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ABSTRACT: The case is considered in which, during the operation of an optimal control 
system, the optimizer, in addition to applying his usual control, may switch structures. 
Necessary and sufficient conditions are derived and emphasis is placed on the special 
characteristics of this problem. Continuous and discrete time set-ups are considered and 
the separation principle is shown not to hold for the linear quadratic case in the presence of 
noise. 

I. Zntroducfion 

In the usual optimal control problem it is assumed that the structure of the 
plant is fixed and that the control variable is the only way in which the 
evolution of the plant can be influenced. In many problems in practice 
however, the structure of the plant may be amenable to changes which are at 
the decision maker’s disposal. This paper considers the case in which, during 

the operation of the system, the decision maker, in addition to applying his 
usual control, may switch from one structure to another at instants of time that 
he chooses. 

As an introductory example, consider the linear system 

x(t)=A(t)x(t)+B(t)u(t), x(&,)=x,, tE[t,, t,]=fixed, 

and the cost functional 

J(u) =; 
( 

x’(q)Fx(q)+ 
I 

‘[x’(t)Q(t)x(t)+ u’(t)u(t)]dt , 
to I 

where u(t) E R4 so that the decision maker has four single input positions 
available. In addition, consider that, although four input positions are availa- 
ble, only two can be utilized at a time, i.e. u(t) will be equal to (ul(t), u2(t), 0, 

0)’ or (4(t), 0, 4(t), 0)’ or (uI(t), 0, 0, u4(t))’ or (0, u*(t), us(t), 0))’ or (0, u*(t), 
0, uq(t))’ or (0, 0, z+(t), u4(t))‘, where ui(t) E R. The decision maker can use any 
of these six configurations and can switch from one to another during the 
operation. His final objective is to minimize J(u). 

We can formulate this situation as follows. Let Cij, where if j and i, j = 1, 2, 
3, 4, be 4X 2 matrices with ith row equal to (1, 0), jth row equal to (0, l), and 

t This work was supported in part by the U.S. Air Force under Grant AFOSR-78- 
3633 and in part by the Joint Services Electronics Program under Contract N00014-79- 
C-0424. 

@The Franklin Institute 0016-0032/80/0301-0135502.00/0 135 



G. P. Papavassilopoulos and J. B. Cruz, Jr. 

the other two rows equal to (0,O). Let BP = BC,, where p = p(i, j) and p = 
1 * . 7 
gf Jen 

6, and let v(t)~ R2. Then the problem is equivalent to the following: 

i(t) = A(Mt) + fiJM0, x(r,) = xo, TV [to, $1, 

I 
*‘[x’(t)Q(t)x(t)+U’(t)U(t)]df 

fo 

find a control v(t) and a switching strategy for {&,}~=, determined by a 
partition P of [to, tf], also find a rule for which one out of the six B, terms will 
be in operation during each subinterval in P so as to minimize .7’(v). The 
extension of this problem to the nonlinear case where N structures 

f 1, * . ., fN[3;. = fi(x, u, t)] are available is obvious. It can also be extended to the 
case where A4 structures L1,. . . , I& are possible for the cost functional 
[J = J:f, J+(x, u, t) dt] with the cost calculated by using the chosen I+ on each 
subinterval in P. 

Cases where changes of structure are used for several purposes have been 
reported previously in the literature. In (1,2) the transfer function of a 
second-order system is studied where the changes of structure result in a 
piecewise constant linear system. In (3,4) a stochastic control problem, where 
there is a cost for using the measurements is studied. This amounts to allowing 
changes in the structure of the cost functional and in the measurement 
equation simultaneously. In (5) a discrete linear deterministic system is studied 
when the “B” matrix (actuator), which multiplies the input, is allowed to take 
certain finite-in-number values at each instant of time. In (6) a deterministic 
linear control problem is considered, and relaxed controls are introduced to 
prove the existence of a solution when the B matrix is allowed to take certain 
finite-in-number values at each instant of time. In (7,8) the stabilization of a 
system by switching structures is studied, the main concern being the study of 
the motion of the system along preassigned surfaces in the state space at which 
the switching occurs. One very nice and sufficient-for-motivation property is 
that often (even if two structures result individually in unstable systems) by 
switching back and forth from one structure to the other we can stabilize the 
resulting system (8). There are many situations where switching of structures is 
allowed, see for example (9) for flight applications. 

In this paper we introduce switching of structures to minimize a cost 

functional rather than to provide stabilization. This problem will be studied by 
reducing it to a control problem; it will be shown how singular surfaces arise in 
this case also, though we will not dwell on this topic since our intentions are to 
introduce an interesting class of problems, which includes as special cases most 
of the previously considered ones, to find the solutions for some cases, and to 
gain certain insights. We will consider the case where only two structures with 
linear state equations and quadratic cost functionals are available. We will 
derive necessary and sufficient conditions for optimality for the continuous case 
(Section II) and for the discrete time case (Section III) with particular emphasis 
on the first. The stochastic counterpart will also be considered (Section III) and 
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the separation principle will be shown not to hold. Suboptimal procedures for 
finding the optimal switching strategy are also introduced. 

II. Continous Time Case 

Assume that we are given Ai( Bi(t), Q,(t) = Qi(t)‘, F, [t,, $1, and x0, where 
(a) the time interval [to, tf] is fixed, (b) Ai, Bi, Qi are piecewise continuous 
functions of t E [t,, tf] whose values are real matrices of dimensions n x n, 

n x m, n X n, respectively, (c) F is an n x n real matrix which is constant, and 
(d) x0 E R”. Given P c [to, tf], with P Lebesgue measureable and any bounded 
measurable function of time u : [to, $I--+ R”, consider the system whose state 
x(t) evolves in accordance with the differential equation 

i(t) = Ai(t)x(t) + Bi(t)u(t), x(to) = x0, tE [tot tgl, (1) 

and the cost functional 

J(P, u) =+ x’(tf)Fx(tf)+ +[x’(t)Q,(t)x(t)+ u’(t)u(t)] dt 
1 J I 

, (2) 
fo 

where 
i=l if tEP, 

i=2 if t6P. (3) 

The solution x(t) of (1) is assumed to be absolutely continuous. Notice that 
for given P and u, the solution of (1) exists over [t,, $1 since (1) with (3) defines 
a linear differential equation. The problem that we intend to solve is 

minjn$e J( P, u ) . (4) 

Let us now consider the following problem: Given the state equation 

and the cost functional 

J(s, u)=+ x’(tf)Fx(tf)+ 

+u’(t)u(t) 1 I dt , 

x(&J = x0, (5) 

Q,(t) + y Q,(t))x(t) 

(6) 
where u and s are bounded measurable functions of time u : [to, tf] -+ R”, 

s:rt,, +I~{-1, +I>, the problem 
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is equivalent to (4). A straightforward application of the maximum principle to 
problem (7) gives the following necessary conditions for problem (4). 

Proposition 1. 

If the pair (P*, u*) solves (4), then there exists an n-dimensional vector 
function p(t) such that for t E [to, tr] 

I = Ai(t)X(t)-Bi(t)BI(t)p(t), I = ~0, (8) 

-e(t) = Al(t)p(t)+ Qi(t)x(t), _P($) = Fx($)t, (9) 

u*(t) = -B:(t)p(t), (10) 

i = 1 if p’(f)[&(t) - &(t)lx(t) - p’(t)[B~(O - &(t)lJ%(t)p(t) 
++x’(t)[Q,(t) - Q,(t)lx(t) ‘0, (11) 

i = 2 if P’(t)[M0 - AI(t)140 - p’(W%(O - BI(~)lB~(Op(~) 
+$x’(t)[Qz(t)- Q,(t)lx(t) 50. (12) 

Clearly, (11) and (12) partially characterize P*. The case where both 
quantities in (11) and (12) are 20 and at least one of them is L 0 cannot arise, 
since if this were the case adding (11) and (12) would give -p’(Bi - B2) 
(B, - B,)‘p 10 which is impossible. Therefore, at each instant of time either 
(11) or (12) is satisfied and if one of them is not satisfied then the other one is 
satisfied with strict inequality. If both (11) and (12) are satisfied with equality, 
by adding them we obtain B;p = B;p, i.e. the two possible control values are 
equal. 

In general, additional analysis is needed to determine whether i = 1 or i = 2 
is optimal, in case both (11) and (12) are satisfied. It is worth pointing out that 
if at a certain point both (11) and (12) are satisfied, it may very well happen 
that both the trajectories with structures 1 and 2 are optimal, thus there may 
be more than one optimal trajectory emanating from x0, and that at certain 
points an optimal trajectory might split into two trajectories both of which are 
optimal. (The same phenomenon will be noticed in the discrete case treated in 
Section III). This phenomenon is basically due to the singular character of the 
problem (7) since s enters the Hamiltonian linearly. Lastly, notice that it is not 
possible to have infinitely fast switchings from one structure to the other over a 
whole nonempty open interval Ic [to, t,], since if this were the case there would 
exist Lebesgue measurable sets P, and P2 such that I = P, U P2, P, fl P2 = 4, 
s(t)=1 if teP1, s(t)=-1 if tEPz, and Pi = PZ = I; since meas (Pi) = 
inf {meas (V), Pi G V, V open}, and since Pi E V, V open, Pi = IA V= 1, we 
conclude that meas (Pi) = meas (I), i = 1, 2, and thus meas (I) = 0, i.e. I = 4. 

Let us now try to find a solution of p(t) of the form 

p(t) = WHO, (13) 

7’ If in (2) we had F1 for i = 1 and F, for i = 2 instead of F, where F1 #F,, then (9) 
changes to P(q) = F;x(t,). This can be shown by transforming first the costs (2) to the 
Lagrange form, (i.e. no explicit terminal penalty). 
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where K(t) is an n x n real matrix to be determined. Substituting p(t) from (13) 

into (8)-(12), we obtain 

i(t) = [Ai(Bi(t)B;(t)K(t)]x(t), x(t,) = x,,, (14) 

-{B(t)+K(t)[A~(t)-B~(t)B~(t)K(t>]}x(t)=[A~(t)K(~)+Qi(~)]x(~), 

K($)x(tJ = Fx($), (15) 

u*(t) = -B:(t)K(t)x(t), (16) 

i= 1 if x’(t){K(t)[A,(t)-A,(t)]-K’(t)[B,(t)-B,(t)]B:(t)K(t) 

+%Q,W - QAOlh(f) 50, (17) 

i=2 if x’(t){K(t)[A,(t)-A,(t)]-K’(t)[B,(t)-B,(t)]B:(t)K(t) 

%Q,(O - Q,(Olb(O 50. (18) 
Notice that as (17) and (18) indicate, the switching of structures depends on 
x(r) and t, and not on t alone. The following proposition gives sufficient 
conditions under which a control law of the form (16) is optimal. Its proof is 
based on a direct application of Dynamic Programming where one assumes a 
value function of the form V(x, t) =$x’K(t)x. 

Proposition 2. 

Consider the following system of one differential equation and two matrix 
inequalities which are solved backwards in time t E [t,, $1: 

-ri(t)=K(t)A,(t)+A;(t)K(t)+Q,(t)-KB,(t)Bf(t)K, K(+)=F, (19) 

i= 1 if [A,(t)-A,(t)]‘K+K[A,(t)-A,(t)]-K[B,(t)-B,(t)]B;(t) 

+ B,(N-B,(t) - JMOI’K + [Q,(t) - Qdf)l~ 0, (20) 
i=2 if [A2(f)-Al(t)]‘K+K[A2(t)-Al(t)]-K[B2(t)-Bl(t)]B;(t) 

+ B,(O[B,(O - B,(t)l’K + [Qdf) - Q,(t)1 5 0, (21) 
and assume that their solution exists on [to, $1. Then the control law 

u(t) = -B;(t)K(t)x 

is optimal, where i = 1 or 2, in accordance with (20) and (21). 
Notice that if the conditions of Proposition 2 hold, then the switching of 

structures depends on t and not on x(t). Therefore, K is a function of t only 
and the switching points are the same in time for any initial point x0. The 
matrix K is symmetric and positive semidefinite if Fz 0. The cost to go at a 
point (x, t) is V(x, t) = bx’K(t)x. Notice also that at least one of (20) or, (21) has 
to hold at each t, for the same reasons that this happens for (ll), and (12). 

The conditions (20) and (21) are restrictive and in general will not hold. 
Nonetheless there are important cases where they do hold. We will consider 
three special cases. 
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Case I. Let A, = A, and Q1 = Q2. Then (20) and (21) yield 

i = 1 if KB,B;K+ KB1BGK(2KB,B{K, (20-l) 

i = 2 if KB,B’,K+KB,B;K~2KB,B$K. (21-1) 

If B*(f)= b,(t)B,(t), b,(t)E R, then (20-l) holds when b,(t)51, and (21-l) 
holds when b2(t) I b:(t). So, when (a) b2(f) 2 0, structure 2 is optimal, (b) 
0 5 b*(f) 5 1, structure 1 is optimal, (c) b,(t) 50, both structures are optimal. 
Therefore, if b*(f) 50 on an interval we may very well have two optimal 

trajectories. 

Case II. Let A, = A, and B1 = B,. Then (20) and (21) yield 

i = 1 if Q,(t)< Qz(f), (20-2) 

i = 2 if Qz(f)s Q,(t), (21-2) 

which is an intuitively acceptable conclusion. If Q,(t) = q2(t)Ql(t), Q,(t) 20, 

q(t)ER, then i=l if q2(f)?1, and i=2 if q2(f)sl. 
Case III. Let B1 = B, and Q1 = Q2. Then (20) and (21) yield 

i= 1 if KA,+A;KsA,K+KA,, (20-3) 

i=2 if KA,+AkK<A{K+KA. (21-3) 

For these three special cases it is easy to find subcases where (20) and (21) 
both fail or one at least holds. For example, in Case II if Q1 and QZ cannot be 
ordered on some interval, then both (20) and (21) fail. We can also give 
conditions under which the solution K(t) exists over [t,, +I; such a condition is 
that both pairs (Ai, Bi) are controllable and Q1 2 0, Q2 2 0. The reason for the 
nonapplicability of Proposition 2 in general lies in the fact that this proposition 

concerns cases where the switching in time will be the same for any optimal 
trajectory and independent on x, while in general the switching should depend 
on both the current time and state values. 

111. Discrete and Stochastic Cases 

(i) Discrete time deterministic case 

In this section we will consider the discrete version of the problem of Section 
II and the stochastic analogs for the discrete and the continuous time cases. 

Assume that we are given real constant matrices A;, B:, Qt = Qz, Qh, 
k=O, l,..., N- 1, i = 1, 2. Given the set 0 of all ordered (N+ l)-tuples of 
zeros and ones [e.g. (0, 1, 1, 0, 1, 0, 0, . . . , 1, 0)], we want to solve the problem 

minimize J(P, u), 
P‘5il.U 

(22) 
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where 
X k+l = A:k’~k +B$k)~k, x0 given, k = 0, 1, . . . , N- 1, (23) 

N-l 

xhQ$N’x, + c (xl,Q;“‘xk + &uk) , 

k=O 1 (24) 

P=[i(O), i(l), . _ . , i(N)], (25) 

U = (U,,, . . . , UN-_l). (26) 

Since the set R is finite (2Nf1 elements), one can solve 2N’1 linear quadratic 
problems and then pick out the one which results in the minimum cost. 
Therefore, the solution of (22) will be a linear function of the current state of 
the form uk = Lkxk. Notice that, since the comparison of the 2Nt1 problems is 
based on the comparison of the costs Jp =~x,K~x,, where K: is the Riccati 
gain corresponding to some P E 1R, the choice of the optimum P is not generally 
independent of x0. Therefore, in the optimal control law uk = L,x,, L, depends 
on x0. A more efficient way of solving problem (22) is to consider the 
equivalent problem where Ai, Bi, 0; are replaced by 

respectively, where sk = + 1 or - 1, S = (so, sl, . . . , sN), and solve for the best 
control law (S”, u*) by Dynamic Programming. Notice that out of the 2N+1 
problems mentioned above, several might attain the best cost and the optimal 
trajectories of some of them might have common points. This phenomenon was 
mentioned as a possibility for the continuous time case, but in the discrete time 
case it is very easy to construct examples where it does occur. 

(ii) Continuous time stochastic case 

Let us now consider the stochastic case. First we will look at the continuous 
time case and show that the problem can be solved in two steps, the first step 
involving the solution of a classical linear quadratic Gaussian problem and the 
second step involving the solution of a deterministic singular control problem. 

The system’s state evolves in accordance with 

dX(t)=[A,(t)X(t)+Bi(t)U(t)]dt+G(t)dw(t)> tE[to,$I> (27) 
and the information available at time t is yt ={y(8), toned r>, where 

dy(t) = C,(t)x(t) dt + R(t)v(t), t E [to, $1, y(h) = 0. (28) 

The matrices Ai, I$, G, C,, R are piecewise continuous functions of time, 
RR’>O, y(t) E R4, w(t) and u(t) are standard independent Wiener processes 
with zero mean and covariances equal to unit matrices, and x(to) is a Gaussian 
random variable independent of w and v with mean X0 and covariance Lo. The 
objective is to minimize the expected value of J, is given by equation (2). The 
optimizer chooses P and u as measurable functions of yt. This problem, 
although nonlinear, can be solved as follows: Since 

inf E(J) = inf [inf E(J)], (29) 
P.U P u 
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we first solve a classical linear quadratic Gaussian problem for fixed P [i.e. s(t)] 
and finally we have to solve 

1+s 
-Cc,+ 9 C+RR’)-‘(F Cl+9 C,)LK] dt 

+ tJwtf) + F Q,+y Q,)L] dt, (30) 

subject to 

~A,+~A~)+(~A,+~A,)‘K+(~Ql+l-sQ7) 
2 2 

If we introduce u = (1 - s)/2, then v(t) = 0 or 1 and z? = U. Thus problem (30) is 
a control problem with control u, where u enters linearly in the state equations 
and in the cost, and so is singular. Notice that although in (30), it seems that no 
information y, is used for finding the optimal s *, this is not really the case since 

s* will depend on C1, C, and R. 

(iii) Discrete time stochastic case 

Let us now consider the discrete stochastic case. The cost is given by (24), 
but noise w, is added to the right-hand side of (23). The control uk should 
be composed as a measurable function of yk = (yO, yl, . . . , yk), where 

yk = CZk’Xk + Uk (31) 

with CL, C’, 1 x n real constant matrices. We also assume that {wk}, {uk}, x0 are 
independently distributed Gaussian random variables with E(wk) = 0, E(uk) = 
0, E(x,) = 3,. By considering again the 2N+’ possible (N+ 1)-tuples P, we can 

solve 2N’1 linear quadratic Gaussian problems and pick the P which corres- 
ponds to the problem with the minimum cost. Thus the control law will be of 
the form uk = L,i,, where & is the minimum mean-square estimate of xk, and 
L, depends on i, for the same reasons as mentioned in the deterministic case. 
Therefore the separation principle does not hold, except in a restricted way, i.e. 
the optimal control value depends on f,, and on i2, and the dependence on 2, is 
linear. Finally notice that the solution can also be found by introducing the 
control sk = *l as in the deterministic case and applying Dynamic Program- 
ming. 

The nonlinear character of the equivalent problem with control (Sk, uk) with 
respect to sk is intimately related to the failure of the separation principle. The 
following example demonstrates the failure of the separation principle for the 
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problem (22)-(26), (27). Consider the following, one-step, scalar version of the 
problem (22)-(26), (27): 

x1 = aixo + u, 

y=x()+u, 

J = qix: + 2, 
(32) 

where i = 1, 2,; aI, a2, ql, q2>0. We want to choose a control law u as a 
function of y, and i = 1 or 2 to minimize J. The terms x0 and v are independent 
Gaussian random variables with E(x,) = x0, E(v) = 0, E(x’) = u2 and, E(v2) = 
S’. The solution is as follows: 

J*=qiaf$ 1+4?A_ ____ 
[ (qi + 1)’ U2 + S2 

2 4i u2 
qi+l a2+S2 

SF s2 I u2 4i 

(qi+1)2cr2+S2 u2+S2(qi+1)2 1 P af&-D(q,, cr, S), (34) 

Assume that 

i = 1 if a@(q,, U, S) 5 a@(q,, v, S), 

i = 2 if a$D(q,, a, 6) 5 a@(q,, cr, 6). (35) 

0 < aPI&, %, 0) < a%%.j,, %, O), (36) 

i.e. the deterministic version of (32) has solution i = 1. To demonstrate that 
separation does not hold, it suffices to show that for some S# a, the solution is 
i = 2, i.e. 

a$Wq2, 6 8) < aWql, u, 8) (37) 

It therefore suffices to find a,, a2, ql, q2, S, X0, such that 

and hence it suffices to find ql, q2, a, 6, iO, such that 

@(92, UT 6) < @‘(41, u, 8) 
@'(q2, X0,0) WI,, -fo, 0). 

(38) 

(39) 

For any fixed cr, S# 0 and we can calculate the value of Q(z, 0; S)/@(z, f,, 0). 
We can find z’, z” > 0 such that 

@(z’, a, 6) < Q(z”, U, S) 

@(z’, x,, 0) a’(.?, x0, 0) . 

We set q2 = z’ and q1 = z”, and choose a,, a2 > 0 so as to satisfy (38). Obviously 
now we have values of ql, q2, a,, a2, and S so the separation principle does not 
hold. 
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The comments about nonuniqueness and bifurcation of the optimal trajec- 
tory made for deterministic cases apply to the stochastic cases as well. 

(iv) Suboptimal procedures 

It should be clear by now that although the discrete version of the problem 
(deterministic or stochastic) considered in this paper will have a solution, the 
continuous version might not. This is primarily due to the fact that values of s(t) 
in (- 1, 1) are not permitted. We are therefore obliged either to introduce relaxed 
controls, see (6) or to introduce suboptimal schemes. Since the solution of our 
problem eventually reduces to the solution of (30) (where the deterministic 
case is included for G = 0, I. = 0), one should consider suboptimal schemes for 
(30). A first suboptimal scheme is to pick up fixed ti, i = 1, 2,. . . , n - 1, 
to =C t, < r,,_l < ry = tf, and then try to determine S, where S = -1 or +l on each 
(ti fi+l), so as to solve (30) in the class of these 5 A second way is to try to find 
t,, i=l,..., n-l, t,dt,I . . . zs t,,_1 I t,, = 4, where n is fixed, which determines 
an s’ with i(t) = -1 on (t,, tl), s(t) = t, on (tl, f2) and so on, and solve (30) in the 
class of these 5. Let us consider the second procedure. Introducing d = (1 - s’)/2, 
the state equations of (30) assume the form 

g=f(E)Z;+g(E), (E=[;]), 

which is linear in t? [and so is the cost functional of (30)]. For illustration 
purposes let n = 2, so that only t1 needs to be found, and 

+l-sgn(r-rr) 

2 . 

We have therefore to solve a parameter optimization problem which nonethe- 

less has a discontinuous dependence on the parameter tl. To use the known 
techniques of parameter optimization, [see (10) and the references therein], we 
can approximate sign (t- tr) with a smooth function in tr and solve a sequence 
of parameter optimization problems as this approximation increases. 

IV. Conclusions 

In this paper we have an analyzed some aspects of a special class of control 
problems, of which the basic characteristic is that during the operation the 
decision maker may switch structures, in addition to applying the usual control 
function of time. Potential applications of such problem formulations are, for 
example, in the area of economic organization where the organizational 
structure is easy to change in time in a way to be chosen by a manager, in the 
area of power systems where many input positions might be available but only 
a subset of them can be utilized at a time, and in flight control. Another 
important area where structural choices might exist is that of Leader-Follower 
hierarchical games where the follower minimizes his cost for a given leader’s 
strategy of switching structures, while the leader’s only control to minimize his 
cost is exactly the strategy of switching structures. 
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It should be obvious how to generalize the procedures presented here in 
order to analyze problems where more than two, say N structures, are 
available. Simply, if X = fi(x, u, t), i = 1, . . . , N are the iV structures, one can 
consider i = f(x, u, s, t) where the range of s(t) = { 1,2, . . . , N} and f(x, u, i, t) = 
fi(x, u, t), and find the optimal (u*, s*). Restrictions concerning the switching of 
structures during certain intervals of time can be taken into account by 
imposing proper restrictions on s. Notice that f(x, u, s, t) should be at least 
piecewise continuous in s and that not restricting f to be affine in s, as we did in 
Sections II and III, might facilitate the study of the singularities. The singular 
aspects of the problem presented remain open for further investigation. 

References 

(1) I. Fliige-Lotz and W. S. Wunch, “On a nonlinear transfer system,” J. Appl. Phys., 

Vol. 26, No. 4, pp. 484-488, April 1955. 
(2) I. Fliigge-Lotz and C. F. Taylor, “Synthesis of nonlinear control system,” IRE. 

Trans. autom. Control Vol. 11, pp. 3-9, 1956. 
(3) M. Athans, “On the determination of optimal costly measurement strategies for 

linear stochastic systems,” Automatica, Vol. 18, pp. 397-412, July 1972. 
(4) C. A. Cooper and N. E. Nahi, “An optimal stochastic control problem with 

observation cost,” IEEE Trans. Autom. Control, Vol. AC-16, No. 2, pp. 

185-189, April 1971. 
(5) Y. Vanbeveren and M. R. Gevers, “On optimal and suboptimal actuator, selection 

strategies,” IEEE Trans. Autom. Control, Vol. AC-21, No. 3, pp. 382-385, June 
1976. 

(6) J.-C. E. Martin, “Dynamic selection of actuators for lumped and distributed 
parameter systems,” IEEE Trans. autom. Control, Vol. AC-24, No. 1, pp. 

70-78, Fevruary 1979. 
(7) V. I. Utkin, “Sliding Modes and their Applications in Variable Structure Systems,” 

MIR Publishers, Moscow, 1978. 

(8) V. I. Utkin, “Variables structure systems with sliding modes,” IEEE Trans. autom. 
Control, Vol. AC-22, No. 2, pp. 212-222, April 1977. 

(9) W. Sobotta, “Realization and application of a new non-linear attitude control and 
stabilization system,” Proc. 4th WAC symp. Control in Space, 1974. 

(10) P. Kokotovic and J. Heller, “Direct and adjoint sensitivity equations for parameter 
optimization,” IEEE Trans. autom. Control, Vol. AC-12, No. 5, pp. 609-610. 
October 1967. 

Vol. 309, No. 3, March 1980 
Printed in Northern Ireland 145 


