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ABSTRACT

This paper considers a decentralized adaptive con-
trol problem for a class of discrete-time multi-input
multi-output deterministic linear systems. It is shown
that, under a weak coupling condition, the Projection
Algorithm will ensure that the system inputs and out-
puts remain bounded for all time and that each control-
ler can successfully make the corresponding output
tracking error converge to-zero.

1. - INTRODUCTION

" A lot of research has been done on the determinis-
tic adaptive control problem [1], (4], [5]. Almost all
the papers in this area deal with the centralized prob-
lem with one controller. Very little-work has been
done on the decentralized scheme with many controllers.
Recent work by Chan [2] is one of the -few dealing with
the adaptive control problem in a decentralized setup
and is quite related with the problem studied here.

The problem dealt with in [2] is roughly as fol-
lows: For an ARMAX model with a vector input u(t) .ad
a vector output y(t), each component ui(t) of u(t) is

chosen by a controller i whose interest lies in bring-
ing the corresponding component yi(t) of y(t) to a

desired value y;(t), while penalizing a quadratic
function of (ui(t)- ui(t-l)). At time t, each control-
ler i knows the past history of the vectors y(t) and
u(t). The reference signals y:(t)'s are assumed to be

known to every controller. It should be noticed that
in [2] all the controllers have exactly the same in-
formation, i.e., there is no decentralization of the
information and that the decentralized character of
the model of [2] lies in the difference among the ob-
jectives of the controllers. This problem can be -
thought of as a Nash game where the players do not have
knowledge of the system parameters, but they have the
same information. Chan ([2]) considers that each con-
troller estimates the parameters of the overall system
using the stochastic approximation algorithm and uses
the estimates to calculate his control. Thus, his
problem can be cast as. a centralized one so that he is
able to apply directly the known results pertaining to
this case [6] and obtain boundedness of the inputs and
outputs and asymptotic tracking by the outputs of the
reference signals.

In the present paper, we deal with a different
situation. Our model is a DAR model whichk is simpler
than that of [2] in the sense that we do not consider
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delays in the controls as well as no penalization by
each controller of his control. The information known
to each controller is the same as in [2], except that
each controller doesn‘t know the past history of u(t).
(It should be noted that, if the model of [2] does not
have delays in the controls, no knowledge is required
of the history of u(t) so that the information availabl
to each controller is the same as in this paper.) An
important difference between Chan's work [2] and the
work presented here is that each controller in our
scheme does not estimate all the parameters of the
whole systems but only those pertaining to his subsys-
tem, i.e., there is a bona fide decentralization in the
calculation of parameter estimates and controls. Ano-
ther difference lies in the fact that we employ the
projection algorithm. Under the assumption of weak
coupling, we show that all the inputs and outputs are
bounded and asymptotic tracking is achieved.

IT. PROBLEM FORMULATION

‘We consider the decentralized adaptive control of
a linear time-invariant finite-dimensional determinis-
tic system described by

y(t+1) = ala T )y(t) + su(t) (1)
where
At e agh Buy Byz -
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where:

o u(t), y(t) are the Nx 1 output vector.

) a(q'l) is an Nx N matrix, each of whose elements i
1, -1
ted by a5 ) =ag 550 2450
..q .
R
ng.i3

® £ is a Nx N constant matrix.

a polynomial deno
-n
AR P

® the 'initial conditions are given.
. q'1 denotes the unit delay operator.

*
At time t, each controller i knows (Vi(t). yi(t*l);
i=1 to N} and is supposed to apply his control u,(t)
as - to minimize

»
30t = (y(ee1) -y (1e1))? (2)
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where
vi(t) = (yi(t).yi(t-l).....yi.('Q)}
y;(t+l): the desired uniformly bounded output-

sequence of the contrc1ler i.

The objective function (2) implies that each con- )
tro11er i tries to bring Y4 (t+1) to his des1red value

(t+1) one-step-ahead, wh1ch would be Immedlate1y

possvb1e if each controller knew every parameter’ of
the whole system.

We will make the following assumptions:
(AO) The basic strucfure of the system is known
(A1) Upperbounds for the orders of the polynom1a1s
,.J-(q
known as nJ.

(A2) The structure of the constant matrix B: sat1sf1es
“the following (weak coupling type) condition:

lbiJI I/(N 1) V i f1, and
.. o'f =1 to N..
_ leJl > or j

Ib

(AJ) The polynomial aij(q'l)'s are unknown, but the
i=1to

‘parameter b.; is known to controller i ¥
e .

Under the above assumptions, we will show that
each contraller taking care of only his subsystem (&)
can achieve:- his own. obJectlve asymptotlca11y in the
sense that :

Tim Ie (t)l=11m ly,(t) ¥4 “(t)[=0 | vi=1ltoN(3)

Lot

and that ug (t) y;(t) are un1form1y bounded.

DECENTRALTZED ADAPTIVE CONTROL

III.

" suppose that each contraller i regards his sub-
systems as governed by

y;(t+1) = a-l(a‘l)yl(t)*- ...fa"N(q’l)yN(t).
+ bl]u‘(t)+c
@(t)Té(F)+biiui(t)

lyl(t+1) + LR +c NyN(t+1)

where » -
eT(6) = (yy(t)eennpyltn)Din iy (8) sy (8).
oyt v (8 D),y (841)) (5a)
o (1) (Qo,ii""'anl;'il;?'_‘;O'U,iN""'anN,iN: ‘
cil'ﬁ"'ciN)‘ (s5b) -
If controller i knows 1), then he would set
yite) = o(e) el b (o) (6)
to obtain his cuntroI input
() = g (e - e(eiTe)y (7)

) are the same fcr i=1 to N and they are _

S0 that the tracking error would be 1dent1ca11y zero.
However. since © 1s unknown, we replace (6) by

Y1) = Gi(ee) g o0y v b w0 (@)
so that each controller i would apply the control
us(t) = ﬁ (i (e41) - 8(8)6( ) (9)
: ii

where the parameter est1mate e( )(t) is generated by
- the Projection Algorithm, i.e., -

.8(1)(t+1) = oli)(y) '
4 _8(t)
1+¢(t) ¢(t)

Note that, using (1) and (8) with (9), we have

(y;(t41) - 3, (t41))  (10)
ey (t+1) gy (t41) -y (e1)

= 2y (0 + oo sy (a7 (8) b u(t)

R () -3y (0" )y,(t)- - (q‘l)me
- byquy(t) '.cilyl(t+]")' cee = (el

'.~f -1 -1'"- Ao

- logta - (a,,,(q ). kﬁ_h,.kam(g‘l)ny“(ﬂ

- (E;Z -z ( h )c }y (t+1) - T ¢,
1? k#i ik j#i ij
- k§| (-h, k)c hij}yj(t+l) (11)
where
Pik & Piw/Okk (12)

. N .
Now let us define Nx { E (n +1)+ N} parameter'values

by the following sets of simultaneous linear equatlons
“for 3= 1 to N.

N
(q (q )- L’ (a” )
kAl lk kJ
s (12a)
C N
0 N
€1 * 13-513'k§1"1k°n
: . (12b)
o N
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where
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Also, we define the parameter estimation error

5500 = 5550a7 -5t (13a)

- o ..
S5 = %43 c: (13b)

notice that from the parameter estimates &ij(q-l) and

.., the time index has been omitted.
1

Then, letting
A -1, _ o, -1, ,~ -1
(lkj(q ) = ij(q )+ukj(q )

~

= (0 -
ckj = ckj +C

kj

we can rewrite (11) as

e, (t+1) = y (t+1) - §o(t41) = y, (£41) - y; (241)
s N
R IO N CAR O RIS INLL IS BEOTY
k#i
where
6(i)(t)T = (ao’il(t)u---,anl'il(t);--- ;;0.%N(t)|~-
ot N (B LE () (1sa)
- T "
e51) = (“8,i1"- 01‘11, ag,iN""faﬁN,iN;
cqpr---aC3n) (15b)
8 T(e) = (g 41 (0)ueny b1 (E)iee 33 (8D,
"'anN,iN(t);cil(t)""’EiN(t)) (15¢)

For the above set-up we have the following theorem:
Theorem 1 1. For the system (1) subject to the as-

sumptions (A0) - (A3), if each control]er at time t
knows the information {Y. (t),y1(t+1)- 1<i<N} and

applies the Projection Algorithm (10) for his parameter
estimation and (9) for his control input computation,
then

(a) BE(t+1)] < 18(0)] < I3(0)E ¥ t>0

elt) -
(1+6(t)T¢(t))®
e(t)
(1+6(t) o))"

1im

t-

(b)

Tim =0

L

(c)

where

el(t)ﬂ 'ryl(t)- yI(t)—

e(t) - ef(t) _ yz(t?'yz(t) .

o) y4(8) - yy(t)

[c,(t)] [ott)T8 1) (1) |
,(t) s()8@) (1)

e(t) = : = : ;
ey(t) o(t) gy
(8(1)(t)

- 5(2)(,”

a(t) = .
°‘"’(t)J

(d) {y(t)} and {u(t)} are un1form1y bounded for
all time.

(e) Each output asymptotically tracks the corres-
pond\ng controller's desired output sequence,
i.e.,

*
Tim [yi(t)- yi(t)|= 0 vi=1toN.
to
(a),(b): Subtracting e(i) from both sides of

(10) and using (14), we obtain a set of N equations in
the parameter estimation error:

Proof

- - -
6(1)(t+1) 5(])(t)
8@ ey [ |5
E(N)(t+l) E(N)(t)
B h,z...h]N_ [ o) (M (e |
i} o(t) Fpy 1 ooy o(t)T (2)(t)
T+ o(t)e(t)] : :
le"M" v L ¢h)e(m(nJ
(16)
Thus, we have
- -7 -7 <1
N [ . [
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]
14 c(t)|¢(t)

as



[o(1)T6M) (1) |
o)1) (1)

o) e("’(t)

and
[60V) (2e1)
6(2)(t§])

T T e()Te(e)

S(N)(t+1)

 Pan
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0
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0 o(t)...0
i 0 0 ...o(t)T
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-

l6Ce+1) 12 - Ja(t) )%= 0 implies

eft) -
Q1 +¢-(t)'¢(t))'?
so that (a), (b) are finally achieved, we have
only to prove that the matrix [At-+AI] is
positive definite.

Note that, with lh |< 1/(N 1) Vigj (Assumpt1on (A2)),

T
1) (A, + AL, -4 2uy (14 T hZ;)

k#i
> 8- 2u {1+ (N-1)/(N-1)%)

= 4-2u 1+ (-1)7hy

hji)' zut(hij+ h

. T
1) 10AL + A Dy 3

N

+
kfI.J

= IZ(I'Ut)(hij +hji)-

k1 kJ)I

L ohhool
KA, j ki kj

< 4(1-ut)/(N-1)+ 2ut(N-2)/(N-1)2

- Zut

= (N-l)'.l[d(l-ut) +2u {1- (v-1)71

- (N-l)'l[d- 2u, {1+ (8-1)711]
Compar1ng the above two inequalities, we get

(A, +AT1,; > z RGNS

which implies positive diagona1 dominancy of [At4-AI

]
and so positive-definiteness of the matrix [A +A ].‘

(c) 1t immediately follows from (b}, by noting
that (14) can be rewritten as

bohyp oos hyy

h 1 REx h

} (18)
so that premultiplying (18) by (17) gives
e - 31
e'(t) e(t) (19)
= T T v T
(1+4(t) e(t))* (1+g(t) c(e))*
where, with u = clt) c(t)
: 1+¢(t) o(t)
2- 1+ z h2 ) for i=j
t kfi ki
[At]ij =
Zhij' t(bij+hji+k#;£ Jhk hk ) for 1#3

Therefore, in order to show that

° llé(t)l{2 is a (bounded) nonincreasing (real-valued)
function; and

z(t)
(1+c(t)c(t))"
1.&.,

° - # 0 implies [ ’t+1)r2 Z(t);r72< c,

e(t)

= He(t) =

21

()

where the matrix H is positive diagonal dorinant and so
nonsingular.

(d), (e). Noting that the assumptions (A0) to

. (A3) and the part (c) of this theorem ensure that all

the-assumptions 6.3.M(1) to 6.3.M(4) and the precon-
dition (6.3.134) of Theorem 6.3-3 in [3] are satisfied.
the result follows immediately from the procf of
Theorem 6.3-3 [3].

VI. CONCLUSIONS

This paper deals with a decentralized adaptive
control probler using the Projectiorn Algzrither fcr
parameter estimation and one-ster-zhez? corirct for
control purpcsec. It is shown thet, fc- & certain



class of discrete-time multi-input multi-output deter-
ministic linear system and under a weak coupling type
condition, both the input and the output are bcunded
for all time and each output asymptotically tracks the
corresponding controller's desired output sequence.

Even though the adaptive control scheme developed
here is not decentralized in the information aspect, it
still deserves the adjective "decentralized," because
each controller has only to take care of his subsystem.
Our result suggests how and under what conditions some
large scale centralized adaptive control problems can
be decentralized so that one can take advantage of
parallelism to decrease the complexity and save a
considerable amount of time and effort for computation.
One might appreciate the global efficiency of this
scheme by recalling how powerfully the parallelism of
the Jacobi iteration can be exploited for the computa-
tional purpose to find the inverse of a large matrix
with a dominant diagonal.

Although the problem studied here is a simple DAR
model without delays in the control, it is of impor-
tance since it is one of the first attempts to deal
with decentralized adaptive scheme. Study of more
general models with different parameter estimation
schemes such as least square a1gorithm, etc., as well
as simulation studies for comparison are obviously
needed before the area of decentralized adapt1ve con-
trol can achieve a degree of maturity.
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