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Abstract

The problem of optimal choice of information
for some simple linear quadratic gaussian team
problems is considered. The unknowns to be chosen
subject to constraints are the matrices involved in
the linear measurements available to the decision
makers. For several types of such problems,
characterizations of the best choices of these
matrices are given and several results illustrating
the meaning of these characterizations and ways for
finding the optimal choices are also presented.

1. Introduction

The purpose of this paper is to examine the
problem of optimal choice of information in a simple
stochastic team set-up. Most of the papers which
consider stochastic optimization problems, assume
that the information used is provided by given
measurement devices and try to characterize or find
the optimal control laws. Nonetheless, the informa-
tion to be used--or the measuring devices--is quite
often subject to the choice of the decision makers,
and although the decision makers would wish to have
all the possible information available, it could
oftentimes be an impossible burden to collect and
(or) process it. Thus, a decision maker is obliged
to choose, subject to constraints, what information
he will use. The choice of information might be a
nontrivial problem, because the objective to be
achieved does not always reveal in a straightforward
manner what the essentially needed information is.
Having such considerations in mind we formulate
some problems related to the choice of information.
Our objective functions are quadratic, the measure-
ments linear and the random variables involved
gaussian. We try to characterize the best choice of
information subject to restrictions which usually
assume the form of upper bounds on the rank of
some matrices and can be interpreted as restrictions
on the number of linearly independent measurements
available to the decision makers. We also impose
occasionally the condition that the information of two
different decision makers are orthogonal.

Problems related to the optimal choice of
information have been previously considered in
several papers as for example in [1,2,3,4,5]. In
[1] the problem of finding the best measurement in
order to achieve the minimum possible value of a
quadratic cost is considered for a static problem.
In contrast with [2, 3, 4] where the cost is the
covariance of the error of the Kalman estimate, [1]
considers an arbitrary quadratic cost. Our frame-
work is very similar to the one of [1], but our
attention is directed to the case where there are
more than one decision makers, i.e., we deal with
a team problem. In (1], an algorithm for finding
the optimal choice of information for the case of {wo
or more decision makers is suggested but as is
pointed out in [1] and also demonstrated by an
example in Section 3, this algorithm might fail to
converge to the global solution; this is essantially
due to the nonconvex character of the underlying
optimization problem. In the present paper we
characterize the optimal choice of information in
terms of ''generalized type eigenvalue' problems,

which at present seem quite nontrivial to solve in
their generality. Some examples are also considered
in order to elaborate on the difficulties associated
with solving such problems. Some of the work
Fr]esented have appeared in a preliminary form in

5].

2. Problem Statement

Let x be 2 Gaussian random vector in R® with
zero mean and unit variance. The measurements
Yy+ ¥p are defined by

Yy = Clx
(1)
y, = sz
where C,, C, are real constant matrices of dimen-
1 2 Ty m
sions ryXm, r,Xn respectively. Let ¢ R "-R 7,
T, m, .
Yy! R -R be two functions and set
u, = Y,y
1 1'1
. (2)
u, = Y,(y,)
Yy» Yy are chosen as to minimize the cost
J(Y,,Y,) = E[lu'u +lu'u + u'Ru
1’ 72 27171 27272 172
+ulS x + uyS,x | (3)
The matrices R, Sl' S2 are real, constant, with
appropriate dimensions and it holds
I R
[k T1>0 (4)

i.e., J is strictly convex in (ul,uz). Of course,

Yy Yo have to satisfy the appropriate measurability
* %

assumptions. It is known that the pair (Yl' Yz) which

minimizes (3) exists and is of the form

% %
Yl(yl) Llyl ’ YZ(YZ) = LZYZ (5)

where Ll' L2 are two matrices satisfying the system

of equations
+ . _
L1C1+RL2C2C'1(C1C'1) Cl+SlC'l(C1C'l) Cl-O (6)

T + o
C2+R'L1C1C'Z(C2C'2) Cz+SZC'z(CzC'2) CZ—O (7)

LZ,

-

(+ denotes the pseudoinverse). FEquations (6) and (7)

can be solved uniquely for Llcl' LZCZ' The optimal
* . . . .

cost J is uniquely determined and if we consider

that R,Sl, S2 are fixed, J* can be considered as a

function of C1 and CZ' i.e.,:
* -~
J = J(Cl. Cz) (8)

Thus one is motivated to consider problems of the



form
minimize J'(Cl. CZ)
subject to restrictions on C,, C, (9)

i.e., to consider what is the best choice of informa-
tion in the sense that the resulting optimal cost is as
small as possible.

3. Case l: One Decision Maker

The results presented here overlap to some
extent with those.in [1], but we include them for
reasons of completeness. In the case of one decision
maker, the cost and the measurements are given by

J =E[}3u0'utu'Sx] y=0Cx u = y(y) (10)
The optimal u is given by
u = -SPx = Ly (11)

where P is the projection matrix which projects on
the range of C', i.e.,

p = c(ccyte , L = -sc(ccn’ (12)
The optimal cost is given by

E[-¥x'PS'SPx] = -} tr[ PS'SP]

-3 tr[S'SP] . (13)

=30

. Let us first consider the problem of minimizing
J(C) subject to the restriction that no more than p
linearly independent measurements should be
available, or equivalently rdnk C < p, or equiva-
lently rank P < p. Formally:

max tr [S'SP]
subject to: rank P <p (14)

where p < n. The solution of Problem (15) is known
and can be obtained by taking P to be the projection
matrix which projects on the space spanned by the p
eigenvectors which correspond to the p largest
eigenvalues of S'S.

A slight generalization of the problem
considered above is the following: C can be chosen
as any matrix with maximal rank p but it has to
be of the form

C = TC (15)

0
for some matrix T, where C, is a given matrix with

rank greater or equal than p; i.e., we essentially
have to choose the best p dimensional subspace
lying within the space range Cj. It is easy to see

that if PO is the projection matrix on the range of Co.

this problem can be equivalently stated as
max tr [POS'SPO- P] (16)
subject to rank P < p

and can be solved in a similar fashion.

In the formulations given above, we assumed
that at most p linearly independent measurements of
x can be obtained, each one of them with perfect
accuracy. If we want to consider the case where
we can make at most p linearly independent
measurements, but there is a fixed measurement

noise, we need a different formulation. Namely, let

1
=|---], S=[S,'0 =
x : [ 1 1. Sx Slxl (7
]
C= [C1 1 1] y=Cix;+v (18)

Only x, appears in the cost and v represents the

noise in the measurements. For fixed Cl' the
optimal cost is given by (see also (15))

cp i) (19)

We are going to impose two constraints on C,. The

J(C) = -3tr [s'lslc'l(1+ c,

first one is rank C; < p. The secord one is “Cl\\f_ a,
i.e., a magnitude constraint on Cl, where a is some

fixed positive constant. Such a magnitude constraint
would represent no restriction to the previously
considered cases, since what matters there is only
the range of C'. Thus we want to solve

-1
c,]
rank Cl <p (20)
e ll<a
(We employ the equal Euclidean norm for vectors and

the supmorm for matrices.) To solve (20) we
proceed as follows. Let

max tr [5'151 Cy I+ C1C'1’

subject to:

o -
10 o
2
=V 1 = .
C,=ViTVvy , ¢ . ,
(s} ap
0
b '0—-
312022"'20920 (21)

be the singular value decomposition of Cl where Ul'

Vl are square unitary matrices. (20) can be written

equivalently
2 2
g, g
max tr Vi§,5|V, diag (—l——,..., 50, -. .0>
l+c.v1 l+ag
P (22)

subject to: V : unitary

0<g<a, 0<o0,<23,...,0<0,<2

We obviously choose gy =0y =-re=0 =2, We also
set
v,= [Vv,, 1V.]
1 11 12 (23)
Vip= [vpvpeee vl

and we thus obtain

max tr V!, S'S.V

subject to: V'1 1V11 =1

To solve (24), we just choose Vs Vgreets vp to be the
(orthonormalized) eigenvectors of 5’151 correspounding

to its p largest eigenvalues )\1, ceendge Having found



Vll and T we can go back to((Zl) and construct C,
using any arbitrary U;. V,, can be taken to be any
matrix which adjoined to V11 yields V1 unitary, but
its choice does not matter as V), will be nullified

when V'1 is multiplied by ¥. Notice that the optimal
Cis

* a.z
Cl = —3 UV'l (25)
1+a

and the optimal cost

2
-2 2 —trv: S SV
1+a2 11°1°1 711

n

7*c))

2
P S U S Y (26)
1+a2 1772 P

If there is no constrainton C, i.e., a = += we
obtain

*
C1 = VV'1

*, % .
J(c) = -é(x1+)\z+---+ xp)
in agreement with the results concerning the problem

(15), (16) where C].,S1 play now the role of C,S.

Finally notice that the interesting feature of this
problem is the separation between the magnitude
and rank constraints on Cl'

Two Decision Makers with Restricted
Number of Measurements

4, Case 2:

In this section we consider the probi.em
minimize J(Cl, CZ)

subject to: rank (Cl) 29

rank (CZ) P (27)

The rank condition on C; represents the inability of
the decision maker i to acquire or process more
than p; measurements., If mj < p;, then the
constraint rank (Cj) < pj can be deleted, since the
decision maker i does not really need more than m;
measurements., We can thus assume that pi<nm,

p; < mj-1. We can also substitute the inequality
constraints in (35) with equality constraints, since
more information does not hurt. For fixed C;, Cp,
the optimal Y’i‘, Y; which minimize J(Yl, YZ) are

given by (5)-(7). Multiplying (6) and (7) from the
left by C}(C,C')-1, Ch(C,Ch)-1 respectively, yields

-1 -1
1 -
L1+RL2C2C'1(C1C1) +SIC‘1(C1C'1) =0

-1 .
L2+R'L1C1C:2(CZC'2) + SZCZZ(CZC'Z) =0

We can also assume, without loss of generality, that
Ci { = unit, since we can premultiply each Yi by

some matrix. Let

C1C, = T p xpy) (28)
We thus have the system
L1+RLZZ' + SIC'1 =0 (29)

L,+R'L T +5,Ch = 0 (30)

A similar system can be obtained in the case of
more than two decision makers. In the case of two
decision makers, we can also assume without loss
of generality that

9 0 0...0 0-..-0
0 ¢ 0-.-..
T = 2 Do
0 -
0 e
0 cpl ] 0
=P
lzcl?_---gaplzo (31)

(see [6]), so that the system (29), (30) can be easily

solved explicitly for Lj, Lp. (Unfortunately, such a
simplification is not in general possible for the case
of three or more decision makers.)

Let
Ll = [tl,...,l.pll
L, = “1"' °z]
(32)
! =
Cl [v1 e v"l]
.= -
CZ— [vl e vpz] .
(29) and (30) can be written equivalently as
l.i+ OiR l.i+Slvi =0 o
_ _ 1-1,2,...,91
1 -
I.i+ GiR !,i+ SZVi =0 (33)

L.+S,v.=0 , i=pytl...,p,

We can thus solve for Li,-fi: substitute a,= Liyi in the

cost and find

' -1
R . ° S1 vi I c.lR S1 v
J(C,,C,)=-% ¢ - =
1'72 i=1 S2 v aiR' I S2 vi
-3 T VvISLS v,
. 272
j=p 1 I J
Thus, solving (27) is equivalent to solving the
following problem:
maximize J(Cl, CZ)
ViseoerV
! Py (35)

Vipeeo,V
1 pZ

subject to: "vi“= 1, i= l,...,pl
ISl =1 i=1es,
vivj = v{vj=v3vj-0, i#]
v{;i =0, i=L2,...,0



The general solution of (35) seems, at present, hard
to come by. As an example, let us consider the case

where p}= P2, R =yl S = 811 S, = 831. Then (43)
assumes the form
0 2,2 . 2
1 5 +s|2 - Zualszt}.l
max T
i=1 1- 2 2
1= w9y (36)

subject to: 0<g; <1, i= L....py
Since.each term in the summation (36), for

0<g, <1, is a piece of hyperbola, to maximize
(36) We have to have:

2, 2

8,+s, -2us,s
cr=li.f1 22 l2>32+52
1-u

Thus if p (s +s ) - 2usysp > 0 we can choose C)=Cy
= any matrix th%x rank pj.

qu (s, +sz) - Zuslsz <0and pjtp2 =2p) <n
we can- choose ci=0,i=1,..., f1 and thus choose
Cl- C, to be any two matrlces of rank pP1=P2 such
that C;C5 = 0. The only difficulty appears if

p1+py = 2p; > n and pz(s +83) - 2p818; < 0, since
we cannot now have C; C' = 0 and rank Cl = rank
C2 = py = P. A little reflection will persuade the
reader that in thl.s case we can choose Cy=
[Vl"" Vo ] CZ [vl.vz,...,v ], where

[vl, Vg VoV Ve e Vg o1 ] is any ortho- ',

normal basis of R® and va have the

Dl'l-l""'vp

1
same span as v TR A As another

n-pl+1' *
example, consider the case wéere R, S;, Sp are

2x2 matrices, and p) = Py = 1. By transforming

u; to Viu, where V,,V, are unitary matrices and

R = V'l diag (pl uz)Vz is the singular value decom-
position of R, with 0 < u; < 1 we can consider without
loss of genera.hty that R = diag (Hy,Hp). Since vy, Vi
are vectors on the plane we can set

vl___Ec?acp

- )
sin ¢ V1 *® [°°3 » 0)= cos (¢ -8)

sin 8 1

and solve an unconstrained problem with unknowns
¢, 8. (We can actually restrict our attention to the
square -n/2 <9< n/2.) The objective function of
this problem is the sum of two terms, each one of
which is a quotient with nominator sgms of powers
of cos 8, sin 6 and denominator 1- -H, cos (cp-e).

Let us now consider a different approach for
problem (27). Since for given Cj, u; will be linear
in y; and thus in x (recall also (19)-(21)) we set

1 1

where X; is an m;Xn matrix and consider the
equivalent to (35)

u, = X,x u2=Xx (37)
2

min J(X|, X,) = tr [igx'lx1+ kx;_xz+ X|RX,
+ X'S.+ X1S,]

171 272 (38)

subject to: rank Xl <0

rank X2 < Py

If X, is fixed, the minimization in (38) with respect
to X can be carried out by solving

min tr [i(X1+Rx2+sl)'(xl+sz+sl)
- i(Rx2+sl)'(sz+sl) + x:,_sz] (39)
subject to: ramk X1 <P

To solve (39) for X) we consider the singular value
decomposition of RXp+S;:

2

where U), V) are square unitary matrices, and I
is of the form

RX,+S; = UjT,V, (40)

1
% o
L, = % 1 , ollz'azl >0 - (41)
93
(o] ‘.

(mlxn)

The X, that solves (48) is given by

X, = BTV, (42)
where _ _
-ol
1 (o]
|
Zl = .. (43)
-cl
o 1
0
L o

Similarly, for fixed X1, to find XZ we consider the
singular value decomposition

R'X,+S, = ULZ )V

1'%2 27272
U2
1 (o]
_ o} 2 2 2
22- Zoz 0,20, >0, >...>0 (44)
o 3.
(mzxn)
and choose
..._cz —
12 o
_ _ "%
- 1 ] - .
XZ - UZZ zv . ZZ - . . . 2 (45)
-ag
o P2
]

Thus, the problem is reduced to the following: Out of
all pairs X, X, which sa.tmfy (90)-(95) choose the one
that results to the minimum value of the objective
function'in (38) If this gau' is (X X ) we can
choose C) = Xl’ Cy = and the }“1' L of (6),(7)
can be taken to be unit matrlces

This last way of tackling the problem, although
is interesting, does not facilitate very much the
solution of the problem, as long as we do not at
present know how to find explicitly all the pairs
X1 XZ which satisfy (40)-(45). It nonetheless
suggests an algorithm for generating pairs X;,X;



which satisfy (40)-(45), namely the following: For
fixed X2 = XZ solve

B 0
min J(XI.XZ)
rank (Xl) < Y

according to (40)-(43). Let Xf be the solution.
Next for fixed Xl = Xlo, solve

-
min J(XI,XZ)

rank Xz < p2

according to (44)-(45). Let le be the solution. Fix

X5 = XZI and generate Xll and so on. This algorithm

is essentially the same with the one suggested in [1].
It obviously holds:

< +1 Jk+l = +1 =k Jk =0 0
Fogt x5th < Tt x3) < el xp) <o <3 0x). X))

and J is bounded from below by the best cost **
corresponding to the case y; = y2 = x. It is easy to
verify that because J'(Xl, Xzs is a quadratic and
strictly convex function of X;, X, the set of (X, X3)
which satisfy J(X]_, X;) £ J(Xo Z) = constant is a

compact set, so that the sequence (Xf, X;) has

necessarily at least one convergent subsequence.
Thus the algorithm just described is guaranteed to
provide in the limit a pair (X;, X;) which satisfies
the relations (40)-(43). Unfortunately, this limit is
not guaranteed to be the solution of problem (27) or
equivalently of (38). [Notice thag problem (27) is
guaranteed to have a solution as J(Cy, Cp) is a
continuous function of Cy, C,, which C;, C, are
assumed to be p.Xn matrices, on which a magnitude
constraint of the form “C H< a. (a.l, > 0) can be

imposed without loss of generahty, since what
matters is only the ranges of C}, C'Z. Thus (27) can

be considered as a problem of minimiziag a continu-
ous function subject to compact constraints and thus
has a global solution. ]

The following example demonstrates that this
algorithm might fail to converge to the global solution
of the problem.

Example
Letn—rnl= 2—2,91 2-l
ul 0 51 0 5 0
R = , S, = , S, = —_
0 Hy 1 0 5, 2 0 8,

We will consider pairs Xl, X, which satisfy (40)-(43)

and we will restrict our attentton to X
i.e., .

1’ X2 diagonal,

(Notice that although nondiagonal Xl, XZ which satisfy
(40)-(43) might exist, if we choose X2 diagonal, and
find X1 according to (40)-(43), Xl will also be
diagonal.) It holds

My te 0 ]
RX2+S1 =
(] Hy,+8
_u. x. +8 0 7
rRx+s, = [ b
0 x+s
B Ha*2" %2 |

We have the following four cases:

(@ x = (3-8 )/(uf)  x,=0
yp = bye-5)/A-uf) vy =0
‘x]_‘ 2 lsz\
if _
‘Yl‘ 2 ‘szl
2
(3) xl = 2 (UZ 2‘52)/(1 UZ)
i EEREY
if
‘31‘ < ‘Yz‘
vy x;= -sl x, = 0
Y1 = y2 = -8,
\sl‘ > |u,8,-8,)
if
lulsl-s | < ‘szl
(6) x) = 0 x, = -8,
vy =" y2= 0

TR RSN CPY
‘;1l2 ‘uzez'gz‘

It is easy to see that there are choices for “1’“’2’
8 SZ’:I';Z so that more than one of the cases
@ B, Y, 5 are acceptable. For example, if

My =My = 1/2, 8 = -7/2, s, = 4, 85, =0, s, = 2,

then both cases y and § are acceptable.

Thus the algorithm described might fail to
reach the global optimum of (27). Actually, to solve
the above mentioned example, within the class of
diagonal X, X;, we have to check which out of the
four cases a, B, Y, § are acceptable and if more than
one is, to calculate the values of Jat each one of
them and choose the one which results to the
smallest.

There is a third, slightly different, approach

that one could follow for solving the problem.
Problem (27) can be written equivalently as follows:

min tr [§ C] Ly L) C,+ C, Ly L, Co+ CLYRL, Gyt
ct L-ls +CyLLS, ] (46)

subject to: L +RL,C,Ci+S,C} =0 (46-1)
(46-2)

L2+ R'Llcll.CZ+ SZCZ =



(46-3)

CIC'1 I(plxpl)

GG,

I(p,xp,) (46-4)

Notice that Ll' Lz. Cl, Cz are considered as unknowns.

It can be easily verified that a Lagrange multiplier by
which we can append the constraints exists, by the
following argument: (46-1) and (46-2) are always
uniquely solvable for Lj, L, given C; and C; as in
(46-3) and (46-4); one can also verify that the full
rank condition with respect to the unknowns C;, C

is always fulfilled by the gradient of (46-3) ané (4%-1);
thus the full rank condition is satisfied by the con-
straints and consequently a Lagrange multiplier
exists. We now append the constraints to the
objective, take the gradient to be zero and after

some calculations we end up with the following
necessary conditions that have to be satisfied by Ll'

LZ' Cl' CZ:
L1+RL2C2C'1+510'1 =0 (47-1)
L,+R'L C,CL+5,C, =0 (47-2)
Ly(L,C+RL,C,+5) = 0 (47-3)
Ly(LLC,# R'L, C +5,) = 0 (47-4)
c,Cy =1  (47-5)
C,Cy=1. (47-6)

(47-3) can be multiplied from the left by Cj.to yield
equivalently

CyLy(L C +RL,C,y+5,) =0 . . (48)

Notice that multiplying (48) from the left by C;
yields (47-3) because of (47-5). It is obvious now
that by setting X; = L;C;, (47) can be written
equivalently

X,;+RX,C|C,+5,CIC, =0 (49-1)
X,+R'X,CLC,+85,CLC, =0 (49-2)
x'l(x1+sz+sl) =0 (49-3)
X5(X,+R'X +5,) = 0 (49-4)
C,C} =Upyxpy) (49-5)
C,CY = 1(p,x p,) (49-6)

A little reflection will persuade the reader that
(49-3) could have been directly derived from (40)-
(43) and similarly (49-4) from (44)-(45). One could
in principle solve (47-1), (47-2) explicitly for L, Ly,
plug their values in (47-3), (47-4) and have a

system of equations that should be satisfied by
ViV, v v One could do the same

P2
thing with 1(4:9- 1)-(49-4). (49-1)-(49-2) are easy to
solve explicitly for Xl, X2 under the assumption that

s VireeeaV

the R matrix is square and R = pl for some u: ‘u\< 1,
in which case (49-1)-(49-6) can be simplified

(after some calculations) to the equivalent:

[11C, C,C,855,Cy-C;545,C51[1-C,C{ €, C,1 = 0 (50)

[1C,C} €545, C}-C,855, CLI[1I-C, C,C,C 1 = 0. (51)

(50) and (51) characterize the optimal Cl’ CZ'

Example

Let x be two-dimensional, P p2= 1 and R = pl.
The unknowns Cl' C2 can be taken to be

C1=[cos @, sing], C, =[cos 8, sin8].

It holds

C,C; = cos (9-8)
If

cos (p-68) # +1,
(50) and (51) yield a system of two equations with

unknowns, @ and 8, which can be simplified'to the
form

u cos (¢-8) “Sz[cos 6}“2

sin 8
= [cos o, sin g] S'ISZ[:?:QG |- (52)
s [oime )= s, (S el (53)

The geometrical meaning of these two conditions is
that the vectors

51 [coe )

' cos 8
sin ¢ ' SZ [

sin 6
have equal lengths and their angle w satisfiés
cosw = |1 cos (p-8).
The case cos (p -8) = +1, i.e., ¢ = 6+ integer
multiple of m --or without loss of generality: ¢-8--

can be easily examined separately.

5. Case iii. Two Decision Makers w{th Restricted

Number of Measurements and No
Common Informaticon

In this section we consider the problem
min J(Cl, CZ)
subject to: rank (Cl) < P (54)
rank (Cz) <0,

C].C'z
The meaning of the additional condition ClC’Z =0

=0

(compare with (27) is that there is no common
information between the two decision makers. In
this case the term u! RuZ is of no importance, since

1
its expectation is obviously zero. Use of (6)-(7)

yields that (54) is equivalent to solving
min tr [-$ S1S,P; - is'zszpz]
. 'aﬁbject to:
Pl' P"2 projection matrices (55)
rank (P,) < p;, rank (P,) < p,
PIF‘2 =0
Recall that:

P. =

+ t -
i C{(C.lC%) Ci. , i=1,2



(55) is the obvious generalization of (16).

Two main cases can now be considered. The

first case is py+ p2 > n and the second one pj +p, < n.

The first case is quite easy to solve as the following
argument shows: we can take rank (Cj) + rank (C3) =
n in which case P =1 - Py, i.e., we have only one
unknown. In particular, let

rank (Pl) =n-4 , rank (PZ) =n -p1+z ,
where £ i8 an integer satisfying:

0<1t< prte,-m .
For fixed £ (55) assumes the form

max tr [(S'ISI - S'ZSZ)PI]

subject to: rank P, =n-£ < P

1 1

We obviously choose ¢ = (n-pl) and we solve
max tr [(S'IS1 - S:ZSZ)PI]

subject to: rank (P1)4= 'jl

which falls within the class of problems solved in
Section 2 and can be solved, by taking P; to be the
projection on the space spanned by the p111 eigen-

vectors of S'ISI- S'ZS2 corresponding to the P largest

eigenvalues. So, we only need to concentrate on the
case p1+ P, < m. Pi can be taken to be

P, = UU , i=1,2
ii

i
where Ui is an n)q:)i matrix with Ui'.Ui = unit pix pi and

U'le = zero matrix. Problem (55) assumes the form

max U'S'S. U + U'SLS U

1717171 2727272
subject to:  UjU, = Ifp,xp,) (56)
U'ZU2 = I(pzxpz)
ULU, = Olp,xp,)

Because of the compactness of the constraint set and
the continuity of the objective function, problem (54)
has obviously a solution. Appending the constraints
with Lagrange multipliers--which exist because the
constraints satisfy the full rank condition as can be
easily verified--we obtain the following necessary
conditions for (54):

S15,U; = UjA, + U, - (57)
S'ZSZUZ = U?__I\2 + Ull\' (58)
U']_U1 =1
U'ZU2 =1 . (59)
UiU, = 0 '

where Al and Az are symmetric matrices. Out of all

the Ul' Uz, Al' 1\2, A that satisfy (57)-(59) we want the

one that yields the maximum falue for
tr (A1+ AZ) .

(57)-(59) is a '"generalized' eigenvalue type of
problem. As an example, let us consider the case
where Py =Py = 1, and S'lSI,S'ZS2 are 3x3 matrices.

Then (57)-(59) reduce to finding vectors v., v, such
that R
S’lslvl = llv1+ lvz
SLS, v, = A v,+ \v
27272 2°2 1
' _ - (60)
vivL = Vv, =
v'lvz =0

For the case where SI].SI'SIZSZ are 3x3
matrices, and P1=Py= 1, we can solve the problem in

the following way. If we knew the vector v, which
spans the space perpendicular to vl‘and vy (i. e.,
L

v'Z,vl = v'3v2 =0, v'3v3 = 1) then we could solve the
problem .
max tr (I - P3)SlS'1(I - P3)P1+(I-P3)'SZS'2(I-P3)P2

= - (61)
Pl = vlv'l, P2 = vzv'2

Ple =0

where the unknowns are v and P, = v3v§ is

1’72 3
known. This problem can be solved since -
rank P1+ rank Pz = 2 which is equal to the dimension

of the space where we are working, i.e., the space
where I - P3 project; (recall case with py+p, = n).
Thus it suffices to be able to find vy, It holds

tr [s'lslpl+ S'ZSZPZ] = .

= tr[(I-P3)(S'ISI-S'ZSZ)(I-P3)P1+S'ZSZ(I-P3)]
Thus, we can consider equivalently to (61) the
problem:

max {tr (S:ZSZ(L P3)) + maximum eigenvalue
P
3 [@-P;)(5}5,-555,)1-P,)] } (62)

17535,)1-P5) =

T(V3) can be found explicitly, for we are working with
3x3 matrices. Without loss of generality let

The maximum eigenvalue of (I-P3)(S'IS

a, 0 0
! -S! = =
SISI SZSZ 0 a, 0 |, a; >a,>a, 0 (63)
0 0 ag
2
v3 = n, |, 111+|:12+1:x3 =1 .
o3

To find T(v3) we have to solve:

2, 0 0
det (I-v3v5) 0 a, 0 (I—v3v'3)-XI =0
0 0 (1]
or,
3

M {la 001 AT (a0 )2 -ay3pnfnl ) = 0

thus

2 2 2 2.2 2
2, (1- n; )+a.2(1- nz)+J[a1(l-nl )+a2(l-n2)] -4a,a,n,
3 -

and (86) can be written equivalently as

i(v3) =



n ' nl
2 2
max -2 n, S’ZS2 n, +al(1-n1)+az(1-nz)
n,,0,,04 a, n
3
2, 2,2
s. to: n1+nz+n3=1
(64)
2 2,72 2
+ [al(l-n1)+a2(1-nz)] -4a,a,n;
If a;=a,, then (64) assumes the form
min véSéSzv:i
and v3 will be chosen as the eigenvectors corres-
ponding to the smallest eigenvalue of S‘ZSZ. I a,= 0,

then (64) assumes the form

i 1 1
min v35151v3

and v, will be chosen as the eigenvector corres-
ponding to the smallest eigenvalue of S'lsl' If

a1> a, >a3, there is no obvious immediate simplifi-
cation of (64), which has to be solved as a classical
nonlinear programming problem. The only obvious
conclusion is that if two of the eigenvalues of SiSl -

555, coincide, then it is very easy to solve (64).

If this is not the case, we can still exploit this
previous conclusion in order to give upper and lower
bounds for the optimal value, Let a, >a, >a,. Then

a, a,
S'ISl = S’ZSZ+ 2, < S’ZSZ+ al = M1 R
23 23
*1
1 -
SZSZ + a, = Mz
a, a,
S! Sl= S'ZSZ+ a, > S'ZSZ+ a, = N1 ,
| 23] 23
—3-1
S'ZSZ+ a3 = NZ
a
L 3
and
max tr(S'lSlPl+S!zSZP2) < max tr(MiP1+s‘ZSZP2) ,
i=1,2
' ‘ (65)
max tr(S'ISIP1+SZSZP2) > max tr(N.lPl+S‘ZSZP2) ,
i=1,2.

The maximization problems on the right hand side
of (65) can be easily solved to provide upper and
lower bounds.

For the case where S{Si has dimension larger
than 3 and Pi. larger than 1, we can easily generalize
several of the results presented and we can similarly
create upper and lower bounds for the optimal values
of the objective function.

Before completing this section let us consider
another class of problems which can be reduced to
those considered in this section. Consider the
problem

min J’(Cl, Cz)
subject to: rank (Cl) LN
rank (CZ) 2P (66)

range (CI)E range (Cz)

In this case

PIPZ = PZPI = }.:'1

(P, = C, (C,CCl) and (6), (7) can be explicitly
solved for u,,u,, 80 that J(Cl’ Cz) can be explicitly

calculated and is found to be of the form

‘I(Cl' CZ) = -tr (A1P1+ AZPZ)
where AI'AZ are known symmetric matrices whiél"x
depend on R, Sl, SZ' Let

P2 = P2 - Pl .

7 assumes the form

-

J = -tr [(A1+ AP+ AZPZ]

where I:‘]_ls2 = 0 which shows that if we consider

Pl’ P2 as unknowns we have reduced (66) to the form
(55). It should be pointed out that the problem (66)
is important in its own, since it is exactly the
problem that has to be solved in a two stage dynamic
linear quadratic gaussian problem, with no measure-
ment noise, which is characterized by nested
information.

Three Decision Makers with
Independent Measuréements

6. Case iv.

Here we consider the case where the cost is
given by

.,2,.2,.2
J= i(u1+u2+u3)+ uIS'1x+uZS:2x+u3S'3x

u;,u,,u, are scalar valued, Sl,SZ,S3 are fixed

fectors in R3, and x is 2 gaussian random vector in
R°> with zero mean and unit variance. The
measurement available to u, is ¥; where

=v! ! = i,1 =
Yi v.lx . v.lvj Gij , 1,j=1,2,3
Notice that each decision maker's information is
independent of the information of the others. The
problem of optimal choice of information reduces to
solving the following problem

max v'ISIS'lv1+ v'ZSZS'2v2+ v'383S'3v3 =

= (5'1"1’2" (Syv,)2+ (5'3"3’2 (67)

subject to: v!v, = &..

' ii ij
The geometrical interpretation of (67) is the
fgllowing: Given three vectors, SI’SZ' S3, find the

orthogonal parallelepipedon with maximal diagonal,
whose one corner is at the origin and the opposite
corner's three adjacent sides pass from the end
points of the vectors Sl’ 52,53. The corresponding

problem on the two dimensional plane is the
following: Given two vectors SI'SZ' find the

orthogonal parallelogrammon with maximal diagonal,
whose one corner is at the origin and the opposite
corner's two adjacent sides pass from the end points



of the vectors 51'52' The two dimensional case is
easy to solve: If A, is the end point of S;, let M be

the middle of Aj,A,. Consider the circle with
diameter AA; and let N), N, be the points where
the line defined by OM meets the circle. Let OB;
be the perpendicular to NjA; from O. The
parallelogrammon O BjN B3 O is the one with
maximal diagonal (N3 corresponds to the minimum).
That the two dimensional case is easy to solve is not
surprising, because it actually corresponds to the

case where rank P1+ rank P2 =n, PIPZ =0 of

Section 3. The three dimensional case that we are
interested in corresponds to rank Pl+ rank P2= 1+1
<3 =n. -

Using the Lagrange multiplier rule for (67),
yields the following necessary condition:

$)81v1 = MVt A2vat A3vs A2= 22
5,55%2 = A21v1+A22v24 M3 A= N (68)
53553 = X3Vt h3pvotiaavy 233= A3;

(It is easy to justify the existence of a Lagrangle
multiplier for this problem.) Out of all vj, A\jj which
satisfy (68) we are interested in the one which
maximizes )\1_1+X22+ 133.,

if S‘lvl = S:zv2= 0, then (68) yields )‘ij= 0 and
thus 1111- X22+ X33= 0; if at least one of the Si's is

different than zero, then this contradicts the fact
that the maximum in (67) has to be strictly positive.
If Stv,=SLv,=0,and S'3v3#’0, then (68) yields

1V1° 9272
A= M= MaT 2T 27 Ap3™ Ag = Agp- O and

S3S4v3= A33V3 and thus vy= S3/HS3“. It can now be

easily checked whether vy Va exist with

v'IS3= vz,_S3= v'ISI= V:ZSZ= 0. If S'3v3= 0 and S'ZVZ# o,

S‘lvl# 0 then (68) yields

S.Stv. = \

151V1 = Mt Mave

5252v2 = M2"1t 2222
which actually means that we have to solve the two-
dimensional analog discussed above. Similarly we

can examine all the cases where at least one of the
Sivi's is zero. Thus we can concentrate on the case

where S‘lvl. S'sz, S'3v3# 0, in which case the

conditions (68) can be written as

ul 0 0 1 a b
S=(5,:5, 83] = [vlv2v3] 0 u, O a 1l ¢
0 0 Ha b ¢ 1

.= UMR ' (69)

where u.12= >‘ii' If Sl, SZ’S3 are linearly independent

we can replace (69) equivalently by:
R(S'S)"!R = diagonal

which yields a system of three equations with three
unknowns. For each solution (a, B, Y) of this system
we can find the diagonal elements of R(S'S)'lR which
are actually equal to l/(y,:..x)Z = 1/)"1'1 and pick the

solution (o, B, Y) that yields the maximum for

X11+ X22+ )\33. Having thus found ul,uz,u3, a,b,c,

we find U = SR-1M-1. The only difficulty in the
above procedure lies in solving the system

1

a
[1 a bl(s'sy’t |1 |=o0
[ c_|]
—HE-
[1 a bj(ss)y’t]c|=0
1
=
[a 1 <Js's)yt]e =0

for a, b, c.
7. Conclusions

Our main objective in this paper was to
formulate some problems related to the optimal
choice of information in 2 team problem.  Some
partial results were also presented, which suggest
several possible ways of handling these problems.
As it turned out, several '"generalized type eigen-
value' problems have to be solved and their
geometric meaning to be connected in a simple and
intuitive way with the matrices involved in
describing the cost and information. We believe
that the importance of the topic asks for further
investigation of these issues.
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