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ABSTRACT

The importance of game theoretic formulations in designing
robust controllers has recently resurfaced in conjunction with
advances in the H*® problem. In the presant paper we survey
several game thearetic results which are closely related and of
potential value to robust control design. Using a game theoretic
framework, we propose methods for robust control design in
decentralized problems.

1. INTRODUCTION

The efficient design of control laws in the presence of
unknown elements has been the subject of many theoratical and
experimental studies for a variety of madels and real-life
problems. The unknown. elements can be parameters which are
constant or time varying, inputs to the system which are quite
often modelled as stochastic processes, or unknown dynamics of
‘the system. Such considerations have permeated control theory
from its genesis. A basic characteristic of mast work in control
theory is that one considers a single objective and thus a single
decision maker or controller. The theory of games, on the other
hand, is concerned with decision making in the presence of many
contrallers, each one of which has his own. objective and
information, which are not identical with those of the others.
Game theoretic problems have been studied by numerous
researchers, mathematical economists being praeminent hera.
The multiobjective character of game problems introduced many
intricacies, so that game theorists had thaeir hands quite full with
the seemingly simpler static models. Nonethaless, there are many
thearetical contributions in game theory which dealt with bonafide
dynamic problems (see (15-26,31-36,38-42,44-48,52-
66]), many of which actually predated corrasponding advances of
control theory such as dynamic programming, Markovian
formulations, adaptive schemes, etc. (see [18,52-53,59-63,
73]). The case of Rufus Isaacs stands out on its own. lsaacs
studied dynamic game problems and Introduced and used his “tenet
of transition,” which- was popularized later to control theorists
through the work of Bellman and Is known as dynamic
programming. When after years of being classifiad, [saac's work
was published, it sparked the interast of control theorists, since
he was dealing with aerial dogfights, a topic to which control
theorists had an interest. The seminal papers of [31-33] on
dynamic zero sum and Nash games and [19-21] on dynamic
Stackelberg games appeared, and saeveral control theorists
manifested an interest in thesa issues having as a main underlying
motivation the control of large sacle decantralized systems.

2. LOQ GAMES AND H CONTROL,

A recent control problem which ignited new interast in game
theary is the H robust control design theory. The H* theary of
control originated in the early 198Q's as a technique for
computing stabilizing linear time-invariant feedback control laws
to satisfy inequality constraints involving the Bode plots of
closed-loop fraquency rasponsas. The devalopment of the H®
control theory was almost from the outse! driven by the need for a

* Research supported in part by NSF Grant ECSE 8714777.
*Research supported in part by AFOSR Grant 89-0398.

theory for robustly-uncertainty-tolerant multivariable feedback
control design in order to close the much-lamented “"gap” of the
1970's between the theory and practice of contral design which
had results from the failure of the time-domain *modern® control
theary of the era to adequately address robustness issues. In
responsa to concern over this gap, the singular value Bade plot
emerged as a useful indicator of multivariable feedback system
performance (see, for example, Safonov, Laub and Hartmann
[11]), ushering in a "post-modern® .era for control theory
research in which frequency-domain concepts again played a
central role, as they had in the 1940's and 1350's. .The origin of
the H™ optimal contral theory is usually traced to Zames [12],
who formulated a SISO min-max disturbance sensitivity problem
as a complex interpolation. problem in the Hardy space H*. The
MIMQO H* sensitivity problem was solved independently by several
authors, each using different approaches [13,3,4]. Subsequentty,
the approach of Safonov and Verma [13], which involved reducing
the H* problem to a MIMO Hankel approximation problem, was
axtended to handle more general H*™ problems via an embedding
technique due to Doyle {7] involving specti’al factorization which
was closely related to the technique developed by Verma and
Jonckheere [14]," to handle "mixed sensitivity* H*® control
problems. With the 1984 resuits of [7] as the solution to the H*®
control problem was completely in hand from a theoretical
standpoint, but the theory was ‘inelegant and computer
implementations of it proved to be both siow and unreliable. H®
control rasearch over the next several years focused on
reformulating the H® solution equations in an effort to achieve
simplficiations that would lead to a reliabla computer
implementation of the H* control theory, the culmination of these
efforts being the two-Riccati H,, controller formula derivations of
Glover, Limebeer et al. [72,78], based on an extension of the
embedding technique of Parrott [71].

The link between H*™ optimal control and LQ game theory was
first noted in tha wark of Paterson [67], Zhou and Khargonekar
[68], Peterson and Zhou [69], but the concepts linking LQ games
to robust stabilization in the face of gain-bounded uncertainty
actually pradate the early 1980's introduction of the term H*™ into

tha control theorist's vocbulary by several years. Indaeed, the
details of thae full-state faedback H® control solution are so

complately worked out in the 1977 paper of Mageirou and Ho
[55], that one must regard much of the subsequent 1980's work
concarning the full-state feedback casa of H™ control as

radlscovery.

The key observation in the state feedback H™ papars is that

the control laws that amerge from LQ games with bounded cost also
satisfy a fraquency domain inequality which may be interpreted as
a bound-on the H*® norm of the closed-loop transfer function. The

He state-feedback control laws obtained in the state-feedback
literature require the solution of a single algebraic Riccati
equation of the form

0 = PA+ATP-P(BB - /72 )P + CC (2.1
which is known to also arise in LQ game theory problems.

Thera are savaral papers in the literature which deal with LQ



games. There are many intricate issues pertaining to these
problems: Closed loop and open loop solutions are in general
distinct even for deterministic formulations and lead to different
costs and trajectories. The stochastic versions' salutions are not
related ta the solutions of the deterministic case via the separation
principle. Finite and infinite duration games may differ much
maore drastically than their single objective countarparts.
Nonlinearity or nonuniqueness of solutions depending on the
information pattern, enter the picture in a drastic way. For an
overall view of the subject, the reader is referred to the
appropriate sections of the excellent book by Basar and Olsder
[22]. A brief survey of papers dealing with linear quadratic
games now follows. :

Starr and Ho [31-33] introduces datarministic dynamic
continuous time, zero-sum, Nash and Team problems. Both open
loop and closed loop strategies ara considerad and the necessary
conditions for the LQ case are carefully derived. This paper
provides many insights. The analogous presentation for the
Stackelberg case is one in [19-21] where an in-depth analysis of
several issues is also provided. Ho, Bryson and Baron (36] study
pursuit evasion game in the context of a zero-sum LQ formulation.
Bellman and Ho [35] study a pursuit evasion game in a zero-sum
LQ context where the one player has noise corrupted
measurements.. A similar problem where both players have noise
corrupted measurements is studied in Ho [34]. Lukes, Ichikawa,
and Minamide [38-41,46] study LQ Nash games in a Hilbert space
framework. Meyer, Potter, Van Zwieten, Medanic, and Pachter
[37,43,47,49-51] study a generalized Riccati equation related to
the one arising in zero-sum LQ games of inifnite duration.

. Rhodes, Laub [44,45] examine continuous time LQ Nash and
zero-sum problems with noisy measurements.

‘Kriekelis [42] considers the numerical solution of the
coupled matrix Riccati equations arriving In LQ Nash games via

Newton's method. .

The discrete time LQ Nash problem of finite duration under '

the ona step delay observation sharing pattern is rascived in
(15-17].

Papavassilopoulos [25-26] provides sufficient 'conditions for
existence of stabilizing solutions of the coupled Riccati equatians
which appear in LQ deterministic continuous time Nash gamaes.

* Mageirou, Jacobson [48-56] study the Interplay of solutions
of the finite and infinite time zaro-sum LQ continuous time games.

It is interesting to notice that a game theoratic approach to
robust LQ design was first introduced in 1964 by Dorato and
Drenick [30] in a generic framework. Minimax problems for
deriving robust controllers were also considered in Witsanhausan,
Bertsekas, Salmon [27.28,29], but these papers are remote from
the H® formulation. There are two particular papers nonatheless
whera the formulations usad for deriving rabust controllers are
quite close to the ona related to H*°. Thay are the papaers [54] and
[55]. In this context, see also {57] for a theoratical study and
algorithms pertaining to the zero-sum Riccatl equation. (For
further theoratical results on this equation, see in particular
[49-51].) :

In key breakthrough reported recantly by Doyle, Glover et al.
[9.8.74], an observer-like technique together with “change of
variables* was found to permit the state-feedback H* resuits to be
extended to the case in which the state is not directly available for
feedback. These "H*® observer results. like those of [72,77.78],
require the solution of twQ Riccati equations of the form (2.1).
This approach has been extended and further developed by a
number of authors (e.g.. [10.75,76]).

3. W&Mﬁdﬂm
In this section we briefly discuss t‘he links between game
theory, H®  optimal control theory and the concept of
c-optimality, originally introduced in the -H%® control in the
seminal paper of Zames [12] in order to deal with constraints

requiring admissible control laws to have proper transfer
functions. i

Let o: UxW—_oR be a function and consider the problems:

inf sup & (uw) = ¥* (3.1)
u w . .

sup inf ¢ (uw) - Te (3.2)

w ')

it always holds that
TaST* .

i.e., the lower value (1.,) is less or equal than the upper value
(v"). Apaic (U, w) € UxW is called a saddle paint if

duwW) S dW, U SP(Wu), Vuel v weW (3.3)
Such a point does not always exist. There are several conditions
known as minimax theorems guaranteeing the existence of saddle
points and most of them assume convexity of ¢ in u, concavity of ¢

in w, some type of continuity (upper, lower) of ¢ and caonvexity
compactness of U and W. It is clear that if (u,w) is a sadcle point,
then u solves (3.1) and’y solves (3.2). Howaver, solutions u of
(3.1) and w of (3.2), assuming they exist, do not provide a
solution to (3.3). The following theorem holds (see [22, 79)):

" Ihegrem. Let U,W be nonempty. A pair {u,w) solves (3.3)
if and only it u solves (3.1), (i.e., the infimum is attained in
(3.1), W salves (3.2) (i.e., the supremum is attained in (3.2))
and the upper and lower values 7, " arg equal. The standard H*®

problem is of the type (3.1) with

d(umw) = lizI? (3.4)
Z = Hx;Ev (3.5)
X = AX+Bv+Tw x(0) = O (3.6)
we hy[0, +)

llwlf? -'f: W(tw s 1 (3.7)
l1z11% = Jio M z() dt . (3.8)

The H* problem is
inf sup |lzlI2 (3.9)

u w

where |[w]] S 1 and u = u(y) is a possibly dynamical control law
mapping the measurement y(t) = Cx(t)+Du(t) into the control
signal v(t). If one further suppases that the infimum and
supremum in (3.9) are achieved, then one may raformulate the
problem (3.9) with the aid of a Lagrange multiplier yZ as

min max [zl - 72 (Wl - 1) . (3.10)
u w

In order to solve (3.10) we may try to solve for a saddle



point of ||z|[2. If we find a saddle point we have automatically
solved (3.4). Solving for a saddle point of (3.4) leads to a linear
quadratic differential game. Indeed, solving the linear quadratic
game (3.10) in the usual fashion (e.g., [56,8] one finds that for
any ¥, 7>0

P 2 2
fzll_ -« (IlW_II_r 1= llv-volxa)l

- 2(w-wo(x, )1 2 - 1) (3.11)
where
T
lxllr & ([ x(Wxdy'/2 (3.12)
o]}
and
vo(x(t) .tz ) 2 -B' Pty )x(t) (3.13)
wo(x(t),t,7) & - 1/x?2 T Pty )x(t) (3.14)

and P(t,7) is a solution to the Riccati equation (compare with
(1.1))

P = PA+AP-P(BB - /72 P + HH

P(T,v) = 0. (3.15)
Evidently, when the _gdmissible measurements include the
full-state x, then u(x(t),t,7 ) = Vo(x(1),t,7 ), w(t) =
wo(x(fht,7) is the desired saddle point and, letting ¥™ denote the
optimal Lagrange multiplier one has that the optimal H™ full state
feedback control law is : :

v(t) = u(x(t),t,7") = -B' Pty ") x(t) (3.16)
The solution to the orioginal H™® state feedback control problem
may be recovered by examining the existence and behavior of the
limiting solution lim P(t,y) for various values of the scalar
parameter 7. T=oo

Of coursa, all of the foregoing supposes that the infimum and
supremum are achieved, which in general will not be the case.
Howaever, even when a game doas not admit an exact solution it may
admit an approximate solution which is optimal to within some
small €. This may happen when the infinum or supremum in

(3.1) cannot be achieved, but rather can only be approached by
admissible controls ue U, weW. In the case of H* copntrol, one

may often compute such e-optimal solutions by taking 7 to be
only slightly greater than the optimal ™.

Let us examine the concept of e-optimality further. Assume
that there exist (U,w €U,W) such that

£+ (U WS PWUW) SE+ d(uW) VueU, vYweW (3.17)

for some £>0. This means

"€ + sup duw) < G(UW) S €+ iﬂf & (u.W) (3.18)
Now, '
igfcp(u,v‘i) s sup iﬂttb(u.W) (3.19)
illf sup duw) s sup d(U.w) (3.20)

Using (3.19) and (3.20) in (3.18) yields
(3.21)

-e +inf sup &(uw) < G(X.w) s e + sup inf (u,w)
u w w u

Using the fact that

¥e= sup inf &(uw) <inf sup d(uw) = 7, (3.22)

w u u

relation (3.21) yields
€+ S EA, (3.23)
and thus

Te ST S Aa+2€ (3.24)

We are now ready to state the following lemma:

Lemma. A UeU which satisfies (3.17) with some we W is
within an error of 2e a solution of

1fo sgp & (u,w) (3.25)

a
It is clear that a solution of (3.25) within an error 2¢ is not
necessarily a solution of (3.17). But if ¢ is such that U is a
solution of (3.17) for same ¢, it is necessarily a solution of
(3.25) within an error of 2¢.

4. DECENTRALIZED, MUI TIOBJECTIVE H* CONTROL

Having seen the ease with which the full-state feedback H*
control problem is solved via linear quadratic game theory, and
noting that Doyle et al. [74] have been able to readily extend this
approach with H* observers, it is natural to ask if game theory
methods can also be successfully employed to soive decentralized
and multiobjective H™ control problems. As we shall see, this
leads to infinite systems of coupled Riccati equations.

Quiput Feedback ’

Consider the decentralized control system depicted in Fig. 4.1.
Having closed-loop transfer function from w to z = 2,7, 2,7 |7

Tew

Tow 2 (4.1)

T,zw
Our objective is to design feedbacks u,(y;) and ux(yz) such that
I Tz oo S & (4.2)

il Tzzw "oo s 5‘2 (4.3)
where &, and &8, are as small as possible.

Let us suppose that the plant P(s) has state space realization

X A r B, B, X
Zy Hl 0 D| 0 w
.| = Hy 0 0 D, Uy (4.4)
Y1 C‘ El 0 0 Uz
Y2 G E 0 0
and denote
Q, & HH, , Q, 2 H'H, . (4.5a)

Further, we assume, for simplicity, that for i = 1,2



‘DH =0, DO, = I - (4.5b)
ETC, =0 ETE = 1. ' (4.5b)
Thus,
z 77z, = xTQx +uTu, (=12 . (4.6)

We restrict our attenuon to possibly dynamical control laws

uj = u'(y.) (i = 12).

— —a—> %1
Ul E— Z3 .
—p X o
usz : Y,
—— ]
. Y
. T : transfer
_ - _ ' function
' U (y.) from w
—4——v 1\ to z,
<+ u(y,) —<

Figure 4.1. Decentralized Control System

If both controllers act aé a team, thay agree on some relative
weights A, Az, 0S Ay, Ay + Az = 1 and we have the problem

Mzl + lIzzlt 2 Az

inf  sup (4.7)

uu2 g-o S ”w“2

(Alternatively, we may view the parameters A, as Lagrange
multipliers.) If wa rastrict our attention to linear time invariant
dynamic controllers, as long as y;.yz are not equivalent (i.e.,
T,C; = C3, ToC5 = C, for some T,,T;) we will be led to infinite
dimensional observers for the following reason: If uy is realized
by using an observer of arder K, then the control law u; solves '

Alizid? + Az liz2ll 2

inf sup
Ul w

liwli?

with uy(y,) fixed. Then u; will have to build an observer of order
n+k where n = dim (x), i.e., to estimata both x and the estimate of
the u; controller. Ravarsing the roles of u,u; we see that
aventually thay will have to use infinita dimensional observers.
To alleviate this problem we can a priori restrict the obsarvers of
u,,u, to be of fixed dimensions, lLe.,

Py =FiPi + Gy Pi(0) = 0 Pz = FzPz + Gaya, P2(0) =0

uy = Lipy + My, Uz = Lapz + May2 (4.8)

Let K; = (F;,G,.L;.M}), K3 = (F2,G2,L3,M3) and consider the
infimum in (4.7) to be with respect to K,,K,. To solve this
problem we consider the associated game

sup A lIZlI2 « Az liz2ll2 - 72 [IWl? . K,K; fixed (4.9)
w
inf Ay llzglI2 + Az lIz2l? . w fixed (4.10) -

Ky Ko

(4.9) is a standard LQ problem with state (. P..Pz) We assume
that the closed-loop A-matnx of this problem

- A+BM, C, + B;M,C, B,L‘, By,
A= | GG - F, 0 (4.11)
' -GG 0 F,

is asymptotically stable and that ¥ 2 is such that the Riccati
equation associated with the maximization over w, viz.

0= P;+;+6+1/72PF[:‘"P ,

(4.12)
has a positive definite solution, where
- l" ~ 7\lQl +7\202 0] 0
C = 0 ' Q = 0 0 0 +
0 . ) 0 0 0
[CyMMC, C ML 0
+ L'|M|C| L.|L| 0 +
0] 0 0
[c,MMc, .o - 0
+. 0 o C'2M73L,
0 MC2 Lol
For w fixed equal to -1/¥2 l:'K we solve next
int Aylizili? + Az llzzlf? © (4.13)
K Ko

by using the results of [82,83]. This leads to a set of coupled
Riccati equations determining K;,K,. - The study of these equations
from a theorstical point of view and their algorithmic solution are
obviously of central importance. Wae anticipate that the interplay
of the controllability, obsarvability spacas of tha two controllers
and the dimensions of the observers will be essaential in studying
these equations. The resulting 72 can be chosen as small as
possible as to keep the solution P as (4.12) positive definite and it
provides an upper bound on the optimal value of (4.7) which uses
infinite dimensional obsarvers.

An important feature of the procedure described above is that
althqugh each controller uses his own information y;, in order to

find his K, = (F,G,,1,,M;) he has to know not only his own transfer
function T“,z‘, i.a., his Q;, but also that of the other. Essentially

each controller, in order to find his K|, has to know the K, of the
other. Although the development presented considers two
controllers, the extension to the more than two case is
straightforward.

5. ASUBOQPTIMAL SCHEME FOR DECENTRALIZED H CONTROL

The approach outlined in the praceding section requires the
solution of coupled Riccatl equations. While the solution of such
equations is possible (see Richter [84]), softwara for doing so is
not yet commanplace and the available algorithms have not been
inqepen'demly valldated. With this in mind, it may be desirable to
donsider suboptimal alternative approaches to decentralized H®

control design.

In what follows, we proposa a scheme for creating dynamic
feedback controllers for uy and u,, which are of finite order and

require very little coordination among uyu, in order to calculate
them. Let us first consider uy,J;. Controller 1 thinks of both u;
and w as a disturbancea, i.e.,



i:Ax+B,u,+FvV (5.1)
where ~
MN«) 2
a Uz
W(x) 2
w

and «, is a constant to be_specified later. Note that the
augmentation of (I",w) to " ,W preserves the properties
(4.5a,b,c).

Applying the 2-Riccati H* control results (e.g.,
[8,10,72,75-78]) yields the result that there exists a control
law for which |[Tzlu,||°° < 7, if and only if the two Riccati equations

0 = PA+ATP,-P(B,BT-a{2B3B;T- 'T'T)P; + H,TH,; (5.2)

0 = S|AT+AS,-5,(C;TC-H,TH,)S; + | 2BB," + 'T  (5.3)
have positive semidefinite solutions, say P,,S; 2 0, with

Amax(P1S1) < 1. Furthermore, since the optimal closed-loop
transfer function satisfies IITZ'WH“, < 7, it follows that with

control loop 1 closed with the H*® control law that

2 1z 2 2
Izl s 2 - 7 2 ? lugll? + W) (5.4)

w
irrespective of how loop 2 is closed.-

Similarly, we pick constants a5, 72 and solve the analogous

H® control for the second loop ux(y3), treating u; as part of the

disturbance. Letting P,,S; denote the solutions to the appropriate

Riccati equations, and provided P5,S; 2 0 and A, (P2S2) < 1, we
have

z2l? s 722 (a2? Il + (W) - (5.5)

Noting that (4.6) implies that [luzl® < (22112 (i = 1,2), it
follows from (5.4)-(5.5) that

Huyl1? 72

[luylf? lzl1? ‘
< <N + liwli? (5.6)
lluz11? lIz211? lluzlf? 77
where the matrix N is given by
0 (7 1000)?
N = . (5.7)
(7 2ae2)? 0

Rearranging (5.6), we obtain the following lemma.

Lemma. IfAmax(N) < 1, then (I-N)~! exists and is
nonnegative and
l1zy11? 7
s (-N)! lIwl|? (5.8)
l1zz112 77
Proof.  Follows directly from (5.6) and the fact that, for any

oo .
nonnegative matrix N, (I-N)~! = ¥ N* exists and is nonnegative

k=0

whenever the Perron eigenvalue A, (N) < 1.
QED.

Notice that the only coupling condition is through (5.8),
viz., i.8., 1> Aqax(N)= (1% 127 2)?, which essentially requires
a communication among u,,u, about the relative to [|w||2 energies
of u,,u;. Notice also that Controller u, needs to interact with up
only on the choice of the «,«e5, 7,72 and does not need to know
Q2.C; as the Nash solution of Section 1 or the two previous
approaches described in the beginning of this section require.
Notice that instead of «;,«, one can use nonsingular matrices.
Finally, notice that the approach can be extended in a

‘straightforward manner to the case of more than two controllers.

6. CONCLUSIONS

A survey of the linear quadratic game theory literature has
revealed that the recent game theoretic formulation of H® control
problems has a great deal in common with earlier works of robust
control from the game-theoretic framework, especially in the
case of the full-state feedback H* control theory. The
preliminaty studies presented herein indicate that there is also
considerable potential for expanding the class of H*® robust control
problems that can be successfully tackled within the
game-theoretic setting. In particular, we have shown that
decentralized H* control problems and certain multiobjective H*®
control problems fall within this class.
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