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Abstract

Three algorithms for solving the static Stackelberg
game with two decision makers, linear costs and polyhedra
constraints are presented. The nonconvexity of the Pe-
action set of the Follower isa major sourceofdifficulty
in solving such problems. The algorithms presented are
able to bypass this difficulty and find the solution in
a finite number of iterations.

Introduction

The Stackelberg gamewas first stated by von Stackel-
berg in 1934, [1], in its static form and much later re-
introduced in a dynamic framework by Cruz, Chen and
Simaan in 1972, [2-4] and studied further in [5-9] and
alsawhere. During the last years, a Tot of research has
been directed toward studying this problem becauseofits
importance in hierarchical dacision making, incentives
(9], etc. Most of this work has concentrated on the dy-
namical and informational aspects and very little has
been done on the algorithmic aspect even for simple sta-
tic cases, like the one that is the object of this paper.
The only existing papers in the literature — that the
author is aware.of — addressing directly this area are
[10-16]. .The works of [10,15,16] can be considered as
addressing algorithms for particular Stackelberg games
although no reference was made there to the general
Stackelberg problem. In this paper we present three al-
gorthms for solving the deterministic static Stackelberg
gare, with two levels of hierarchy, where the costs of
both the Leader and the Follower are linear functions of
their decisions and the vector of both the decisions has
to lie in a polyhedron in a finite dimensional Euclidean
space. A major source of difficulty for finding the so-
luticn is the nonconvex character of the Follower's re-
action s2t. Although one could claim that in princple
tha global solution can be found by finding all the ver-
tices of the constraint polyhedran, this is a highly im-
praztical method to employ; the algorithms presented hare
find the global optimum without having to do that. The
relative immaturity of the area of algorithms for Stac-
“alber rroblems and the lack of sufficient computational
experierce restrain us from making — at the present time
— cefinitive statements about the superiority of several
algorithms over others. Thus, no relative evaluationof
tha algorithms presented here is attempted.

The structure of this paper is as follows. In Section?2
=@ state the problem and elaborate on the content of
{12-18] where related work has been reported. In Sec-
tions 3, 4 and 5 we present three algorithms, provide
their geometrical interpretation anddiscuss someof thair
serticular characteristics, shortcomings, as well as ways
o Ffacilitate their implementation. In the last Section
5, we discuss differences among the algorithms, situa-

*ihis werk was supported in part by the U.S. Air Force
0ffice of Scientific Research under Grants AFOSR -80-
2171, and AFOSR-82-0174.

tions in which the one could be preferredover the other
and delineate directions for further research.

PROBLEM STATEMENT

The real vectors ¢} € R"1,c; €R"2, b €RM and the
real matrices Aj(mxny), Ap(mxnz) are given. xj and x

denote vectors in R"! and R"2 respectively. (RKdenotes
the k-th dimensional Euclidean space and "'" denotes
transposition). .

For fized xj we solve the problem

minimize d'x2

Xp . (1)
subject to: Azxz s.b - Alx]
and we denote the solution set by T(x]). Subsequentiy
we solve the problem
minimize cix|f+ céx2
X)Xy ’ (2)

subject to x, € T(x])

A pair (x],x3) which solves (2) is called a Stac¥zlberz
egutlibrium. Our aim is to state and analyzealcorithms
for finding such a pair. It is assumed throughout this
paper, that the constraint set
= 3 . b 3

) “ﬁJﬂ.Aﬁ‘+%¥Sb, (3)
is bounded and nonempty. This assumption guarrantess
that T(xy) # ¢ for some xj so that (2) is a nontrivial
problem and does have a solution.

The problem stated above describes the foll:wing
situation. There are two decisicn makers, the L-rader
-1-, who chooses xj and wants to minimize J1(xy,¢) =
cix1 + ¢2x2, and the Follower -2-, who chooses x» and
wants to minimize Ja(x2) = d'x;. x1 and Xp are subject
to the joint constraint (x1,x2§E§l The Leader chooses
x] first, and for a given choice of x; the Follos2r
solves (1). If we denote by T(xj) the solution of (1)
then the incurring cost to the Leader is Ji(x1,7{x1)
cixy + c2T(x1) (assuming T(x7) has a single element ca-
noted again T(x]), by abusing the notation). Thus, tha
Leader's ptdblem is to minimize cyxy + cpT(x}) over xj.
(8y convention, if T(x;) = ¢ we set Jj(x ,xzs i
In general, if (xf,xg) salves (2) x3 will ba in T{x{),
but T(xf) might be multivalued, so that if the Leader
declares x; = x{, the Follower mignt choose xp €7{x{)_
Xp_# x3, in which case djxj; = dg¥2, cix] + cjx3 scyei=
c2%p. Thus, if the Follower wants to hurt the lLexder
he will choose — if possible — xp €T(xy) witn cyxj +
€ox2 < cixj + czxp. Attributing such a desire to the
Follower means that Jz(xp) does not really represant
accurately the Follower's objective and we could have
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considered a new d equal to the old one minus €cp, for
some € > 0. Nonetheless, even if the Follower does not
intend to hurt the Leader, he could choose x2 becauseof
ignorance. If the Leader wants to safeguard himself
against such a case, he would rather so}ve
R . , ,
minimize maximize cix; + ¢ X,
2I
X) Xy (2*)

subject to X, €T(x1)

instead of (2). The first two algorithms presented deal
with the case where (2) is employed, whereas the third
one can also handle the case where (2') is employed.

Although the problem (1),(2) iquuite easy to pose
its solution is not trivial. One of the main reasons
for it is that the reaction set of the Follower, defined
as

(8)

may not be convex. A is piecewise linear, lies on the
boundary of & and its vertices are vertices of o. (2)
can now be written equivalently as

A= {(x7:%5) 1%, €T(x;)}

+ ¢ X

minimize c!x
272

10}
X 9%y (5)
(x1 ,xz) ex

Although ﬁ.might not be a convex set, (5) can be con-
sidered in principle as a Linear Programming problem,
after substituting equivalently £ in (5) by its convex
hull. This idea is exploited by the third algorithm
which is presented in Section 5. (Substitution of % in
(5) by its convex hull will not introduce any new global
minima located at vertices of 5ia1though it might intro-
duce new global minima which 1ie on edges of the convex
hull of % which are not in £.) That the solutionof (5)
exists and is achieved at some vertex of Z is obvious
and thus by bringing our problem (1),(2) to the form
(5) we conclude that it does have a solution which .s
achieved at some vertex of .

The only papers, that we are aware of, addressing
similar problems are [10-16]. 1In [10], Falk considers
(1)-(2) in the special case where ¢ = -c2 and shows that
then (2) can be considered equivalently as a problem of
minimizing a piecewise linear convex function over a
polyhedron (Theorem 2.1 in [10]). The reason that this
is true is that if d = -cy then the projection of % on
the space spanned by d and x] has nice convexity prop-
erties; this is not true if d # -cp. The contribution
of [10] consists of an algorithms for solving the pro-
blem (1)-(2) with d = -c2. In Theorem 2.5 of [1o1l,

Falk a1§o proves that the decision maker's 1 incurring
cost (cyx] + cpxp) is better if decisica maker 1 is the
Leader than his incurring cost if he were the Follower.
The second algorithm presented in this paper can be con-
sidered as a generalization of Falk's algorithm. In [11]
several algorithms were described for solving static
Stackelberg games with nonlinear costs and constraints.
The basic aim of [11] was to propose sensible algorithms
and to provide intuitive justifications. One of the al-
gorithms of [11] concerning the linear case, modified
and extended appropriately as to guarantee convergence
to a global optimum is the first algorithm presented
here. An algorithm very similar to the one of [11] con-
cerning the linear case, was almost concurrently reported
in [12]. Both the schemes of [11] and [12] though, have
the handicap that they might converge to local solutions.
Two other algorithms were also presented in [13], but
they seem to require an extensive amount of computation.
In [14], an algorithm for solving static Stackelberg
games with nonlinear costs and constraints was presented.
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The idea of this algorithm is to replace xp €T(xy) by
the corresponding Kuhn-Tucker conditions, view t%e Lea-
der's problem as a constrained classical nonlinear pro-
gramming problem and employ a barrier method for solving
it. This algorithm yields a local optimum and no effort
was made in %14) to tackle the problems due to the non-
convex character of the reaction set. Finally, the al-
gorithms of [15] and [16] can be considered as address-
ing the special case of the Stackelberg problem where
the constraints for x; and xp are decoupled, i.e., x| €
X XZ €X2, where X, and X2 are (independent) subsets of

R", R"2, respectively (In [15], X, is assumed compact).
The decoupling of the constraints on x] and x2 is notal-
ways realistic for the Stackelberg problem, since if for
example we have a linear cost for the Follower, the Fol-
lower becomes independent of the Leader. For more ex-
planations concerning the relation of the algor;thms in
[15], [16] with the Stackelberg problem, see [11].

FIRST ALGORITHM

The algorithm of this section is motivated by the
following considerations. If the Leader declares x} =
X1k» then the Follower solves (1) with x1 = xjg, (fixed),
and finds x2 = xp, The Leader knowing }X]k,XZk) wishes
to declare a new x] = x] k+], so that when the Follower
solves (1) with x7=x7 k+], the resulting x x4 willbe
such that c1X] k4] # CYX] k4] < C1X7p+CoX2k. This means
that the segulﬁge]{(xzkli;k;} sh%u]ﬁ bezingﬂ and should
be moving so that the Leader's cost will be decreasing.
Caution should be exercised as to insure convergence to
a global, and not a local, minimum. This is taken care
in Step 3 by introducing appropriately new cuts (con-
straints). These considerations suggest the following
algorithm.

Step 1: For given xy, solve (1) and find x2.
ka;=lx],x2) and go to Step 2, with k=0.

Step 2(k): When at (xyy,x ) examine the neighboring
vertices of (xy,xpy) and find those which are in /% and
also strictly reduce the Leader's cost; if (xjy,xpx) is
any neighboring vertex of (xy,Xxpx) with these two pro-
perties, set (X} y47:%2 y47) = (% »%2k) and repeat Step
2 for k+l. If tRere is’no such neighboring vertex, go
to Step 3(k).

Step 3(k): Consider the constraint
CyXq FCpXp S CXqy HCoXy T by

Set (x1k,

(6)
and adjoin it to (3), so that the new constraint set is
Sk= :(x],xz): A]x] +A2x2 sb, cix]-+céx2 Sbk} (7)
Let 7 be the reaction set of the Followersubject to the
constraint (7) (and noct (3)). Set (x ,k+15X2 k47) equal
to any neighboring vertex of (x1k,x2k} in Sk which isin
Ry and o to Step 2(k+1) {{x k+1 %2 ,k+1) satisfies (6)
as an equality). If repeated Use of Steps 2 and 3 with
examination of all the cardidate vertices fails to pro-
duce a decrease in the Leader's cost, stop and you have
found a global cptimum.

There are several points to be made concerning the
operation of this algorithm.

i) To start the algorithm we need some (xj,x2) in & as
to set xjg=xy. This initial feasible point can be found
tht same way as in the classical linear programmingcase.

ii) The implementation of the algorithm can be done by
bringing the constraints to standard form settingup the
usual tablzau forms as in the simplex method and remov-
ing and introducing vectors to the basis.

iii) Checking whether a neighboring vertex of (x]k,xzﬂ
is in % can be done by verifying whether for xj= x1t3
in-

“xpk solves (1), i.e., if it satisfies the familiar

ear Prograrming stationarity conditions. At Step 2 we
might have available several vertices neighboring (xjg.



x;) which are in % and strictly reduce the Leader's

cost, although we do not need but only one;we might then
choose the one which results to the largest decrease of
she Leader's cost, or the one which lies on the edge as
close as possible to (-cy,-cz), (i.e.,steepest descent).

jv) If when at Step 2, the case arises that we have to
go to Step 3, this means that (x1k»x2k) is a local mini-
mum of (5). By going to Step 3 we intend to check
whether (x1k.x2k) is a global minimum or whether we can
somehow jump to another point in & — using a path not
necessarily in & — from which we can decrease further
the Leader's cost by moving on &

v) When repeated use of Steps 2 and 3results finally to
a point which strictly reduces the Leader's cost, then
the constraint (6) will be dropped.

vi) If repeated use of Steps 2 and 3 fails to produce a
lower value for the Leader and this has happened after
all possible edges have been employed in Step 3, this
means that the global minimum of (2) has been found.

vii) When using Steps 2 and 3 we have to take precaution
so that cycling will not occur; i.e., what can happen is
that during several jterations the algorithm will not de-
creas2 the Leader's cost and will be returning to the
same point. If the same point appears again we repeat
Step 3, but we choose to go to a neighboring vertex dif-
ferent than the one we choose when we first used Step 3.
Nonetheless, a vertex which appeared during the first
cycle can appear after some iterations were performed
when we started from a different neighboring vertex.
Then again we start from another neighboring vertax and

.so on. Thus, we might end up with a situation when all
possible vertices for which (6) is active and are in the
reaction set of the Follower with constraintset (7) have
to be checked. Ifrgne of them can yieéld a direction for
which the Leader's cost decreases, then we are at a glo-
bal optimum. This situation might result in having to
check very many vertices.

viii) If we reach a point in-% and it is such that we
have to go to Step 3, then there are several directions
that we can take which are on the same plane cyx] +cpxp=
constant. We might benefit by using first the direction
closest to the last direction on J along which the
Leader's cost was decreased.

ix) If d=-cp, then there will be at most two cases that
we will need to introduce a constraint of the form cixy
+cpxp < some constant. This will happen if we have
reached the global optimum and we will check its ¢lobal
optimality or when we will have achieved a local optimum.
. Notice, that in this case, even if there are many local
(non-global) optima, the value of the Leader's cost is
the same at all of them.

x) Several known techniques addressing issues due to de-
generacy can be appropriately employed and the algorithm
will effectively terminate in a finite number of itsra-
tions.

SECOND ALGORITHM

The algorithm of this section constitutes an exten-
sion of Falk's algorithm, see [10], where the case c; =
-d was considered. The algorithm is based on the fol-
lowing idea. First solve the problem

min c]x] + czx2

X)Xy

subject to: A1x‘ + Azx2 <b
The solution (x10,x2g) is achieved at some vertex of the
polyhedron (3). If for xj=xjg, x2g solves (1), i.e.,
if (x10.%20) € %, then we have solved the problem. If
not, checE whether any of the neighboring vertices of

(x10-%20) is in %. Check whether any of the n=2ighbaring
vertices of thg first mentioned neighboring vertices of
x10.%2g is in % and so on. In other words start branch-
ing away from x1g.%X20, and try to find vertices which
are in 2. The firﬁt time we find a vertex in % which
incurs some cost J] to the Leader, we have a candidate
as solution. The 'branching directions which result to
vertices with bigger costs for the Leader are discarded,
but we keep on the branching procedure for the rest till
some of them yields anoth?r point of % with cost J¢ for
the Leader smaller than J]. We continue in this fashion

1

with J¥+ assuming the role of J? until at J? we reach

a point where all the new vertices result to costs
bigger than Jq.

A geametric interpretation of Algorithm 2 is de-
picted in Figure 1. From (x;q.x20) we go to Aj,Az,A3,
P4. Me check whether any of the Ay,A7,A3;A4 is in &
and the answer is negative. From Ag we branch out to
By,8, from A3 to Cy=8B2,C2 from A2 to Dy =(2,D7,D3 and
from A} to E}= D3,Ep. We check whether any of the By,
82,C2,02,03,E2 is in & and the answer is yes for By and
C2. We calculate the value of the Leader's cost at B8,
C;, denote them by J1(Bz), J1(C2) and set J} = min (J

(82), 31(Cp)). Let.d} = 31(Bp). If 3(Ep) > 3] we do

not need to continue branching from E2. If Jy(D3)< J}
we will continue branching from D3 since we do not know
yet whether a branching starting fromD3 will yield a
cost for the Leader which is less than J{. Continuing
branching away from (xjq.Xzg) we reach a stage whereall
new branchings yield yertices which yield cost for the
Leader greater than J;, (independently of whether they
are in X or not). From this moment on we know that
even if we meet a point of A, it will yield a cost for
the Leader which is higher than J] and we conclude that
B, is the solution.

x4 plane

These considerations suggest tne following algor-
ithm:

Step 1: Solve the problem

min 1%y +c2x2
. R )
subject to: A]x]-(-AZx2 <b (8)

. n
Let the solution be (x?,xg). If for x3 = x?,x§ solves
(1), then (x?,xg) is a solution. Otherwise go to Step

Step 2: Find the neighboring vertices of (x?,gg) call
them Q1,Q2,...,Q, Qi = (x},;}): Set clx}-rc2x5= u} and
check whether for any xj = x{,x» solves (1), i.e., check



whether Qi € &

with Q; €% Set uj= min{cyx] +czxp, Qi €%}, If no
Q; is in &, up= +=, go to Step 3.

Step 3: Find the neighboring vertices of each Q; that
appeared in Step 2, for which Qi €% (i.e., i=2+1,...

,k). Let Q} ,Q.‘z,...Q;‘n be the neighboring verticesof each
such Qj. Retain only thc_)se Q}'s for which the value of

Let i=1,...,% correspond to the Qj's

Jy is suj. For these Q}'s, check which ones are in %
Set ué’:min{uf,[r;}ig(h(()}),(}} €R)]}. Go to Step 4.

Step 4: Find and retain all the adjacent vertices of the

Ql's which were retained at Step 3, which are in % and
at which the value of J; is <u;. Go to Step 5.
. )

Step k: Find and retain all the adjacent vertices of the
vertices retained at Step k-T, which are in R and for
which the value of Jy is =last ug. If for some of them
the value of J] is strictly less than ”Z' go to Step k+l;
if not, stop and you have found a solution.

There are several points to be made concerning the
operation of this algorithm.

i) A certain vertex might appear as a neighbor of two
vertices or reappear at a certain stage. This should
cause no confusion since we can provide in the algorithm
for not checking the same vertes twice.

ii) Since u]=uj 2... 2uy the value uj with which we
compare the values of Jj at several vertices decreases,
j.e., each step we restrict ourselves to vertices which
result in a cost for the Leader less that any cost for
him that has occurred before k at vertices lying in &
that we have already met. Notice that if u* is the op-
timum value of Jj in (2), it obviously holds uf 2...2
* . *

ug 2...2u%.

jii) If some vertex is found to be in & we can stop
branching away from it since this branching will either

give a bigger cost for the Leader or will yield vertices

that can be reached by branching away fromother vertices
which are not in % Of course we can branch away from
such vertices if we so wish, as in a case where we know
that such a vertex is very close to the solution.

iv) Checking whether a vertex is in X can be done by
using the stationarity conditions of linear programming.
The following considerations can also facilitate this
checking. If x§ solves the problem minimize d x sub-
ject to Apxp <b-Ayxy, (xy = fixed), then dy +A32=0 for
some ¥ = (Hy,...,m), Hj 20. Activity of some constraint
is obviously implied by having that the corresponding
uj is # 0. To that effect we state the following Pro-
position which generalizes Theorem 3.1 of [10] where
only part (i) is given.

Proposition: Let A2 = [aZ] ’a22""’a2m] and consider the

relationship
d+u]aZ] +uza22 + ...+ uma2m=‘0, u] ’“2"" , f-’m 20.
c,ajj €R n2 | u; € R. Assume that none of the vectors

d, a2},...,a2m 1s zero. Let
Yoo Yor Yom ]
. _ - .- _|d' VoA
()= M0 ™ -+ Yim| © ['A"l (di 431
: : 2|
Yoo Ymi ... Ymm
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Then:

i) At least one pj with i € {i:vg; <0, i=1,2,...,m}
is > 0.

ii) If vj020, then at least one of the uj's with j €
{3:vjj <0, 3=1,...,m} is > 0.

iii) If vjg =0, then at least one of the uj's with Je
{j:Yij >0, j=1,...,m} is > 0.
iv) If Ygg.YQ1,---.Yom are all 20, then the uj's which

correspond to Ygj > 0 are zero.

v) If Y§0:Yils...,Yjp are all 20, then the uj's which
correspond to Yij > 0 are zero.

Proof: The proof is easy and can be obtained by inspec-
ting the relationships:

YOO ‘HJ]Ym +,..+ umYOm =0

Y‘iO+p]Y‘i1+"'+ uinm =0 )

and using the nonnegativity of the ui's. a

By using this Proposition we can make some conclusions
about the activity of certain constraints.

v) When we examine a vertex Q= (%7,%2) at same stage k,
and it turns out that Q €4, we can still go ahead and
solve (1) with x;=%;. If the solution is Xp, then we
can take u;_z as the minimum not only of the quantities
mentioned explicitly in Step k but also of cﬁl +CoXp.
Thus we will have an even smaller u*, thing which facil-
itates the exclusion of several vertices.

vi) The implementation of generating the neighboring .
vertices can be done by bringing the constraints into
standard form and by changing the basis. Also the case
of degeneracy needs special care for reasons essentially
the same as those of the classical Linear Programming
problem.

vii) This a1gori‘thm will obviously converge in a finite

" number of iterations after having generated and checked

all the vertices at which the value of Jy is greater or
equal than u .

THIRD ALGORITHM

The basic idea of this algorithm emanates from the
fact that the Leader's problem can be actually written
down equivalently as a Linear Programming problem. This
is due to the fact that minimizing cyx +CoXp subject to
(x1,x2) €% is_equivalent to minimizing c{X; +cpxp sub-
ject to (xj,xz) €convex hull of 4. This 1s so because
the extreme points of £ are the same with those of its
convex hull and the solution of (2) can anyway be
achieved at an extreme point of £. In the following we
construct a Linear Prograrming problem equivalentto (2).
Using the Kuhn-Tucke:.-Karush Conditions we obtain that
(2) is equivalent to:

minimize c]' X1 +c‘,‘_,x2
x-l rxz t 1ad (9)
subject to: d+Aéu =0
A]x] +A2x2 <b
',x'(A]x] +A2x2-b) =0

B 20
Let r
N ) 1 %
A" = : » AZ = : » b = : » M= :
m aém bm Lum



1=10,2,...,m}

Ifi = any subset of I, j = T,w,... N, (N=2")
J_q_ 43
=1-1

The constraint set of (9), can be written equivalently
as

A]x]+A2x.2 <b \
deifay +..tuday = 0

ajy *agxy = by i€ T

aj ;X *agi%y Sy i €1) > (c3)
u:l? 20, i GIJ

u-lj =0,1 6['2’ )

wl = (uf,ug,...,ug)' /

for some j €(1,2,...,N}

Notice that some (C ) might be empty. If a pair(x1 »%2)
let us call it (xf ,xi) is such that for some ul (c3)
holds, this means that (xi xﬂ) is in & Any admissible

(x7.x2)} in (9) can be written as
N N
X = A]x] + ey * AN"]
(x] .xJ) satisfy (Cj.) for some
| s
j=1 N
- " . N J seesy
XZ = x]x2+,._.,+ XNXZ
x],‘...,x 20, xl L O x =1

Notice that we can multiply all the relationships in
(CJ) by AJ and as long as (C ) is empty, the correspon-

ding /J will be 0. Thus, using x"-XJ 1,'.43:) _g we
trans form (C ) to (C")

A d+u]a2] seees t ;;EZm =0

) = P |
h ]+a2] Z A.b. i el]. .
3 J "

ah.x‘ 2y, 2 < A b i EIZ (CJ.)

Hso0,iedd

i 1

i : J

,.ai 0, 1 EIZ »

and our objective is to .

minimize ci(;] +oaeey * ;N)+c'('x';_+ o+ ;g)

subject to: (x]. X, w) € (c3)
Apsens shy 20
A1 + ’""+A)\N =1

or by doing away with the bars over xf ,,1 we reach°d
tha equivalent form:

N

minimize ci(x]+ ceea * x:‘)+cé(x;+,...,+x2

subject to:
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X+ chxp +

i wda =
e 21” et gl = 0
i i
3k * A z Apyr e

1
a! J J j =
3y 14..321 2 < Jbi' i€ I2 J=1,2,...,N

J 2 J
B 0, i € I] (]0)

J : h)
uy 2 0.16[2

A.x0
J

x]+,...,+x =1

o -

wh1ch is a Linear Programming probiem m the variables

N 1 N N i
(X],. . X],XZ,....qu A],---,AN). (“ "(U? ‘Jm))
It should be noticed that even if some (CJ) is empty,

it will not be so for (C"), since (C") always contains

the point xf=0 wi=o, XJ 0. A!so. if X;#0, then
(C ) and (C%) are obviously equivalent. ?‘us if some
3 is emp!].y the corresponding l- will remain 0 for

(C") and thus for problem (10).

Although it is clear by now that the Stackelbarg
problem has been reduced to a cTassical Linear Program-
ming problem (10), the objection can be raised that the
dimensionality of (10) might be quite high (since N =
2m)_  Nonetheless, while solving (10) it will turn out

that most of the xJ s, u" s, Aj's, involved will be
zero during the1teratlons as a little reflection will
persuade the reader. If thls approach of converting

‘the Stackelberg game to an equivalent Linear Programming

problem is to be of any value for large m's, we have ta
find ways to cut down the number of admissible (C_‘i)‘s.
A first step in that direction can be achieved by using
Proposition 1 in order to exclude several of the (C:)’ S.
Another thing one could do is to use a combination af
the first algorithm presented and of the one presented .
here as follows: We start by using the first algarithm
until a Tocal minimum of (2) is found; (thus Step 3(k)
will not be employed). Let us call (x i.%x2i), 1=0,..
.., the points generated. The point }Xu"‘z..) is 2
local solution of (2). To chaeck whether Tt is a global
one, we check its stationarity for problem (10). In
checking these conditions we do not need to consider
thase (C;) which have as active ones the constraints
which ar2 active at any (xy7,x2i), i=1,...,2. If from
(x1,2:%x2 ¢) we move to a new — better point — (xy ; 1
X2 1+1) we can emply agam the first algorithm untii
we 'reach a new local minimum and so on. This combina-
tion of the first and the third algorithms amounts to
using the form (10) only in order to jump from a
possibly local minimum of (2) to a better point.

Having stated the Leader's problem as a Lirear
Programming problem enables us to solve the Stackelberg
problem even if we had employad (2') as the Leader's

objective. Obviously this is equivalent to solving
min [max L‘('£1+ +x )+c (x

J N I ¢
LSt Y Ay ..,+x2)]

subject to the constraints of (10)

This is the problem solved by Falk in [10] which as it
was pointed out earlier is equivalent to solving the
Stackelberg game with (2) where the Follower's cost is

. 1
-Cé(X;" s---s + xp) and the Leader's cost is c](:q +..
seeesy xy) .
DISCUSSION AND CONCLUSICNS
The common goal of the algorithms descrited here

1



is to find the global solution of the Stackelberg pro-
blem posed in (1)-(2) (or (2')). Although they will
achieve that in a finite number of iterations, it is not
clear which one is preferable. For example, if one has
a good guess about the location of the solution, it
seems that algorithm 1 should be preferred. Ifoneknaws
that the solution is close to the global optimum of the
Leader (i.e., the solution of (8), thing which can hap-
pen when the direction of d and ¢ are close) then al-
garithm 2 should be preferred. If one has to terminate
the algorithm before the solution is achieved, then al-
gorithm 2 might have not yet achieved to reach a point
in &t and thus when we stop we will have not even a sub-
optimal solution in J; on the contrary, if algorithm 1
is terminated before it finds the global optimum it will
still provide us with the last point it had found on %,
thing which would guarantee the Leader a certain value
for his cost. Thus, if we know a pri¢ri that we might
have to terminate the algorithm before it finds the glo-
bal optimum, we might prefer algorithm 1. Of course one
can switch back and forth between the first two algor-
ithms. For example, when algorithm 2 provides us with a
first point in £ we switch to algorithm 1 startingmoving
on % and decreasing the Leader's cost; when we find a
local optimum, we find the value of the Leader's cast
there and switch back to algorithm 2 where we will use a
better ug.(see Step k) by considering the value of the
Leader's cost at the Tocal optimum as one of the u} over
which we minimize to find the new uf.

The algorithms presented can be described in the
usual tableau from by setting up the constraints, (3), -
in standard form. This was not done here, as our aim
was to provide the rational and explain the algorithms.
Having achieved that, setting up the tableau form is not
a difficult task. There are several topics related to
the one considered here which merit investigation. For
example, that & is a piecewise linear subset of of boun-
dary of &, and the remark jiif of Section 4, although are
obvious if & is in R3, require a rigorous proof for more
general set-ups. Special techniques are n2eded as to
reduce the computational requirements of the algorithms
as well as simulation studies as to gain further in-
sights. Other questions are those which have to do with
special schemes for handling degeneracy situations,
avoiding the possibility of extensive vertex checking at
Step 3 at the first algorithm and simplifying modifica-
tions needed if (2') is considered instead of (2) in the
third algorithm. Extansions of the algorithms are re-
quired in order ta handle the case where 3 or more
Tevels of hierarchy exist, or there is one Leader and
two Followers which Followers play Nash between them-
selves.
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