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ALGORITHMS FOR LEADER-FOLLOWER GAMES™

GECRGE P. PARAVASSILOPOULDS

Department of Electrical Engineering —~ Svstems
University of Scuthern California

Los Angeies, Califcrnia 30067

ABSTRACT

The purposa of this short paper is to describe some algorithms fur
sclving finite dimensional static Leader-Follower {L-F) problems.

Introduction

The purposz of this short paper is to describe some algorithms for
solving finite dimeasicnal static Leader-Follower {L-F) problems. The L-F
(or Stackelberg) concept has become of increasing importance during the last
yvears [1-10], but despite the m2ny interesting results available, very 1it-
tle attention has besn paid to related algorithmic procedures. The only
attempt in this direction that we know of is in [11], where a penality type
method is used. The algorithms that we describe are different from the one
of []1] We do not report here any theoretical resu1tf’concerning conver-
gence, rate of convargence or computational experience; it is our aim rather
to cutline certain sensible procedures, indicate their connections with
existing optimization algeorithms and delineate divecticns for further inves- -

tigation.

1. Review of Definitions

The general definition ﬂ he finite dimensional static L-F prohTPw is
the following. Let f fz. R 1 2 = R be two functicns and X;.%, &R

Ny+h n, '
given subsets of R i 2; x; € R . f1(f2) represants the cost of the
Leader (Follower) and X his constraint set (X2 for the Follower). For
given X1 the Follower solves
FI v
min f 5{x },nz)

*2 (1)
subjact to: (x],xz) € X,

" n
This probiem defines a mapping T: R - {subset of R 2} where T(Xi) is the

set of x2 s which sslve (1). The Leader solves

. .
This work was supported in part by the U.S. Air Force Office of Scientific

Research under Grant AFQOSR-80-0171.
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X ,X,
. s
Rt 4
subjact to:  (x5.%.) € X, {z;
]
. .
Xy € Ti%q0.
< i

The final aim of the L-F groblem is to soive (2). To aveid the situation
whera (% 0 ) colves (2). and the follower cHJcS?s'?é £ T(?i) with
N n
— .40,
g 211 zasym Y e v ihes f 12
(n],xz) £ Xi’ we Will assume that X, ¢ X, ¥ can be 3 subset f §

determinad through equa]itv or inaguality constrainis.

2. Algorithms

(i) First Clas

=l 55! Let x] (2 be determined by h(x],xz) =0, where h
i3 a function R | < —~R. Then under {smoothness, regularity or convexity)
assumptions, {2} is equivalent to solving

min r]\x],xz,
afZ(XI’XZ) Bh(x3,x2)

subject to: e + 3 %, = 0 &)
iz 0

Mxpxﬁ 5 0.

(3) is a classical nenlinear programming problem with unknowns x;.%,,u.
Application of the known methods will {usually) require that f2 and h are
L ice continususly differentiabie. Solving (3) might not be so appealing,
since we have increased the number of unknowns and constraints. This is not
so bad since we cannct get rid of the constraint Xq € T(x]):without any
punishment. The important issue is to employ a nonlinear programming algo-
rithm for {3) which will take advantage of the underlying L-F problem phi-
losophy. Such algorithms are generated in the sacond ciess below.

(ii) Second Class: Let Ky =%, be determinad by h(x],xz) = 0. Since
for given Xy the Follewer soives (2), it is natural to generate an algo-

rithm based on the following rational: For x; = x,k, the Follower sclves

(2) and finds x,, = xak. The Leader, knowing x.k, qu, noves to
.k, o e SO S S TR

Xy = Xy + dk and the Fecllower solves {2) with T and finds

X2k+] = x,.k + C, The Leader would like to choose dk’ so that

f‘(x]k, xﬁk) > f](x]k+], kt ]), j.e. to improve his cost in the next iter-

acticn, It is reasonable to essume that for d small, so is ¢ 14 what

-
o
cr

Ck-
follows approp 2 regularity or convexity concxulons and suffic
yr

ronr
smoothness of f,,f..h are tacitly assumed. Aiso for simplicit

157



1
iy =10, = 1.) Since x K Soives [2) when % = Xy, 12 will held
‘ é

R IR
4*2("} sxz H ‘“kal <5 y(: -0
3.\'2 ] 2 (4)
LeL kK
X %y ) =0
Similarly
1, 1
5?2(<}krdk.<2 te, kel 9“<(lk+dk’(2&-CV’
53 + N =4
°72 o2
(3}
X, k :
h(x} fdk..‘(z +Ck) = (i,
uk,uk"~£ are Lagrange muitinliers. A first order approximate expansicn of
(%), around x]k,xzL and use of (4) yieids
3
377, {x k,x k) 32f {x k,x,k)
_ 227 072 227 2
0= ¢y + % ck
%355, 3:2‘
1
2 k 2 kK _k Kk
1 3%h{Xy X, ) 3°h{x, ,x,) ) anix. N x, )
k+1 _ 1 k1 Kk 10
‘y ] 72 dk ; 2 el * (R 172 (¢a)
JK]EXZ sz Exz
ah(x]k Azk) . Sh(x‘ ,xzk) N
Era d 5%, ¢, =0 (83)
. k+1 _ k#l ko k . k k
c . { d {» .
Since we zant fl(x] »Xo ) < f]\x] Xy )f expanding f]gx] +dk,x2 +ck)
around X1 Xoo we ¢htain _
BTN CILIT T Y LI
L TP A IO S 0 (7
5X k I, k !
i 2
If ore has an efficient way of solving the system (8a), (5bt), (7) for dk'
Co uk+] then one can datermine dk. The bad thing with this is that (&e) is
] e
nonlinzar since uk+' multiplies dk and Cpr Cf course one could chocse uk"

to be egqual to uk,'which uk is known presumably from the pravious mianiimiza-
tion of (2) and try to find dk.ck as to make the left hand side of (7) as
small as possible. {Cenditions like jid f| =1 fic,l = 1 should be imposed in

dairg that.) If the second crder sufficiency conditions for (2) are satis-
k+1

fied ot (x,¥.0,") and W¥1 is clese to w5, it might hopefully hotd
2., kK 2k k
] re(X]\'xok) iy @ RIx %)
2 2, 2 ) R
Z M 5 = ‘\k >0 (u)
3%y PN

[=2]
wn
w



| . +
{since uk L

3 p 2., %
\ B XA R LR LY
o e T -———~—~J%+

1
[of T - - + ¥ -
k k ax]axz axiax

will be close to uk) and thus solving (8) for ¢, we cbtain

kK
ARk ah(xy 5xg ) \
kO 3%, {9

Substituting ¢, from (9) into (7) and {6b) yields ’

2 2
of 3f a f 5°h af
1 -1 7 2 k] 1 ,-1, k+1 k, 3h
.‘__,A —— - +u rvsren d-—A (}J ~Uu ) N <0 (}Gd)
{342 k 9x3 [ax]axz ex]axz} } 3xy k 3%,
3h  oh 2%f 2% 1)
{_ BNl B ok SO L L FURET N T S BN TR
. ; = ( ; ]
3x) 3%y k 3x33xy dx73%, j 3%, i,
A full rank assumption on §¥L in conjunction with the invertibility of A,
5 ' &
makes (10h) solvable in pk+]-uk, in which case substitution of u‘+]-pk in
(102) results in a single inequality condition for d . Of course A, depends

on uk+], but we can set uk+] equal to uk vhile calculating Ak and use also

uk in place of uk+] in the first term of (10a). Thus we end up with a
single inequality for dk through which dk can be determined, by using
xlk,xzk,uk on}y.

A Tlittle reflection will persuade the reader that the method described
above (after {8)) is a variation of the reduced gradient projection method
for the problem (3), where the unknowns are Xps Xy U- The difference
between this methcd and the reduced gradient method as described in [13] is
essentially the following. In [13] the problem

min f(y,,¥,) ()
subject to: h(y],yz) = 0

is considered and ggl {mxm matrix) is assumed nonsingular. n is considered

as the independent vgriable and then ¥, =_g(y]) (since ggl nonsingular).
{g is not found explicitly.) The procedure of [13] so]veg essentially:
‘min f{y;,9(y,))
In the algorithm we described, the situation is as follows. Starting from
min f(yl»YZ)

subject to: hy(y;s¥,.y5) = 0 , (iz)
(v oy =
folyyavg) =0

854



|
| R .
{{12) corresponds to (3) and (yl’yz’YB) corrgsponds to (x4.x,,u) we consider

31'1]

— {m=m} ponsingular [see (8)) and thus ¥y = g{y},ys) for come 3. Sa, we

2
clve escentially

O}

v

min £{y;,9(y5¥5)73)

subject to: hz(y],g(y].y3).y ) {13}

7
-

in other words whereas in {31} {{13]) the constraint is imp
nated, the aigorithm we described for the L-F problem eliminztas only part
of the constraints of (3) (see (12),(i3)).

Considering the difficulty of handling gradient projection methods and
the intricasies concerning proofs abcut their convergence, rate of conver-
gence and so on, one might feel not optimistic corcerning the algerithm we
described. It should not be forgotten though that the partizl elimination
of constraints methcd that we essentially described, might very well be
suited to several Leader-Follower problems, because perhaps of the type of
functions involved and because it springs up from the philasophy underiying
L-F games as such.

It should also be noticed that if (7) had been substituted by

~ . y
] . k 7 k ’ .
minimize 5;; dy + §§E'Ck ' {vxlxzf]] , (14)
c,, d ¢ <
k* "k k k
Subject to: (6a),{6Eb) i _
we would have ended up with a Newton-type iteration on the submani fold of

[~%

Df] af

ha

the constraints.

A Special Case of the Second Class: Linear Case: In case f],fz are

linear and the constraint set X] = X2 is a polyhedron described by lingar
inequality constraints, the philesophy underlying the algorithm presented
yields a particularly attractive procedure. Llet f](x]xz) = cix] + céxz,
fz(x1.x2) = d]x1 + d2x2 and X = X2 be determined by Alxi + A2x2 =b.-
i di’ b are constant vectors and A}. A2 constant matrices. Let us assume
that the constraint set is bounded. (2) assumes the form
min cyxy + CoX,

subject to: A]x] + Azxz <b {i5)

dyx, d3X,0 VX, With Axy + AX, < b

&



T(xy
reac
lies on the surface of the poiyhedron. Thus we can be moving on the outer

} Ties on the closure of the constraint polyhedron and thus the whole
tion sat £ of the Follower (i.e., the union of T(x, )'s for all Xy 's)

surface of the polyhedron. Our aim is to find a point in & which admits a
supporting h/perp1ane perpendicular to (c ¢y5¢, ) leaving & on the opposite
direction of the one where {- c],-cz) points. These geometric considera-
tions suggest the following algorithm.

Step 1: For given x| we solve the Followers problem and find a soly-
tion Xo-

Step 2: At Xo» We examine all the edges passing from it {finite in
number) as to find those hav‘ng a negative angle with (c],c ).
Call (x] »Xp ) (x X5 €) the extreme points which are the
, ends of those d1rect1ons of decent for f], emanating ffom

(x],xz).

Step 3: Find which ones out of (x]],le)...,(x]e,xze) are stationary
points for d2x2 when we restrict our attention to the hyper-
plane xp = x]](or...or x]e) (By stationary we mean that it
-, 1

solves min d2 2 SUbJEC; to A]x] + A2 ) = b where ?J =X

{or...or ) )) If Xy is stationary, let X1 %X and go to

Step 1. If none is stationary stop.

This algorithm will terminate effectively in a finite number of iter-
ations, but it might converge to a point which is a local minimum of (2),
because the reaction set # is not necessarily convex. The nonconvexity of
% appears although f],f2 and the constraints are linear (convex). The non-
convex character of £ is not easy to deal with. OFf course under conditions
which guarantee convexity (or even less a kind of monotonicity) of 2 this
is taken care of. One such case is the one where d2 =€y where the Leaders
problem can be treated as a team problem; i.e. to solve the L-F game we just
minimize the Leaders cost subject to Xq Xy in the constraint set and forget
about the Followers cost. (This can be done also if f](x],xz) = fz(x],xz)
+ g(x]) with f],fz,g some nonlinear functions, i.e., when the Leaders cost
is the sum of the Followers cost and of another cost which depends on the

Leader's decision only.)

(1ii) Third Class: This algorithm is motivated by the algorithms

856



presented in [12]. The algorithm of [12] deals with the problem

min £(x)
subject to: glx,y) =0 ¥y ¥ (18}
x CX
. . eroas n .
where Y is an infinite (compact) subset of R (x erfMy ¢ R™). The idea in

[127 is to chocse o finite subset Yo < ¥ and substitute g(x,y) <0 vy eV
with g{x,y) =0 ¥y € Yk; after solving the new prodblem which has a finite
number of censtraints, alter Yk to Yk+] and solve a new problem with finite
number of constraints again. An intelligent construction of the Yk'sleads
to the solution of the initial probiem by solving a sequence of problems
with finite number ¢f constra1nts This scheme applies directly to the L-F
problem if the constraints for X%, are not couplad; i.e., X € Xl c R ]
Xy € X ‘R 2, whera xz will assume the role of Y in the aigerithm of [12]
Hon;tne]es;. if the L-F problem is subjected to a constraint of the form
h(x],xz) <0, then (2} beccmes

min f](x],xz)
subject to: h(x],xz)'s 0 (17)
fz(X1,X2)'s folxyoxy) ¥Xy 3: h(x],xa) <0

and thus the set Y depends on x,, i.e., ¥{x)) = {x, h(x],xz) < 0}. Thus,
one should yeneralize the scheme of [12] as to handle the problem

min f{x) )
| subject to: glx,y) =0 Vy € ¥{x) {18)

‘ x € X

if he wishes to employ the rational of [12]. The choice of Yk is quite
difficult since Yk will depend on x. It is not obvious to us how one cando
that. 1In any case, if the c0n<fra1nus of the L-F problem are cf the form
Xy € X]-y R ] Xy €Y ¥, S R , then use of [12]'s algorithm is possible.
Essentially the same discussion applies to the algorithm suggested in [14]
for handling problems with an infinite number of constraints.

The threa types of classes of algorithms that we described qualita-
tively above, seem to provide promising directicns along which a detailed
construction and study of L-F algorithms might go. A guite difficult task

8§57




encerning the L-F algorithms is due to the nonconvex charactar of the

s1lowers reaction set. Of course difficulties due to ronconvexity appear
in many optimization problems and one cannct expect the researchers inter-
astad in L-F algorithms to resolve the “ncnconvex" issues. What is reason-

51a though is to consider subclasses of L-F problems (such as those where
the Leaders problem is essentially a team problem, see end of discussionon
the Second Class of Algorithms) and prove global convergence of the aige-
ithns under approgriate (convexity 7) assumptions on the constraints and
cost which yield a nicely behaved reaction sat. The study of jocal con-
vergence of the second class algerithus can benefit by knowiedge concerning
radiant projection methods [13].

As far as it concerns the algorithms of the third class it would be

worthy to try to bypass the dependence of Y on x keeping still in force the

ideas of [12] or [14].
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