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ABSTRACT

The attainment of cooperative outcomes in compatitive
anvironments is an important area of rasearch in dynamic game
theory. Mast of the work on this topic has concentrated on
repeated static games or deterministic dynamic ones. Wa axamine
a stochastic dynamic discrate time gamae and study the possibility
of having approximate Nash aquilibria which rasult in Parato

outcomes. The time horizon is infinita. In the context of a simple

linear quadratic model we suggast strategias which may achieve
the aforementioned aim and discuss saveral insights and results.

. INTRODUCTION

The objective of this paper is to consider Nash equilibria for
dynamic stochastic games, which rasult to Parato costs. In other
words, to find strategies which provida each player with the
guarantae that his oppanents will not deviate from an agreed
decision which is a decision that could be realized if all playars
wara behaving cooperativaly. Schemes which achieve cooperative
outcomas without assuming mutual trust among the decision
makers are.of cbvious significanca. They have been examined in
the context of repeated games by saveral rasearchers, notably
Radnar ses [1,2]. The dynamic case sasms to be mora complex,
but thera ara already some rasults partaining to the deterministic
casa (see [3-7]). The basic idea in all such attempts is that the

Players behave cooperatively as long as they beliave that their.

opponents also did so in the (racent) past. It a daviation is
detected they rasort to nancaooperative bahavior, i.e., thay use a
nonccoperative (punishment) mode of behavior. The basic issues
in designing such strategies are: i) the tast which if passed or
failed indicates that the opponant behaved or not caoperatively, ii)
the periad during which the cooperative or noncooperative mood
ara ratainad. A basic charactaristic is that the pariod during
which the game evolves should be large anough--in most such
-problems considered in literatura the time horizon is infinita--so
that a threat to resort to a punshing behavior will not be
-overlockad by the opponents sinca thera is always a future during
which thesa punishments will take effect. In this paper we
consider an infinite time discrete time stochastic model and for
reasons of simplicity wa handle only the scalar casa. Wae proposa
strategies and provida supporting avidence to show that they have
the dasirad characteristics. Qur analysis is not complate and
occasionally sketchy. A basic featura of the proposad strategies is
that the tasts, according to which the cooperative or
noncooperative behavior is chackad, procead vary slowly, le.,
very cautlously.

Il. PROBLEM STATEMENT

Consider a dynamical system evol\)_ing according to the scalar
equation . -
Xy 3% + U + Uz + Wi o k=012 .. (1)

where a is a real constant, Xy, Wg, Wy, Wg, ... are ii.d. Gaussian
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with zero mean and unit varianca. The Uy, Uy, are chosen by two
decision makers, P1 and P2‘ raspectively as functions of (x,
Xic=1s0-+0X0 ), i.e., ) '

Uik © 7 ik (X XumtsoeesX) i=12, k=012, ..
whara the functions

Tik: Rkﬂ - R
"fi = (YlO- flln---)

ara Borel measurable. Let us dlso introduca two costs
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A pair (¥; .72 ) is called a Nash equilibrium if
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A pair (¥ 1,7 2) is called a Parsto equilibrium it there exists no
other pair (7,77 2) so that J(¥ .7 2) S 4 (¥ ,.g:z) fori =12,
with strict inequality for at least one i. It is known that there
exist constant &, €™, €7, &,° so that the pairs (v M. 7 M),
(v Py with - - :

Tut =%, Vvi=012 .
a2 %, Vi=012 ..
7ol =8Px, Vi=012, ..
Tal =P %, vi=012 ..

7" = (N T )
7N = (72N TN v
7 = (7. ff||P. ‘f;zp. )y
7 = (72" 72l vt )

areﬂ sta‘:icr.\ary- 'rjlash and Pareto equilibria, see [10]. The pair
(€,™.8,™) is uniquely determined, see [10], whereas thera are
infinitaly many pairs (£,°,8,") detarmining stationary Parsto
equilibria. Let (4", J2™), (J,°.J;7) denote the corrasponding
costs. Let us consider a pair (,°,8,") which determines a Pareto
solution for which it also holds
P s LS.

We_are intarasted in finding a pair (—7|.772). 7= ‘f.o. T

712 ..) S0 that :

W72 S +e
and v

I=12

W7 w72 SI(F L 72)+€e ., v admissible 7,
- - (3)
J27 1. 72) S k(v T2)+e . W admissible v,

whera ¢ is some small nonnegative constant, i.e., we ara interested
in finding strategies which ara e-Nash equilibria, see [2].
resulting in costs close to the Parato sat of costs. Obviously, if
such a pair exists it will invalve nonlinear 7 ’s. In the follawing

wa ara going to suggest such a pair.



Il. PROPQSED STRATEGIES
Consider the following equations

et = @ + Uy + Uy + Wy

Y
Clar = Gl + = (Nt - @ - U - Cly %)+ X
K
s %2
=0 (4)
&2
ey = GO + = (Xiar - % - Uy - G2 Xe) * %
k .
b 2
i
.
eF % it 1a'-8" 1 < &'
Uk = 7 (5)
C,NXk. if Iq"-€2Pl>ek'
~
(
&Px . it 1g2-8f] s g2
Uz = 9 (6)

if Iq(z-Z,PI > Ekz

&M%,
N

where 5,6, are positive constants and ¢,', g,2 are sequences
monotonically decreasing towards zero. Later on we will specify
the &;'s and ¢''s, see .(9). (10).

The idea underlying this choice is the following. P1 can think
that if P2 uses a fixed strategy up, = cx,, where c is unknown,
then P1 is faced with the evolution equation

*k&l = aX + Uy +CX + W .
The least squares estimate of ¢ is given recursively by

K
Cuer = G + (1/_20: %2 )" (et - @ - U - Cie Xe) X
i

K K
Instead of (1/' 3~ x2)~!, P1 uses &, (3 x?)”' so that a stochastic
i i

approximation type of ¢' results and this is (4). Then P1
compares the estimate of ¢ to &;° and if they are close, then P1
uses his Parsto strategy; if not, he uses his Nash strategy, see
(5). If ugy = &7 %z, then ¢ - £,° is normally distributed with
zero mean and variance of order 1/k. Thus, in order to diminish
the probability of not passing the test of (5) when uy, is the
Pareto solution, the sequence g,' should have the property

\/E ek‘ —+ 00,

Since ¢,' — 0 we see that ¢,' should go to zero slower than Vﬁ )
The ¢, 's are specified in (9).

IV. ANALYSIS |

In order to verify that the strategies proposed in (5-6) will
be e-Nash equilibria and result to costs close to the Pareto costs
J{P, J;° we have to verify two things. First, that for up, fixed as
in (6), the uy defined in (5) is e-optimal for the problem he is
faced with and the resulting cost is close to J,°. Similarly, when
the roles of P1 and P2 are interchanged. Second, that the system
(5-6) results to costs close to the Pareto ones.

ask — +oo

For upy fixed as in (6), P1 is faced with the following control
problem

Xee! = @ + Uy + Upy + W
82
Czkﬂ ’Ckz + (Xk,.,~an-LI2k'Ck2 %) Xie
K
T x2
i=0
& % , it la?-8f | s g2
U =
e x . it 1a2-8f | > g2
1 T
Jj = limsup — E (@1 % i? + upe?) (7)
T—+00 T+l k=Q

This is a difficult nonlinear, nonstationary stochastic control
problem, the solution of which currently eludes us. We will
nevertheless show that if uy, is restricted to being linear in X
with a gain which is time varying but periodic, then the best gain
for uy, is the constant £,°. If such a periodic strategy is used by
P1 it should be such that P2 will be creating -- by using
(4) -- an estimate ¢,2 which converges to ¢,°. If not, ¢, 2 would
converge to something different than €,°; and thus P2 would end up
using ugy, = &M x, which would force P1 to use &N x, with
resulting cost to him equal to J;¥. On the other hand, P1 can
guarantee to himself the cost J," by playing always ¢,” x, when
faced with the problem (7). Thus, we have to show that out of all
the linear time varying periodic control laws, which result in an
estimate g2 which converges to £,°, the one that results to the

best cost J, (see (7)) is the constant uy, = £,° x.. This is shown
in Appendix A.

The second thing that has to be shown is that the system
(4-6) will result to costs close to the Pareto costs. This means
that the mutual tests of (5-6) will be met successfully or that the
probability that although both P1 and P2 use the cooperative
strategies & for a certain period, the noise w, causes failure of
the tests, so that both P1, P2 are locked afterwards in a
noncooperative mood of play (i.e., the ¢'s), is very small. These
considerations will lead to further specifications of the &'s, €,'"s.

If the test is continuously passed then it will be that uy = &°
% Setting zy' = ¢ - &7, we see that z.' satisfies:

_ 71 %32 &
Zol =2 [ 1- . X Wi
E x2 52. x2
1=Q i=OQ

The mean of z' is zero and its variance (a’,’k)2 = E[z)32],
satisfies

_ X2 x2 \2 %2
(T = (i) +1-29; — +6F — | +52
K K K
z x2 s %2 z X2
=0 10 =0

or
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wherg o2 = lim E[xkz]. Using Chung's Lemma, see [8, page 45],
we have that if :

&% 1 1 1
26> 1then ()2 = — —— - — +0(—) (8)
‘ o2 281 k k
1
1> 25 > Othen (oy)? = 0f —
ki

Using the fact that for any m > 1, there is a B, > 0 so that
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Thus, in order to have that the test will be continuously passed
with probability close to 1 it suffices to have for some p > 0

2 Bm 1 Tix m-i 1

—— — — < —

\ /2 1 m-1 Ekl » kP
The larger p is tﬁe closer the product

[T PUzMNI <&l > [T (1-—)

k=0 k=0 kP

is to one. Using (8), we see that it suffices to-have

P 1
I 4
28, 8 1 m ‘
g >mt) —mm—m—m—— . — -k if 26;>1
(m-1) V21 o 261
p
—_ -5
m=i
2k > k if0<26 <1

Since we want g, — 0 it suffices to have

p 1 .
_—-—- < 0 if 26, >1
m-1 - 2

or
p .
— < & if0 <28 <1
m-1 '

Clearly, in either case, Vk &' = 0(kP/'"") — +oo in agreement

with the comment at the end of Section 2. We can now take, for
example, p = 2 and m > 5, for exampie, m = 6, which determines
Bg and ¢,/ can be taken to be any sequence which goes to zero and

2Bs ' & 1 1
Ekl > 5 -_—
5V27 o V21 Uk

The basic conclusion is that the &, 5, must be chosen as constants
and the ¢!, €2 can be chosen as sequences which go to zero, while
at the same time they satisfy (10) for some p and m. The larger
the p, the closar to 1 becomes the probability that the test will be
always passed. Obviously p affects the € in tbe e-Nash
equilibrium that the proposed strategies hopefully satisfy.

APPENDIXA
Consider the equation

Xoksiel = aﬂx&’i + w&oi
k = 0,123, ...
i=012 ... ,.2-1

(A-1)

where € is a fixed positive integer. This is a dynamical equation
where the coefficient a is periodic with pericd £. The xy,wg,Wg, ...
are iid gaussian with zero mean and unit variance. The mean of x,
is zero for every n and the condition

la..ag| < 1 (A-2)

guarantees that the variances of the x,'s converge as follows:

E[xzﬂkﬂoll - 0'2|.| as K — 4oe (A-3)
where )
a-lz 0o ...... 0 3‘2 a-lz 1
: a? 0 1
. - 0 . 0 : . +] (A-4)
af? 0 ....:0 a2 o0 || o2 ]

_ If one assumes that the x,'s are generated by a linear time

invariant system

Xney = AXp + W, (A-S)
then the least squares estimate of a, based on xg, ... X, 1, iS given
by

n
) onka-l - X
’én = . (A-6)
n
z %32
kO



Thus, if the x,'s are generated by (A-1), but the estimate operates

under the assumption that they are generated by (A-5), then the
X,'s generated by (A-1) will be used in (A-6). It then holds

a T X2 + 82 T XPgper ++ ag T X208 1)
k . k . k

~

a, = . * T Wk
.kakz .
’ : (A-7)

where all the summations are done with respect to k = 0,1,2,...
and do not include terms after k=n. As n goes to infinity, a,

converges to

ajcpra ol ragody
g = ; - (A-8)
O'Ez +O"12 + ot 0'26_,

If the aestimator assumes that the x,'s evolve as in (A-5), he uses
the x,'s generated by (A-1) and a; = a, then his assumption that
the a is constant will .not be refuted.

Let us now assume that

a = ay+X% i=1,..0
L, =Ly+x i=1,...2 (A-9)
Consider alsd the cost
1
J= lim — E(Zqx2+82x%2] (A-10)
Noo N :
where
aelul = e1+l
Assuming that the x,'s evolve according to (A-1), we have
1 ¢ _
J=— 3 [+ -a+a3loc?, (o2 op)
[ A
1 .
== {[q+@€ - +a)2log? + [q+( -2 + 3o
(2 ' :
+ [+, - a9 + a3)2] @22 + = + [q+(C, -3 +a)?] %y}
(A-11)
(A-11) can be also written as
J=[q+r@y-a)? e+ +og?) +
+ afovaltoleraady +
+ 2@ -a)(@oc+apaleragay_y) (A-12)
From (A-8) we have
a o+ oty = ol eera?)  (A-13)
From (A-4) we have
0'12 = a|20'e2+1
02 = a0+ (A-14)
og? - ag? 021 +1
which we add and obtain
(a2 o +a2 o2+ +raog )=+ +a% -t (A-15)

Using (A-12), (A-14) in (A-12)_ yields

J "[q*(ep‘ao)z“f'z(zp‘ao)aof1](a'|2;|....+0-32)_e
=[q+@p-8+2)%-a? +1] (0?2 ++0g2)-L
7|2+"‘+¢¢2 '

J=[g+ (€2 + 1-a7

_ 1. (A-16)
We can now pose the follov«_ring problem: Let a,, ¢oq bé fixed
numbers, q 20, |ag | < 1. Find xy,...,xg, so that the a's defined by
(A-9) satisfy (A-2), (i.e., stable dynamical system), (A-8)
(i.e., the least squares estimate using the x,'s of the periodic
system identifies ag), and J as in (A-16) is minimum.

In Appendix B we solve this problem and show that the
optimum is achieved for x; = X = = = Xg, @) = -+ = ag = &,.

APPENDIX B

Consider the optimization problem

_ min (X + = + X,) (B-1)
X1y oee 1Xne@yy oe 13y
subject to
X . X|
X2 = A : “+ 8 " (B-2)
Xn Xn
(X + o+ X)) = A Xy + A X+ + 3%y (B-3)
la;..3,] < 1 (8-4)
0o 0 ... 0 a? 1
A= a2 o o | , e= . | (B-5)
a2, : .
0 " a2 o0 : 1
ag " is a given constant, | ag | < 1. The unknowns are X, ..., X,,

aj,...,a,. Let us first notice that (B-4) guarantees that the
eigenvalues of A are strictly less than 1 in magnitude and thus
(B-2) yields solvability for the x's in terms of the a?'s, i.e.,

X = (1-A)1e = @+Ae+AZe +

and that the x's will be greater or equal than 1.

Assuming that an optimum exists and applying the first order
necessary conditions yields ’

1+A-Rz28% +p (3 -3) = 0

1+Az-Azazs2+p(ag-23) =0 (B-6)
A4Na-Ajal+p (@ -a) = O

X (p+27 ) = 0

X (p+2Nz2 3) = 0 ;

: (B-7)

Xoo1 (p +2R 33) = 0

where A1, Az, ... /A, p. append the equality constraints (2), (3)-



In order to guarantee the existence of the Lagrange multiplie'rs
Al . An p We demonstrate that if

Ai-Az32+p(a-3) = 0

Az -A3 332+p‘(a°'83) =0 (B-8)
x"-7\|v34|2+p(30'a|) =0

X (p +2A; @) = 0

X (p+27z23) = 0

: (B-9)

Xnot (P +2An 3) = 0

and (B-2)-(B-4) hold, then p = A =-~=a A, = 0. Since x; 21
(B-9) yields :
p +2N 8 =0, i=1,..,n.

if p=0then A;3 =0, i=1,..,n and (B-8)yields A; =0,

i=1,...n |If p»0 then Aig=0,i=1,..,n, and thus
P
A = -— i=1,..,n . (B-10)
23
(B-8) vyields
1 : ‘ i
a,y =23 - — ., i =1,.,0 (B-11)
a; (@ne1 = a))

Using the results of Appendix A, with p = 235, we conclude that
since | L] =23 | <1, we cannot have a periodic solution of
(B-11) which also satisfies (B-4). Thus regularity holds and
the Lagrange multiplier vector (A, ... Aq, p) exists and is
unique. '

yield
p+2\,a; =0, i=1,...n.

If p#0, then A,;a =0,i=1,..n and(B-6) yeld A, =-1,
j=1,.n, and thus a, = = a, = 0. In this case it must be a5 = 0.
Then it is also true: X, ==X, =1. If p»0 then A;3=0,
i=1,..,n and thus :

e

27,

3 =

In this case (B-6) yields

2 2 2 a
(= A+ (= A = -(— + =)
P P P 2

(8-12)

Again using the results of Appendix C, since we want lay .3l < 1,
the only solution of (B-12) will ba Aj=Ag =..= A, in which
case 3= ..=3a,=3g. .

Wa thus conclude that the only candidate solution of the
problem is

d =.= 3n = =)
X| ==Xy = (1-292)7"

with
A o= -(1-32), p = 23 (1-3?)

Let us cg_nsider now (B-6) ... (B-7). Since x 2 1 (B-7)

It is easy to see now that since the second order. necessary
. conditions are satisfied the solution found is the global optimum.

APPENDIXC

Consider the difference equation

n=123, .. (C-1)

where i and a, = 0 are given cosntants. If a, = 0 for some n, the
evolution of (1) stops.

Lemma. The only'periodic solution of (1) with period n,
which satisfies )

Ial'az...an! <1 (C-2)
is the constant solution a, = a; == a,, in which case it must
also hold .

1
L=a;+ — =0, [H]|>2
. al ’
Proof. The study of (C-1) is equivalent to the study of the
linear equation .

0<|a|l<‘1 and (C-3)

Xnel Xy TS X 3
=M M=, - (C-4)
Yo+t Yn 1 : o Y1 1
s 1.2,3, -
where ' o
. Xn
a, = - (C-5)
Ya '
The eigenvalues of M are the solutions of
AZ-pA +1 =0 (C-86)

and they are

[TRIVALN
A = .
2

. F“'"A
N = ,
2

A = }].2-4. (C‘7)

Clearly Ay, Az =0.

Case i A =0,ie, p2=4d4and A=Ay =2 Lletps=2
Then .

(1 1] 1 2]
M=Ta= ™, Ta
0 1_ 1 1
-1 n n+l -n
Mo-T T .
0 1 n -n+1
Xnet a a, (n+1) - n
= M - (C-8)
Ynet 1 a, n - (n-1)



If the solution of (C-1) is periodic, i.e., 3= 31 for scme n, then
a, = X,.,,‘/ym, which yields

a;(n+1) - n
PR :
a;n - (n-1)
ar
n(a, -1)2% =0
i.e., aj =1 Witha, =1and p = 2, (C-1) has the constant

Similarly, if p = -2, then the
is the constant solution a; = -+

solution a; = a; = =+ =3, = 1.
only periodic solution of (C-1)
= a, = -1. In either case,

| a ;..a,_| = 1.

Case ii. A =»0. Itholds

roo -

A o . 1 1
M =T TV, Ta= .
0" Ag| - Az A
At 0]
M =T - Tt
0 Al

It We want a,, to be peﬁcdic for soma n, i.a., a,,;.-'- a,, then '

xnol
a = —
. . Ynfl
Using
Xnet v Alﬂ" 0 VIal .
=T . T (C-9)
Yoei o . AZT' 1 '
yields that (C-9) is equivalent to
(AP -A) (@2 -pa+1] = 0 - (C-10)
. [ A "
l' Alﬂ -Azn then - - 1- i-a"
: 2xn
P - \/_A- i — .
—_— 28 ", k=12, ..am1 (C-11)
p-va

Thecases k =0,k = n ara excluded since thay yield A = A2, i.e.,
A = 0. After soma calculations (C-11) Is seen to yield

o kr
K = + 2COS —_— , k=12, .. .n-1
- n

it also holds

Xy X2 Xy
o — - &'
Y1 ¥2 Yn

— 0 —

3133 ...3, =

since Ya.; = X, and y; = 1. %, can be explicitly calculated from
(C-9) and it holds '

n = (7\|“+7\2")1/2

A" = Az" then X, = A"\ 12 = 4 [ cos (kwm2 and thus

L kx u? kr \2
Ay = —+isin — AR s — 4 gin[ — =1
2 n 4 n

We thus conclude that if A = 0 the solution of (C-1) is ppnod,c
and A" = A", then .

lajag...a,] =1

(C-10) can also be satisfied if a2 -pa +1 = 0, e,

L =3 + 1a

Then the solution of (C-1) is a constant a) =33 =+ = 3,. Thus,
the only case whera (C-1) has a periodic solution which
may satisfy (C-2) is the case where the solution is constant and
L =a+1a and A = u - 4 # 0, which is equivalent to

(ay+ 13-4 =20 or (31-1/81)2 #0 ora#1.

If we want (C-2) to be satisfied we have to have laj|<1.
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