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Abstract

The process of jamming can be modelled as a two-

person zero-sum non-cooperative dynamic game played -

between a communicator and a jammer over a number
.of discrete time instants. The simplest case is when,
at each instant, the communicator and jammer ran-
domize their stralegies between idleness and transmis-
sion. The payoff (throughput) malriz is then two-by-
two, with one variable parameter. The payoff function
is the average throughput summed over time, o be op-
timized subject to cumulative power constraints. We
find an analytical steady-state solution for this game
played over an infinite time duration. Results show
that when the throughput parameter is lower than a
threshold, the optimal strategies are mized, and the
payoff increment constant; otherwise the strategies are
pure, with the payoff increment ezhibiting oscillatory
behavior. .

1 The Dynamic Jamming Game Model
The process of communication jamming can be
modelled as a two-person zero-sum non-cooperative
ame played between a communicator and a jammer.
In [Pen86][PS86], the static case, in which the game
is played as a one-shot process, was analyzed. How-
ever, in most real situations, jamming is a continuous
operation performed over time. Therefore in this pa-
per, we consider the game being played over T discrete
time instants, which we shall denote as 1,...,T. The
game is dynamic in the sense that the information and
hence the action of each player at every lime instant
are influenced by the previous aclions of both players.
We focus on the particular case in which the commu-
nicator’s and jammer’s strategies are characterized by
the power levels of their transmitted signals.

Let X;, be the communicator’s power level at for-
ward time ty, and Y;, the jammer’s power level at
time ty, for t; = 1,2,...,T.” We assume that X,,
is randomly distributed over two discrete values 0, P
(P >0), and Y;, over the values 0,J (J > 0). Associ-

ated with each pair (X,,Y:,) is a payoff f(X,,,Y:,) to
the communicator, and —f(X;,,Y:,) to the jammer.
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Hence we have a 2 x 2 payoff mairiz
G—[ﬂam IR

A reasonable measure of the payoff is the normal-
ized instantaneous throughput, which gives rise to the
following payoff matriz :

o-|

G has only one variable parameter, a, which is the
instantaneous throughput as a function of P and J.
We shall call a the throughput parameter.

The payoff function, which we denote as J, is the
time average of the mean throughput E[f(X,,,Y:,)],
i.e.

0 C
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1.1 Constraints

To account for protection from overheating of
the communicating (jamming) transmitter, we as-
sume that the communicator’s (jammer’s) accumu-
lated power at forward time t; should not exceed a

threshold P (J). This gives rise to the following cu-
mulative power constraints: .

£y
357X, <P,
r=1

t! = 1,2,...,T, 0<é;,6,<1.

Here 6,,6; are thermal memory constants, P is the

commaunicator’s peak power accumulation, and J is the
jammer’s peak power accumulation .
" The constraints in (3) are effective only when

Ly
Y &Y. <d, (3)
r=1

5 _ P(1-467) . J(1=28])
P5P<—-——(1_61') , J_<_J<——-—-—(1_522) (1)

are satisfied, and hence these define the intercsting
ranges of transmitter parameters.



Let Z;, (W:,) be a random variable representing
the communicator’s (jammer’s) past power accumu-
lation at forward time t;. Thus from (3), Z, £ 0,

W, 20, and
Z‘I ézY‘!-l+6lle-l) Wll é"ll—l+62W‘!—ll

(5)

for t; =2,...,T.
1.2 Conditional Independence Assump-

tion

We assume that (a) each player has knowledge of
the opponent’s previous actions, (b) X, and Y; are in-
dependent, and (c) for t;y = 2,...,T, X;, and Y,
are conditionally independent, given Xi,..
Y1,...,Y:,-1 (and therefore given Z;,, W;,).
Thus we have a dynamic stochastic game model
with a Markovian evolution (see [13082)), in which
(Z:,,W,) is the value of the state of the system at

forward time t;. The state equation is given by (5).

1.3 Effect of Constraints
For the communicator, at each t; = 2,...,T , we
define the set of past power accumulations to be

ty—1

@, £ {z:2z= z&;”l—r:cr,
Tor=1
ty ,
ty—7 = '
& e <Pty =1, -1,
=1

1‘1,...,2;1_16{0,P}}. (6)
Note that ®; £ {0} and &, = {0, P}.

For each z € ®; U---U &7, we define X, to be the
communicalor’s set of allowable power levels at any
time instant given that it has accumulated z amount
of power in the past. Thus

X.2{z:ze€{0,P},z+62<P}. (7)

Similarly, for the jammer, constraints (3) determine

the analogous sets ¥;, and ), .

1.4 The Strategies and the Payoff

Let pi(z|z,w) (qi(ylz,w)) denote the probability
that the communicator (jammer) selects power level z
(y) at reverse time t (i.e., forward time T —t), given
that the communicator and jammer have accumulated
z and w amounis of power respectively in the past,
where z € X, y € Yy, for each z € &r_,, w € Y7_,,
t=0,...,T —2. We can then define the strategy vec-

tors
(8a)
(8b)

Pi(z,w) £ [ pu(zlz,w) - T,
a(z,w) £ [ -q(ylz,w)-- .

Let the initial power selection probabilities (at re-
verse time T — 1) be

pr-1(z) £ Prob(X; = z), z € ®, = {0,P}, (9a)

'1X(/-l)_

889

qr-1(y) £ Prob(Y; = y), y€ ¥2={0,J}. (9b)

The initial stralegy vector pr—, for the communicator
can then be defined as

(10)

We define the analogous vector qr- for the jammer.
The payoff J in (2) can be expressed in terms of
the last term of a sequence {So, S1, - .., ST-1}, defined

rr-1 2 (pr-1(0) pr-i(P)]'.

as follows:
So = [Ex-,-.vﬂzr.w-,-[f(x YY), (11a)
Se = IExr-o-Yr-alzr-a-Wr-c

[f(XT-t, ’T—r)+51—‘l]. (11b)-

for t=1,...,(T-2),
Sr-1 = Ex, v, [f(X1,Y1) + ST-2], and (11c)

_ Sra ‘
J = T ) (11d)

S¢ is thus the accumulated payoff at reverse time t
given the past power accumulations Zp_; and Wr_,.
Equation (11) can be written in terms of the strategies
defined in (8) and (10).

Let P; be the set of all strategy vectors for the com-
municator al reverse lime t, each veclor being con-
ditioned upon a past power accumulation z € O1_,
and a w € ¥1_, and having a dimension of |X;|, for
t=0,...,T—2. Thus

(12)

The set P; contains |®7_;|.|¥r_.| probability vectors.
Similarly, for the jammer, we can define the scts
Qo, ..., Qr_2 of strategy vectors.
The communicator’s strategy set T' and the jam-
mer’s strategy sel A, given by

P2 {pz,w) : 2€ Op_y, wE Vr_( }.

{pr-1}UPr_2U---UPy,

>

r

A 2 {qr-1}UQr_,U---UQo,
then determine the payoff 7.

1.5 Characterization of the Solution
Solving the dynamic game subject to the cumula-
tive power constraints in (3) reduces to the following

problem:
Find T*, A* such that

J(T,A% < J(I°,A%) < J(I",A) V T,A.

Then J* = J(I*,A*) is the value of the game and
(I'*, A*) is the set of optimal strategies (see [BG54]).

1.6 The Evolution Equation v

When the duration T is finite, dynamic program-
ming (see-[Ber76]) can be applied to find J* (see (11)).
For.reverse time t = 0,1,2,...,(T — 1), we optimize
Si(z, w) with respect to p¢(z,w) and q.(z,w) to ob-
tain p;(z,w), q;(z,w) and S;(z,w). Each optimiza-
tion process involves solving a |X,| x|V | matrix game,
where 2 € ®7_;, w € ¥p_;.



In terms of the optimum payoffs, equation (11) gives
rise to the following evolution equations:

So(z,w) = max_ min
Po(2,w) qo(z,w)

}: > po(zlz, w)qo(ylz, w) f(z, ) (13)
TEX, yEYVw
z € <pT: we \I’Tr

S (z,w) = max min
(= w) Pesi(2,w) Quir(z,w)

Z Z p,“(zlz,w)qgﬂ(ylz,w)
TEX, y€Vuw
[f(z,y) + S (z + 612,y + 62w)](14)

2€®p_g_y, w € Up_yy, fort =0,1;...,(T - 2).
From (7) it is clear that -

0,P} if 0<z< B2,
X, = {0, P} o ey LB (15)
{0} if S=<z<P.

We have an analogous expression for V.

2 Simplification of the Problem

2.1 The Payoff Function .
From the structures of X, (see (15)) and Y, it can
be shown that when the conditions :

1 P 1 J
a=e <3 <(1+46), =% <5< (1+ 67)

(16)

are satisfied, a 2x2 grid solution to (14) exists in which
S;(z,w) is a four-valued function defined as follows:

S, if0<z<BP, 0wt
S, f0<:<EE, Hlcwg

Si(z,w) = A R ;
(BW=Y o iR < <P, 0<ws L2
S3a if%'—lg<2515, i;:‘i<w§f.
(17)

fort=1,... ,((T-—l). From (13) the solution at reverse
time ¢t = 0 is found to be

Sh=a, Siz=1, 53, =5, =0. (18)

The inequalities in (16) determine the operating re-

gions of the playersin the “5 versus §,” and “'—j— versus
82" planes respectively, for which this form of solution
exists.

2.2 Optimal Strategies
Let v

Py f0<z<BrR 0<ws LY
pi2 ifOSzg%‘l—P-, =L cw<J

p:(Plz,w) =

Similarly we can define g¢};’s corresponding to
q:(J]z, w). The p};’s and q};’s are the optimum prob-
abilities of iransmission al reverse time t. Using (8)
and (15), we can show that

Péz = P‘zl =0, ‘152 = ‘1:2 =0.

2.3 The Simplified Evolution Equation

The quantities z and w are measures of the com-
municalor’s and jammer’s power accumulations. As z
increases, the communicator transmits less frequently
(i.e., with lower probability), and the throughput de-
creases. Therefore, for any reverse time index ¢,
57 (z,w) decreases as z increases. On the other hand,
an increase in w causes the jammer to transmit less
frequently, which increases the throughput.  Thus
S{gz, w) increases as w increases.

ubstitution of the payoff function of (17) in (14)

results in four equations, one for each region of the
(z,w) plane. The quantity Sji! is the value of a 2 x 2
game whose payoff matrix depends on the S:j ’s. In the
other three regions, we need tosolvea2x1,a1x2 and
a 1x1 game, all of which are trivial. When we take into
account the fact that S;(z,w) decreases (increases)
with increase in z (w), we obtain the conditions

122511251 =5, Su<(l +.S;1) )

and (14) simplifies to

sitt = ‘([ 1 ok, D (202)

S = max(S', 14S%) = 1455 (20b)

Sif' = min(5},,51,) = Sy, G

Si' = Sh (20d)
Also from (19)

max(Siy, 1+ Sn) =1+ Sy = P2 =1,

min(S7;, S1,) = Sy
3 The Steady State Solution

For a given finite time duration T, the evolution
equation (20) can be solved using the initial condi-
tions in (18) to obtain the optimal strategies pi,, ¢},
for t =1,...,(T — 1). The limiting behavior of the
optimal strategies when the reverse time index goes to
infinity is of particular interest, since it gives us a bet-
ter analytical feel of the problem. So we attempt to
solve the evolution equation for S; (z, w) when ¢t — oo.
3.1 The Payoff Increments

From (14), it is clear that the optimum payoff Sj;

i,7 € {1,2}) increases as t increases, but its increment
in going from ¢ to (¢ + 1)) is bounded and lies in [0,1],
4ince each element of the payoff matrix (see (1)) lies
in [0,1].
et

= ¢3,=0.(21)

A:_A—SH-I"'S:, i=1)2s j=l)21 t=0)112""
J 3] 7 (22)



The condition 0 < A}; <1 holds.
Substituting Sf,f“ = §}; + A}; in (20) and eliminat-
ing St,, S}, and S},, the equations simplify to

])- e
Note that S3, = S}, implies A}, = A%, .
If we assume that the optimal strategies ezhibit
steady state behavior as t — o0 , i.e.,

1-24,

t
'\‘11 + z\'n = value ([ '\f"‘ .

lim p%, = lim ¢!, =
‘_.mpn P11, ‘_‘m‘lu q11,

exist, then from (20), we get

t ¢
A = value ([ 'A\}‘ '\P ]) (24a)
22 A2
M= Ay (24b)
pteg Al - (24¢)

3.2 Case 1: Mixed Strategies
Assume that the strategies p;; and ¢;; are mixed,
i.e. 0 < p11,q11 < 1. We can show from (24) that this
implies
A‘ll = Aiz = /\‘21 = Alzz é I\ Vt When t — oo. (25)

Equation (23) then gives

)\ = (5—a) - V(9-a)(1-0)
3 .

(26)

We see that ) increases as « increases. It can be shown
that (25) holds true only when (1-1) > o .
When (1- ) = a, substitution in (26) gives a =
XA = 1. Therefore, (25) holds true for 0 < a <
only. In this range, A increases from i at a =0 to
at o = %
The steady state mized strategies are given by

= (1= (1=
T —a’ MTa-on

Wi

)

(XL XT[X)

(27)

_a'

where ) is given by (26). Thus p;; and q;; are func-
tions of a.

3.3 Case 2: Pure Strategies

When we assume that the strategies p;; and ¢, are
pure, they take values 0 or 1 only. The range of a for
this case is % < a < 1. It can be shown that only
P11 =q11 =1 may be possible.

Assuming p;; = g1 = 1, we get the following
result:

When ¢t — oo, if, for any reverse-time index t

A=A =2A1, AMp=24 =2,

then, at the next reverse-time index (t + 1), we have
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Figure 1: Oscillatory Behavior of Payoff Increment in .
Steady State

AP = =, = =y

The A{; plots on the (z, w) plane are shown in Fig
1. The plot oscillates between the pattern in Fig la
and that in Fig 1b. The period of oscillation in terms
of the number of reverse time instants is 2.

The next step is to find the steady state payoff in-
crements A\; and Ay in terms of a. At reverse-time ¢,
let A%, =A%, = A1, A3y = 2. It can be shown that

we can have
A=(l-a), A2=2a-1)
/\1=(20—1), /\2=(l—a).

(28a)
(28b)

or

Note that (28) holds true for 2 < a <1 only. The
steady stale pure stralegies are given by
(29)

ru=1, qu=1.

Here the strategies do not vary with variation in a as
long as o lies in the range (3,1] .

3.4 Results

The optimum steady state transmission probabili-
ties (pi;’s and g;;’s) tell us how the strategies of the
players vary with changes in the amounts of power ac-
cumulated (z and w) at any time instant as the game
progresses. We find that when the communicator’s

power accurnulation (z) exceeds P;P, it is forced to

remain idle (i.e. pa1 = p22 = 0), because if it does not,
the present power accumulation z + §;z will exceed

P, violating the power constraint. Since the jammer
has nothing to jam in this situation, it remains idle
too (i.e. g21 = g22 = 0). When the jammer’s power

accumulation (w) exceeds j.,;,", but the communica-
tor’s does not, the jammer remains idle (q12 = 0) to

keep the present power accumulation y+ ;2w below J,
while the communicator takes advantage of the situa-
tion by transmitting with 100% probability (p12 = 1)
and achieving success.

WhenzandwsatisfyogzgiflﬁandOSwS

Z7L, the communicator and jammer transmit with




probabilities p1; and g1, respectively. These probabili-
ties define the strategies of both players, which depend
upon .

Fig 2 is a plot of p;; and ¢y versus a. For0 < a <
2 the strategies are mized, i.e. 0 < p1j,q11 < 1. The

probabilities increase as a increases. For 2 < a <1
the stralegies are pure, i.e. p1; = ¢q;; = 1. Note that
in the mixed strategy zone, p;; < q;;, implying that
the communicator has to transmit less frequently com-
pared to the jammer to attain optimum throughput.
As a result, there is a jump in the p;; curve at a = -g-

from 3 to 1. The g1; curve is continuous.

The steady state payoff increment is a single quan-
tity A (see (25)) when 0 < a < 2, and oscillates
between two quantities A; and A, (see (28)) when
2

§ <af 1. A plot of these quantities is shown in

Fig 3. As « increases, A increases from § at a = 0 to
% at a = %, after which it splits into two quantities

A1 = (1 —a) and A2 = (2a — 1). One decreases to 0
at o = 1 whereas the other increases to 1.

4 Conclusion

When the throughput parameter « is low, the com-
municator has a greater need to transmit in order to
maximize the payoff. The cumulative power constraint
prevents him from transmission at full power with
100% probability at all times, as a result he uses a ran-
domized mixed strategy so that he can transmit most
of the time. To counteract the communicator, the jam-
mer uses a mixed strategy too. The payoff increment,
which is a measure of the average increase in through-
put, also remains constant at all times in steady state
because of the possible presence of the same mixed
strategy at all times. On the other hand, when the
throughput parameter is high (closer to 1), the com-
municator need not bother so much about transmit-
ting at all times with mixed strategies. So he uses
a pure strategy at one time, but this forces him into
idleness at the next time instant, to satisfy the power
constraint. Again, at the next time instant, he trans-
mits with probability 1, and the phenomenon is re-
peated. To counteract the communicator, the jammer
does the same thing. As a result, the payoff increment
oscillates between a high value and a low value. This
explains the mathematical results obtained.

It must also be noted that the 2 x 2 grid structure of
the optimum accumulated payoff (see (17)) is not the
only possible one that yields a steady state solution
in terms of payoff increments and optimal strategies.

It covers only small portions in the 7’; versus 8; and
J

versus &, planes (see (16)). In this paper we have

discussed the simplest of the infinitely many steady
state solutions of this game.
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