previous values would not 
buy the leader anything additional. But, if ~,(t) is restricted to depend on x (O), 6(0), to-< 0 -< t, 
in a special form [like in (92); see also (94)-(98)], then aUowing dependence of ~(t) on its own 
previous values will benefit the leader. 
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A simple version of (92) is 
t t 

tT(t)=~ [d,~l(t,s)]x(s)+~t [d,~2(t,s)]z(s)+L(t)~(t), (94) 
o o 

where 

~(t)=,~l(t)x(t)+A2(t)z(t)+Bl(t)ft(t)+B2(t)g(t), z(to)=Zo, (95) 

and the matrices L, Ai, Bi are real-valued, piecewise continuous functions of 
time, and z(t)~R ~, l arbitrary. For the linear system (45) with quadratic 
costs (46), (47), we augment (95) to (45), set ~ = (x'z')', and the system is 

A 0 B1 B2 
x(t) = [fi~l ~2];:(t)+[~l]u(t)+[j~2] ~(t), 

Ix° 1 =AY+/~tT+/~26, x(t°)= Zo ' (96) 

with costs J~, Jz as in (46), (47) and with the strategy of the leader restricted 
to be of the form 

P t 

u(x,, t)= | [d,~(t, s)]~(s) + L(t)O(t). (97) 
at o 

The results of Section 4 are directly applicable to (96) and (97), and the 
problem is to find r~, Ai, B~, L, P so that (65)-(67) are satisfied where in 
(65)-(67) one should use/k,/~1, (/~2 +/~IL) in place of A, B1, B2. As far as it 
concerns z0, it may be set arbitrarily equal to a constant or to a function of xo 
preferably linear. The choice of z0 might affect not only the feasibility of 
(65)-(67) but the follower's optimum cost value as well. A simpler case of 
(97) is 

a(t) = Llx(t) q- ]-~2Z (t) + L~(t), (98) 

in which ease the solution of the Stackelberg game is easy, since the leader's 
controls are actually A~, A2, B~, B2, L1, L2, L, i.e., the leader plays open 
loop. Nonetheless, the leader's problem will be nonlinear, since his control 
multiplies the state (x', z')'. 

6. A Nash Game with Delayed Intormation 

Consider the Nash game associated with (45)-(47) where, at each 
instant of time t, both players have access to all the previous values of the 
state. The admissible strategies for both players are of the form 

t 

(xt, t) = ~,|o [d~rh(t, s)]x(s) + bl(t), (99) u 
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t 

v (xt, t) = ft [dfoz(t, s)Jx (s) + b2(t). (100) 
o 

rl~ and ~2 are as in (37) and (38); b~(t) are piecewise continuous functions of 
time with appropriate dimensions. By xt, (t, ~, we mean 

a (t) = u (x~, t), 

xt: [to, t]-~ R", xt(O), 

~(t)  = v(x,,  t), 

for all 0 e [to, t], for all t ~ [to, tf]. 
( l O l )  

In the next proposition, we give sufficient conditions for a pair of the 
form (99), (100) to constitute a Nash equilibrium pair. The first part of the 
proposition refers to a particular initial point x0, while the second part gives 
conditions similar to the coupled Riccati differential equations (see Ref. 1), 
which result in solutions in feedback form which are solutions for any initial 
point x0. 

Proposition 6.1. (i) Assume that there exist rl*, rl* as in (37) and (38), 
b*, b2* piecewise continuous, and ~1,/x2 : [to, t r]~R ~ of bounded variation 
which satisfy 

p~i(t) - [A'(~')/z,(~') + Oi('r)x(r)] dr + rl*' (r, t)[Bj(r)/~i(T) 
t 

+RIj(r)R~ 1 (~')B~ (~-)/x/(r)] d~" = F~x(tf), i e L  i, j = 1, 2, (102) 

t '  t 

b * ( t ) + |  [d~rl*(t ,s)]x(s)=-R~(t)Bi(t) lz i( t) ,  i = 1 , 2 ,  (103) 
a t  0 

2(t) = A( t ) x ( t ) -B~( t )R  [~Bi ( t ) u l ( t ) - B 2 ( t ) R ~  (t)B; (t)/zz(t), 

x (to) = x0. (104) 

Then, the strategies 

t 

u*(xt, t) = ~ [d~rl* (t, s)]x(s) + b~ (t), 
o 

t 

v *(x,, t) = ~o [d,n~ (t, s )]x(s) + b~ (t) 

(105) 

(106) 

constitute an equilibrium pair for the Nash game associated with (45)-(47), 
with admissible strategies (99), (100) and with x(to)= xo. 



254 JOTA: VOL. 31, NO. 2, JUNE 1980 

(ii) Assume that there exist r/*, r/* as in (37) and (38) and matrix 
functions P1, P2: [to, t¢]--> R n x R "  of bounded variation which satisfy 

? q 
Pi(t) -Jr (A'(r)ei(z) + Oi(r) 

+ rl ,~ -t  r fir, t)[Bi(r)Pdr)+ R, (r )Rj i  (z)Bi(¢)Pj(r)])~(% t) d~" 

= F,.~(t~, t), i , ]=1 ,2 ,  i ¢ ] ,  (107) 

3~(t, to)/at = [A(t)-B~(t)R ;~ (t)Bi (t)Pl(t) 

- B2( t )R~  (t)B; (t)P2(t)]O(t, to), ¢(to, to) = I, (108) 

t 

I [d~n*(t, s)] gO(s, t) = -R~(t)B'9(t)P~(t), i= 1, 2. (109) 
o 

Then, the strategies 

t 

u*(x,, t) = It [ds~*(t, s)]x(s), (110) 
o 

t 

v*(xt, t)= It [d~*z (t, s)]x(s) (111) 
o 

constitute an equilibrium pair for the Nash game associated with (45)-(47), 
with admissible strategies (99), (100) and for any Xo ~ R n. 

and 
Proof. (i) If the second player plays (100), then (102), with i = 1, ] = 2 

a ( t) = - R  ~ ( t)B'o ( t )Iz l (t), (112) 

constitute sufficient conditions for optimality, by Theorem 3.1, of ti for the 
- -1  t 

control problem faced by the first player. In (102), the term R22BzIzz is 
replaced by -~[o[d, rl*]x in these sufficient conditions. Similar reasoning 
applies for the control problem faced by the second player when the first 
player plays (105). 

(ii) We will first seek solutions tzl, ~2 of (102) which will work for any 
x0. Let 

I~dt) = Pdt)d~(t, to)Xo, (113) 

where • is as in (108). Using (111) in (102) and (103), we obtain (107) and 
(109), where we considered b~-= O. It is clear now that, if (107) and (109) 
hold, the Izi's as in (109) satisfy (102)-(104). 
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The case where the players use strategies of the form 
¢ ,  t 

u(ylt, t) = t [d,:qi(t, s)]yl(t, s )+~l( t ) ,  
a t  o 

t ,  t 

v(y2,, t) = | [<~ ( t ,  s)]y~(t, s) + b2(t), 
at  o 

where, for i = 1, 2, 

yi(t, s)  = Ci(t, s )x (s ) ,  to<-S <- t, 

(d/d,)Ci( t ,  s) = O, a.e. to -< s - t --< tr, 

y;(t, s ) ~ R %  

and 

(114) 

~,(t, s) = ~i(t, s)G(t, s) 

are as in (37) and (38), can also be considered. The strategies (114) 
correspond to the case where the ith player's information at time t is 
{C,.(t, s)x(s ) ;  to <-s <- t}. We only mention that, in this case, ~*C~ should play 
the role of ~7" in the conditions of Proposition 6.1. 

The results of Proposition 6. t [see also Problem (P')] carl be used to 
study the Nash game associated with (45)-(47) where the players use 
previous values of their opponent 's strategy values. For example, 

t t 

o o 

t t 

o o 

Strategies of the form (94), (97), (98) can be considered for the Nash game, 
and the augmentation (95) and (96) may also be employed in this case. The 
procedure for studying sufficiency conditions for Nash games with such 
strategies should be obvious by now and we wilI not take it up here. 

7. Conclusions 

In this paper, we provided suMcient conditions for two strategies to 
constitute an equilibrium Stackelberg or Nash pair, when the players use 
previous values of the trajectory of the system and possibly previous values 
of their own or their opponent 's strategies. The problem that we dealt with 
differs from those considered by Halanay in Ref. 2 and by Ciletti in Refs. 3 



256 JOTA: VOL. 31, NO. 2, JUNE 1980 

and 4. Halanay considers the zero-sum case only, and he allows the strategy 
values at t ime t to depend on the part of the trajectory between t - ~" and t, 
where r > 0 is fixed. Ciletti considers also the zero-sum case and allows 
dependence of the strategy values at time t only on x(t - o-) and the strategy 
values between t - o r  and t, where o-> 0 is fixed. The strategies that we 
considered were restricted to be affine in the data available. Existence and 
uniqueness conditions related to the sufficiency conditions proved here are 
not as yet known. Our results generalize trivially to the N-player  case for a 
Nash game and to the one leader-N followers case for a Stackelberg game. 
Although, for the time being, our results are not accompanied by compu- 
tationally efficient procedures, they are of importance since they provide 
value characterizations. 

Appendix 

Proof of Theorem 3.1. Consider the functions 

H I : R " x C .  xL~,m-~C., 

H2 :R" x C. xL~,m-~ Ll,k, (115) 

H3:R"x C. XL .... ~ R ~, 

J:R n x Cn XLm.m -". R, 

defined for (f, x, u) ~ R"  x C. x L~.,~ by 

t t 

HI(£, x, u)( t )=x(t)-  / A(z)x(z) d r -  I B('r)u(.) d . -xo ,  
a t  o ,Sto 

q ~q 
H2(f, x, u)(t) = jtlo [dsr/(t, s)]x(s)+ lo~t [d~rh(t, s)]u(s)-q(t), 

(116) 
H3(f, x, u) = f - X o -  A('r)x(r) d r -  B(~')u(~') dz, 

o to 

J(£, x,u)= ½[ ~s'F£+ It~"(x'(t)O(t)x(t)+ u'(t)R (t)u(t))dt]. 
o 

Clearly, H1,/-/3, J are well defined. To show that/- /2 is well defined, it 
suffices to show that, if u s L ...... then 

[ q[d, rh(t, s)]u(s)~Ll,k. 
to 

Let 
u e L  . . . .  I luk~  = M .  
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Then, there exists a sequence {u . . . .  1 of continuous functions 

un : [t0, tr]-*R", such that u, ( t )~  u(t) a.e. 

and 

Iun(t)l<<-M+l, forallte[to,  tr],foraltn; 

see Theorem 3, page 106, Ref. 14. Since 

y,~(t)= ti~[d,'ql(t, s)]un(s) 

is measurable, 

]Y,(t)i <- (M+ 1)ml(t), 

and thus y.  ~ L~ .... Since un -~ u a.e., by Egoroff's theorem we have that 5 

for all e > O, ~t(A~) ~ O, as n -~ +co, 

where 

A,~ = {S: s ~ [to, tr], lu, (s) - u(s)I ~ e}. 

The following holds: 

lye( t ) - f t l  f [dsrl,(t, s)]u(s)t = lltl r [ds~q~(t, s)](u~(a)-u(s))t  <_ l la .  I + liar] 

<- e . cl(t) + (2M + 1)cl(t)t~t(A~). 

Since cx is finite a.e., letting n -~ + ~ ,  we obtain 

lim y~( t ) -  l(t,s)]u(s) <-e.cl(t) ,  a.e. int~[to,  tr~, 

where lira y~ (t) stands for either limsup or liminf. Since this inequality hoids, 
for all e > O, we conclude that 

fti ~[d~rl~(t, s)]u(s) = lim in [to, (117) yn(t), tl]. a .e .  

Since 

ly.(t)j <- (M + 1)c (t) 

and (117) holds, we conclude by Lebesgue's theorem that 

[ "[dsnl(t, S)]U(s)6 Ll.k. 
to 

s tLt denotes the Lebesgue measure on [to, tf]. 
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Problem (P) can be written equivalently as 

minimize J(~:, x, u), 

subject to Hi(~, x, u) = 0, i = 1 , 2 , 3 ,  (118) 

(~,x,u)ER~xCnxL~,m=II. 

By Theorem 1, page 220, Ref. 15, we conclude that a sufficient condition for 
(~:*, x*, u*) to solve (118) is the existence of a (tz, A, k) e * (Cn, L~,k, R")*,  
such that 

J(~:*, x*, u*)+(HI(~*,  x*, u*), tz) + (H2((*, x*, u*), A) 

+ (H3(~:*, x*, u*), k) 

-<J (w)+(Hl (w) ,  tz)+(H2(o)), A)+(H3(w),  k), for all o) ~ f~. (119) 

Since the function 

Y(~o) = Y(o)) + (Hi(o)),/x) + (H2(o9), A) + (H3(o)), k) 

is convex and Frechet differentiable, a necessary and sufficient condition for 
(119) to hold is that 

d](~:*, x*, u*; (, h, v ) = 0 ,  
(120) 

for all (~, h, v) ~ R ~ x C~ x L~ .... 

where d] denotes the Frechet differential. Straightforward calculations 
result in the following explicit form for (120): 

( ( F  + k')~" = 0, for all ~ e R", (121) 

dt+I,o[d~'(t)]h(t)+f,i'A'(t)(S,i'[d,<77(t,s)]h(s)) dt 

+ tz'(t)A(t)h(t)dt-k' A(t)h(t)dt=O, for all h e C., (122) 
O 0 

i tf - q - tf 
to u'(t)R(t)v(t) dt + ft] lx'(t)B(t)v(t) dt + Ito h'(t)(Ito [dsrll(t' s)]v(s)) dt 

It tf - k' B(t)v (t) dt = 0, for all v ~ L . . . .  (123) 
o 
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Use of the unsymmetric  Fubini theorem in Ref. 12 yields 

ftlfA'(t)(£1r[d~n(t,s)]h(s)) dt=,Q~[ds(~tlrA'(t)rt(t,s)dt)]h(s), (124) 

f£~h'(t)(fti¢[d,~h(t,s)]v(s)) dt= fti~[ ds(ftlf)t'(t)nl(t,s) dt)] v(s). (125) 

Using (123) and (124) in (121) and (122), we obtain the sufficiency condi- 
t i ons ( lO) , ( l l ) ,wherewerep laced lxby t x - kandkby -F~*=-Fx( t r ) .  [] 
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