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Abstract

We present an overview of the key developments in the methodological, structural,
and computational aspects of the Bilinear Matrix Inequality (BMI) feasibility problem.
In this direction, we present the connections of the BMI with robust control theory, its
geometric properties, including interpretations of the BMI as a rank constrained Linear
Matrix Inequality (LMI), as an Extreme Form Problem (EFP), and as a Semi-Definite
Complementarity Problem (SDCP). Computational implications and algorithms are
also discussed.

1 Introduction

The simultaneous appearance of the (unknown) variables x and y in the matrix inequality:

n∑
i=1

m∑
j=1

xiyjFij > 0,(1.1)

for a given set of symmetric matrices Fij ∈ Rp×p (i = 1, . . . n; j = 1, . . . m), not only
provides an unexpectedly powerful formulation for a wide range of robust control problems,
but also introduces new and elegant structural and computational questions. A possible
initial attempt to rename the products xiyj as zij in (1.1) and rewriting it in terms of zij ’s
as a linear matrix inequality (LMI) [6],∑

i,j

zijFij > 0,(1.2)

introduces yet another twist to this problem, since the unknown variables zij ’s are now
constrained to be related in a rather peculiar manner, for example,

zijz(i+1)(j+1) = xiyixi+1yi+1 = zi(j+1)z(i+1)j .

Since at the present time this approach seems to present neither aesthetic insights, nor
suggest a computational approach for finding the variables x and y in (1.1) (or prove the
non-existence of them), we abandon our initial temptation and decide to treat the problem
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with complete regard to its most distinguished property: bilinearity; we shall refer to this
problem as the Bilinear Matrix Inequality (BMI).

What makes the BMI an extremely important problem in robust control, however, is
far beyond an initial mathematical curiosity to make the LMI “bilinear.” The BMI is
introduced in response to some of the most important issues facing the field of robust
control, and in particular those which can not be addressed in the LMI framework [20],
[54].

The chapter presents various facets of the research performed by the authors and their
colleagues on the BMI problem. The topics to be covered are categorized as,

1. methodological,
2. structural, and
3. computational.

Under the first category, we present the very important results pertaining to the
formulation of the robust synthesis problems as a BMI. In particular, we cover reformulating
the µ/km synthesis [13], [51], along with specifications on the controller order and structure,
to a BMI. Our presentation in this part is based on the results reported in Safonov et al. [54],
and influenced by the dissertations of Goh [19] and Ly [38].

We then proceed to present some of the structural aspects of the BMI. It turns out
that the investigations into the geometry of the solution set of the BMI lead to some very
interesting non-convex and convex programming problems over cones. In particular, we
discuss the results pertaining to the equivalence of the BMI with examining the magnitude
of the diameter of a certain convex set [55]. The results connecting the BMI to a
class of cone optimization problems, namely, the Semi-Definite Complementarity Problems
[28], [39], [41], [42], will also be given particular attention. The computational methods
for solving the BMI are briefly reviewed in the final section.

§1.1 introduces the relevant preliminaries.

1.1 Preliminaries

1.1.1 Convex Analysis. Let H be a finite dimensional Hilbert space equipped with the
inner product < ·, ·>: H × H → R (e.g., the n-dimensional Euclidean space or the space
of n × n matrices, with the appropriate notion of an inner product defined on them). A
set K ⊆ H is a cone if for all α ≥ 0, αK ⊆ K. K is a convex cone, if K is a cone and it
is convex, i.e., for all α ∈ [0, 1], αK + (1 − α)K ⊆ K, or equivalently, if K is a cone and
K + K ⊆ K. A convex cone K is called pointed if K ∩ (−K) = {0}, and solid if it has a
non-empty interior. An extreme form (or an extreme ray) of a convex cone K is a subset
E = {αx : α ≥ 0} of K, such that if x = αy +(1−α)z, for 0 < α < 1, and y, z ∈ K, one can
conclude that y, z ∈ E [23], [24]. The set of extreme forms (rays) of the cone K is denoted
by K̇. The dual cone of a set S ⊆ H, denoted by S∗, is defined to be,

S∗ = {y ∈ H :<x, y>≥ 0; ∀x ∈ S}.

If S is a pointed closed convex cone, then the interior of its dual cone, int S∗, is given by,

intS∗ = {y ∈ H :<x, y>> 0; ∀x ∈ S, x 6= 0}.

A closed convex cone in a finite dimensional Hilbert space is pointed if and only if its dual
is solid [4]. In particular, SRp×p

+ is a pointed, closed, and self-dual cone — the cone which
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induces the ordering used in the LMI and the BMI formulations. It can easily be shown
that S∗ is always a convex set, and that if S1 ⊆ S2, then S∗2 ⊆ S∗1 . In addition, S = (S∗)∗ if
and only if S is a closed convex cone. Given a pointed closed convex cone K ⊆ H, a linear
map M : H → H is called K-positive if for all 0 6= X ∈ K, M(X) ∈ intK∗. Furthermore, a
linear map M : H → H is called K-copositive if <X,M(X)>≥ 0, for all X ∈ K [4], [22],
[28].

We are now ready to formulate the cone problems that are considered in §3.2. The
Cone-LP is formulated as follows: Given a cone K ⊆ H, a linear map M : H → H, and the
elements Q and C in H, find Z ∈ H (if it exists) as a solution to:

min < C, Z >(1.3)
Z ∈ K,(1.4)

Q + M(Z) ∈ K∗.(1.5)

Similarly, the Cone-LCP is formulated as follows: Given a cone K ⊆ H, a linear map
M : H → H, and Q ∈ H, find Z ∈ H (if it exists) such that:

Z ∈ K(1.6)
Q + M(Z) ∈ K∗,(1.7)

< Z, Q + M(Z) >= 0.(1.8)

The above instances of the Cone-LP and the Cone-LCP shall be referred to as the
Cone-LPK(C,Q,M) and Cone-LCPK(Q,M). When K is the nonnegative orthant in
the n-dimensional Euclidean space, the Cone-LPK(C,Q,M) (1.3)–(1.5) and the Cone-
LCPK(Q,M) (1.6)–(1.8), are equivalent to the familiar Linear Programming and the Linear
Complementarity problems [8], [9].

A problem which serves as a bridge between the BMI and the Cone-LP/LCPs is the
Extreme Form Problem (EFP): Given a pointed closed convex cone K ⊆ H, a linear map
M : H → H, find X ∈ H (if it exists), such that,

X ∈ K(1.9)
M(X) ∈ int K∗,(1.10)

X is an extreme form of K.(1.11)

The above instance of the EFP is referred to as the EFPK(M). When K is the nonnegative
orthant in the n-dimensional Euclidean space, the EFP is a trivial problem. It should be
noted that the solution set of an EFP is generally nonconvex; given the two extreme forms
of K that solve the EFPK(M), a strict convex combination of them is not an extreme form
of K. It is also important to note that the EFP requires M(X) to lie in the interior of
the dual cone. This is in light of the fact that for certain important classes of linear maps
M , including the map that is encountered in the context of the BMIs, M(X) is known
to lie in, but possibly on the boundary of, the dual cone, for all the extreme forms X of
the cone K. As it is shown in §3.2, the EFP formulation, in-spite of its nice geometrical
interpretation, includes as its special case, the BMI problem. Since the extreme forms of
the matrix classes which are considered in the chapter can be characterized by their rank,
the EFP formulation of the BMI also translates directly to a rank minimization problem
over a convex set of matrices [39] (refer to §3.2).
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Fig. 3. T∆ := FU{∆(s), FL{G(s),K(s)}}

1.1.2 Control Theory. We use ri and si to denote the dimensions of ith input and the
ith output of the finite dimensional linear time invariant (LTI) plant G(s), respectively;
the order of G(s) is denoted by n; similarly q and qM designate the order of the controller
and the multiplier to be synthesized.

Consider the LTI plant G(s) partitioned as,

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]

:= FU

{
1
s
I,SG

}
,(1.12)

where
SG :=

 A B1 B2

C1 D11 D12

C2 D21 D22

(1.13)

and A ∈ Rn×n, D11 ∈ Rs1×r1 , D22 ∈ Rs2×r2 and Gij(s) := Dij + Ci(Is−A)−1Bj .
With respect to this particular partition of the transfer matrix G, the feedback

connection shown in Figure 1 has the transfer function

T (s) := FU

{
1
s
I,

[
At Bt

Ct Dt

]}
:= FL{G(s),K(s)} ,(1.14)

where K(s) denotes a controller of order q given by

K(s) := FU

{
1
s
I,SK

}
(1.15)
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and

SK :=

[
AK BK

CK DK

]
.(1.16)

The inclusion of the uncertainty in this framework is now really an extra bonus; see
Figure 3. The resulting transfer function from u1 to y1 is simply,

T∆ := FU{∆(s), T (s)}

provided that all the appropriate inverses exist.
Motivated by the way that uncertainty manifests itself in the generalized plants (those

which include the nominal plant, the sensors, and the actuators), one is lead to consider
uncertainties of the form:

∆ = diag[δ1In1 , . . . , δLInL ,∆L+1, . . . ,∆L+F ](1.17)

for some prescribed positive integers L, F , and n1, . . . , nL, such that ‖∆‖∞ ≤ 1. The δi’s
are real or complex valued, and in general correspond to parametric uncertainties; ∆i’s on
the other hand are time invariant operators used to account for such things as unmodeled
dynamics. Given that ∆ has arisen from our modeling technique and/or our inadequate
knowledge about the nature of things, and that G is a physical reality, K is our only hope
to make the system in Figure 2 operate in a way that is desirable to us: the controller K is
chosen to provide internal stability and (external) performance for all possible perturbations
∆; performance in robust control setting is often taken as the ability of the system to reject
the disturbances lumped in the term u1, necessitating not only ‖T‖∞ < 1 (as the result of
the small gain condition, the so-called bounded realness of the operator T [56], [61] ) but
also requiring ‖T∆‖∞ to be as small as possible.

Let us shift our attention back to the unperturbed configuration of Figure 2. It is
well-known that the bilinear sector transform T̃ (s) = sect{T (s)} := (I−T (s))(I +T (s))−1

maps bounded real systems ‖T (s)‖∞ < 1 into positive real systems Herm(T̃ (jω)) > 0 and
vice versa. A routine calculation reveals that the state space matrices of T̃ (s) = sect{T (s)}
and T (s) are related by

S
T̃

:=

 Ãt B̃t

C̃t D̃t

 = FL{S,ST } ,(1.18)

where

S :=


0 0 I 0
0 I 0 −

√
2I

I 0 0 0
0

√
2I 0 −I

 ;(1.19)

the corresponding bilinearly transformed open-loop plant has the state-space system matrix

SG̃ :=


Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21 D̃22

 = F{S,SG} .(1.20)

It is known that we may linearly parameterize the set of realizable S
T̃

matrices as
follows [45], [46]:

S
T̃

= R + USQV ,(1.21)
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where SQ is the state space system matrix of

Q(s) := K(s)
(
I − D̃22K(s)

)−1
,(1.22)

and [
R U

V D̃22

]
:=


Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21 D̃22

 .(1.23)

Thus we have all the necessary machinery to translate between positive real and
bounded real conditions. The principle tool in translating frequency domain results related
to positive real conditions in terms of the corresponding matrix inequalities is the following
important lemma.

Lemma 1.1 (Generalized Strong Positive Real LMI: [1], [54]). Let G(s) =
C(Is−A)−1B + D be a minimal state-space realization. Then for some ε > 0

Herm(G(jω)) > εI ∀ω,

if and only if there exists P = P T such that

Herm(

[
−P 0
0 I

] [
A B
C D

]
) > 0.(1.24)

Moreover, G(s) is stable if and only if P > 0.

2 Methodological Aspects of the BMI

Mathematics often takes a precise problem formulation as its starting point, theoretical
research in engineering more often than not takes it close to its ending. It is common to see
statements like “since this problem is equivalent to solving a system of linear equations, we
consider the problem solved,” in the engineering literature. But when should we consider
an engineering problem solved? Certainly, one could respond to this question by saying
that an engineering problem is solved when the corresponding mathematical problem is
solved; however, this correspondence is never one to one and, moreover, there are still
many questions as to when a mathematical problem, specially in optimization, is declared
to be solved. Let us then take the following as our starting point:

An engineering problem is solved when a computationally reasonable method
(on a reasonable model of computation) exists for at least one of its equivalent
mathematical formulations.

Given that the statement above is a reasonable approximation to our actual motivation
in control research, we strive for a problem formulation which leads to an efficient
computational method for the solution of a control problem. On the other hand, when
formulating an engineering problem, we are inclined to formulate it in such way that the
mathematical formulation is directly linked to our engineering intuition and judgment.
The frequency domain techniques in control system design is a prime example of such
preferences. To make matters even more interesting, we often search for a formulation which
not only captures our engineering considerations, but that which has a nice mathematical
representation. Alas often these considerations cannot be satisfied at the same time,
although exceptions exist.1

1Linear Programming, the Simplex Algorithm, and the corresponding economic interpretation, are
beautiful examples of such an interaction — even though finding a polynomial time algorithm for Linear
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The engineering problem considered in this chapter is the synthesis of controllers for
systems whose models are not precisely known. We adopt the framework of the robust
control theory, and in particular that of µ/km analysis and synthesis. Roughly speaking,
with reference to Figure 1, µ/km synthesis is the problem of finding the controller K such
that FU{∆, T} is stable for all admissible ∆’s. Since one would like to exploit the structure
of the uncertainty ∆ (of the form 1.17) in order to establish stability, we are led beyond
requiring ‖T‖∞ < 1 to such conditions as solving [62],

inf
D(s),K(s)

‖D(s) FL{G(s),K(s)}D(s)−1‖∞,(2.25)

where D is a stable, minimum phase scaling matrix such that D(s)∆(s) = ∆(s)D(s);
the infimum is guaranteed to provide a lower bound (upper bound) for the multivariable
stability margin kM [49], [50] (resp. µ [11]), where for an asymptotically stable transfer
matrix T (s),

kM := inf
w∈R

inf
∆
{k : det(I − kT∆) = 0)}(2.26)

and

µ := 1/kM .(2.27)

The D-K iteration is a solution method for the µ/km synthesis which proceeds by
alternating between solving an H∞optimization problem by fixing D(s) in (2.25), followed
by a convex optimization with K fixed [2], [7], [51]. An improvement in the conservativeness
of the D-K iteration is known as the D,G-K iteration [15], [47]. Both design techniques
can be enhanced by considering the µ/km synthesis in the positive real framework, resulting
in what is known as the M -K iteration [53]. The M -K iteration approach has a very nice
property of being able to bypass the curve fitting step in the D-K iteration; this latter
approach in fact forms the basis for the proof of Theorem 2.1 (below).

2.1 Limitations of the LMI Approach

It remains true however that much difficulty remains in the robust synthesis of practical,
non-conservative controllers. At least three very important classes of robust control design
issues have not been found to be readily transformable into the LMI framework, which has
offered a very promising direction to study many robust analysis problems. These are (1)
µ/km-synthesis via dynamical scalings/multipliers, (2) fixed-order control synthesis and (3)
decentralized controller design (i.e., synthesis of controllers with “block diagonal” or other
specified structure).

• Consider the robust control problem of µ/km-synthesis. Current µ/km techniques
[2],[7], remain inherently conservative, i.e. sub-optimal, because the D-K iteration
approach of alternately synthesizing first a controller K(s) and then diagonal scalings
D(s) is in no way guaranteed to achieve a globally or, it turns out, even a locally
optimal solution. The D-K iteration can, in theory, get stuck at points which are
local minima with respect to D alone and with respect to K alone, but are not a true
local minima with respect to joint variations in D and K.

Programming which corresponds to a certain pivoting strategy of the Simplex method is still an open
problem.
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• One of the main objections to the modern control synthesis theories, such as LQG,
H∞ and µ/km, is that the resultant controllers are typically of relatively high order
— at least as high as the original plant and often much higher in the very usual case
where the plant must be augmented by dynamical scalings, multipliers or weights in
order to achieve the desired performance.

• Control system designs for very large or complex systems must often be implemented
in a decentralized fashion; that is, local loops are decoupled and closed separately with
little or no direct communication among local controllers. The synthesis of optimally
robust decentralized systems has obvious benefits. However, even the synthesis of
optimal decentralized H∞ and LQG control systems has remained beyond the scope
of the existing theories.

Neither the LMI framework nor other existing theories has yet proved to be sufficiently
flexible to handle problems in the foregoing classes. The purpose of this section is to
demonstrate that the BMI framework is sufficiently flexible to simultaneously accommodate
all three of the foregoing types of control design specifications, in addition to handling all
those which the LMI handles. In particular we provide a proof of the following theorem:

Theorem 2.1 ([54]). The µ/km synthesis problem can be formulated as the following
matrix inequality: Given real matrices Raug, Uaug, Vaug, and RÃt

, UÃt
, VÃt

, find matrices
Z,SQ such that

Herm(Z


[

In+q 0
0 RÃt

+ UÃt
SQVÃt

]
0

0 Raug + UaugSQVaug

) > 0(2.28)

where

Z :=



[
X 0
0 −X

]
0

0

 −P 0 0
0 W 0
0 0 W



(2.29)

and P = P T and X = XT ∈ R(n+q)×(n+q), and W is constrained to have the structure
consistent with the uncertainty structure of the underlying µ/km problem (1.17).

The rest of this section is devoted to the proof of Theorem 2.1 and one of its important
consequences in the design of the decentralized controllers.

2.2 Proof of Theorem 2.1

We first make a note of the following: any constraint of the form xi = 1, yi = 1 for an
instance of the BMI can be transformed to an instance with no such constraints [54].

Proof. [54] In the µ/km-synthesis procedure outlined in [53], the µ/km problem is shown
to be solved if there exists a suitably structured block-diagonal rational multiplier matrix
M(s) such that

Herm(M(s) sect{T (s)}) > 0, ∀s = jω.(2.30)

No constraint is placed on the stability of M(s), but it is required to be uniformly bounded
on the jω-axis and to satisfy the generalized strong positive real condition, i.e., for some
ε > 0,

Herm(M(s)) > εI, ∀s = jω.(2.31)



Bilinearity and Complementarity in Robust Control 9

It is supposed in [36] (without loss of generality if N = ∞) that M(s) is a weighted sum of
certain suitably structured block-diagonal transfer function matrices Mi(s),

M(s) :=
N∑

i=1

Wi Mi(s) ≡ WM̃(s),(2.32)

where
M̃(s) :=

 M1(s)
...

MN (s)

(2.33)

and W := [W1, . . . ,WN ] ∈ Rs1×qs1 . In most cases Wi ∈ R but, more generally as when
there are repeated uncertainty blocks, Wi may be block diagonal matrices of a certain
specified form. The specific details of the structure constraints on Wi and Mi(s) required
for the various types of real and/or complex uncertainty block structures are described
in [36] and [52].

One may form the “augmented” closed-loop system

Taug(s) :=

[
M(s) sect{T (s)} 0

0 M(s)

]
;(2.34)

then, Taug(s) has a state-space realization of the form (1.21)

STaug :=

[
Aaug Baug
Caug Daug

]
= Raug + UaugSQVaug.(2.35)

In view of the form of (2.34), Aaug naturally assumes the form

Aaug =

 Ãt 0 0
∗ AM̃ 0
0 0 AM̃

 ,(2.36)

where AM̃ denotes the A-matrix of M̃(s) and Ãt ∈ R(n+q)×(n+q) is the A-matrix of the
bilinear sector transformed closed-loop plant sect{T (s)}. Under (2.30)–(2.31), the stability
of sect{T (s)} is equivalent to the stability of the original untransformed closed-loop plant
T (s) [53]. In view of (2.36) and (2.35), one has

Ãt = RÃt
+ UÃt

SQVÃt
:= En+q(Raug + UaugSQVaug)ET

n+q,(2.37)

where,
En+q := [In+q, 0, . . . , 0] .(2.38)

Theorem 2.1 is now proved by applying Lemma 1.1 for checking the positive realness of
Taug.

We note that the matrix P in the above theorem is the solution to the LMI which
results from the application of Lemma 1.1. Since we do not require Aaug to be stable, no
definiteness condition is imposed on P . Instead, stability of the closed-loop Ãt (and hence
T (s)) is ensured by testing existence of X = XT > 0 such that Herm(−XÃt) > 0 (e.g.,
[44][page 63]); this is the role of the matrix X in the BMI (2.28).

Clearly (2.28) is a BMI feasibility problem. It is jointly linear in the parameters of
the matrices W,X, P . It is affine in the controller parameter matrix SQ. Some special
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cases of this problem have been found by Packard et al. [45], [46] to be reducible to LMI’s
via the Parrott theorem. These include full-state feedback H∞ and full-order H∞ with
constant diagonal scalings (M(s) = “Constant Matrix”), as well as certain simultaneous
stabilization and related gain scheduling problems. But optimal solution to even the fixed
order (q < n) H∞ problem (i.e., M(s) = I) has remained previously elusive despite some
determined efforts. The foregoing BMI formulation (2.28) provides a simple formulation of
these and the related synthesis problems.

Interestingly, the BMI formulation is flexible enough to accommodate constraints on
controller structure as well. To simplify matters, we make the following assumption (refer
to (1.13)):

D22 = 0.

Hence by (1.22),

K(s) = Q(s).(2.39)

Note that no significant loss of generality results from this assumption since it can always
be made to hold via a singular perturbation of the plant (given that our constraints do not
require infinite bandwidth controller).

With D22 = 0, it is clear that the controller K(s) inherits the same block structure
as Q(s). In particular, if the state-space matrices AQ, BQ, CQ, DQ are constrained to
have a block-diagonal structure, then K(s) will be block-diagonal too; i.e., K(s) will be a
“decentralized” controller.

2.3 Why is the BMI Formulation Important?

We conclude this section with a recapitulation of the reasons why the BMI formulation is
important:

• The main attraction of the BMI formulation is its simplicity and generality. It allows
the controller and multiplier/scaling optimization in µ/km-synthesis to be formulated
as a single finite dimensional optimization over the controller parameters SQ and the
multiplier/scaling and Lyapunov parameters W,X, P . Consequently, application of
nonlinear programming techniques to the BMI at least assures convergence to a joint
local optimum in D and K — the D-K iteration of µ/km-synthesis cannot make this
claim. The BMI formulation also eliminates the curve fitting step of the traditional
D-K iteration approaches to µ/km.

• A broad spectrum of robust control synthesis problems can be formulated within
the BMI framework. These include order-constrained controller µ/km-synthesis
with specifications requiring such additional properties as decentralized control.
Gain scheduling and simultaneous µ/km-synthesis for several plants also fall in this
framework.

We note however that the BMI formulation is not without its drawbacks. One major
concern is that biconvex optimization problems are in general difficult to solve. Moreover,
much available structure is hidden in the BMI formulation. For example, we know that
the BMI for the full order output feedback H∞ synthesis may be reduced to an LMI. It
seems unlikely however that order constrained or decentralized control problems will admit
an LMI embedding. It will be interesting to see just how broad a class of BMI’s will admit
an embedding within the LMI framework.
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3 Structural Aspects of the BMI

Optimization often provides a very convenient framework for constructing computational
procedures for a wide range of problems. Applying a standard trick that changes a feasibility
problem to an optimization one results in rewriting the BMI as,

inf α(3.40)

subject to

αI +
∑

i

∑
j

xiyjFij ≥ 0;(3.41)

the BMI has a feasible point if and only if the value of the infimum is negative. At this
point we can theoretically apply some general purpose global optimization technique to
(3.40)–(3.41). Our intuition however suggests that the geometrical properties of the BMI
should be useful in the construction of the computational procedures. Our goal is to gain
as much insight into the geometrical and analytic properties of the BMI to the extend that
our choice of the algorithm for its solution is judicious and transcends beyond a rather blind
application of some global optimization technique.

There are at least three issues which have to be addressed in connection with the BMI
and the global optimization methods:

1. What are the geometric interpretations of the BMI?

2. What are the specific properties of the global optimization problem which arises from
the BMI, and whether these properties can be used to devise more efficient algorithms
for the BMI?

3. Which instances of the BMI can be solved efficiently? Moreover, are there instances
for which certain “structural” properties can be established?

All of the above issues can be addressed by studying the BMI on its own. We believe
however that many important structural and computational issues of the BMI can be
studied by establishing a connection between the BMI and problems which are more well-
understood in optimization theory. This section is devoted to such investigations. In the
first part, we present the result showing that the BMI can be formulated as a convex
maximization problem. The second part establishes the connection between the BMI and
two optimization problems over cones, namely the Extreme Form (EFP) and the Semi-
Definite Complementarity Problems (SDCP).

The two approaches discussed in this section, beside providing very nice geometrical
insights into the structure of the solution set of the BMI, also suggest computational
procedures for its solution, a subject which we shall comment on in §4.

3.1 Concave Programming Approach

It is shown that a BMI has a non-empty solution set if and only if the diameter of a certain
convex set is greater than two. The convex set in question is simply the intersection of
ellipsoids centered at the origin. In this avenue we end up addressing the first two issues
raised above about the relationship between the BMI and the global optimization methods.
Specifically, we prove the following theorem.

Theorem 3.1 ([55]). The BMI (1.1) is feasible if and only if the diameter of a suitably
constructed convex set C is strictly greater than 2; i.e.,

max
w1,w2∈C

‖w1 − w2‖ > 2.(3.42)
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The implications of Theorem 3.1 are twofold. First, it opens up a wide range of
possibilities for the application of the concave minimization algorithms for the solution
of the BMI. At the same time, the concave minimization result indicates, in a rather
transparent way, why it is not a good idea to spend research time looking for a polynomial
time BMI solvers.2 This is due to the fact that concave minimization belongs to a class of
computational problems for which the existence of a polynomial time algorithm is highly
unlikely (concave minimization is NP-hard [59]). The NP-hardness of the BMI was also
explicitly proved in [58].

The rest of the section is devoted to the proof of the Theorem 3.1 and some of its
implications [55].

We begin by noting that the BMI problem, that of finding the vectors x and y such
that

∑
ij xiyjFij > 0 (1.1) is equivalent to finding the corresponding vectors such that∑

ij xiyjFij < 0, which can be written as,

min
‖z‖=1,z∈Rp

xT G(z)y < 0(3.43)

where
[G(z)]i,j = zT Fijz ∈ Rn×m.(3.44)

Let ρ be a real positive number such that

ρ > max
‖z‖=1

σmax(G(z))(3.45)

and let C ⊆ Rn+m be the convex set

C := {w : wT Q(z)w ≤ 1, z ∈ Rp, ‖z‖ = 1}(3.46)

where

Q(z) =

[
I 1

ρG(z)
1
ρGT (z) I

]
.(3.47)

Notice that by (3.45), one has that the matrix Q(z) > 0, for all ‖z‖ = 1. It follows that
the set C is the intersection of ellipsoids in Rn+m.

Suppose that C has diameter strictly greater than 2. C is the intersection of an infinite
number of ellipsoids and thus its maximum diameter is achieved at some w̄1 = (x̄, ȳ) on
the boundary of C and, by symmetry, also at w̄2 = −w̄1. It thus holds that,

w̄T
1 Q(z)w̄1 ≤ 1, ∀z, ‖z‖ = 1(3.48)

where

w̄1 :=

[
x̄
ȳ

]
(3.49)

and
‖w̄1‖ = ‖x̄‖2 + ‖ȳ‖2 > 1.(3.50)

Inequality (3.48) is equivalent to

‖x̄‖2 + ‖ȳ‖2 +
2
ρ
x̄T G(z)ȳ ≤ 1, ∀z, ‖z‖ = 1(3.51)

2It is generally accepted in computer science that polynomial running time of an algorithm is equivalent
to efficiency.
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from which it follows that

2
ρ
x̄T G(z)ȳ ≤ 1− (‖x̄‖2 + ‖ȳ‖2) < 0.(3.52)

Thus
x̄T G(z)ȳ < 0, uniformly in z, ‖z‖ = 1.(3.53)

and consequently −x̄, ȳ satisfy (1.1).
On the other hand, suppose (−x̄, ȳ) satisfy (1.1). Without loss of generality we may

assume ‖x̄‖2 + ‖ȳ‖2 = 1. It then holds that[
x̄
ȳ

]T

Q

[
x̄
ȳ

]
= ‖x̄‖2 + ‖ȳ‖2 +

2
ρ
x̄T G(z)ȳ(3.54)

= 1 +
2
ρ
x̄T G(z)ȳ < 1,(3.55)

uniformly in z, ‖z‖ = 1. Thus the radius of the set C is strictly greater than (‖x̄‖2+‖ȳ‖2) =
1. Since C is hermitian and centered about the origin, the diameter is precisely twice the
radius. Hence, the diameter of C is strictly greater than 2.

The ρ’s used in (3.47) may all be the same or they may be chosen to depend on z. All
we need is to guarantee that

Q(z) =

[
I 1

ρG(z)
1
ρGT (z) I

]
> 0(3.56)

and thus we can take ρ to be z-dependent, e.g.,

ρ = ρ(z) > σmax(G(z)).(3.57)

Finding a different ρ for each z is a laborious task. A single constant ρ that will satisfy
(3.45) for all z can easily be computed via the matrix inequality

σmax(Q̄) ≤ σmax(abs(Q(z))) ≤ σmax(Q)(3.58)

where ij-th entry of the n×m matrix Q̄ is given by

[Q̄]ij = σmax(Fij).(3.59)

In view of Theorem 3.1, the following statement is obvious: Consider the optimization
problem,

max
x,y

‖x‖2 + ‖y‖2(3.60)

subject to [
x
y

]T [
I 1

ρG(z)
1
ρGT (z) I

] [
x
y

]
≤ 1 ∀z ∈ Rp, ‖z‖ = 1.(3.61)

Then, there exists a feasible pair (x, y) (1.1) if and only if the global optimum of (3.60)–
(3.61) is strictly greater than 1; note that since all points of the form (x, y) = (x̂, 0) or
(x, y) = (0, ŷ) with ‖x̂‖ = ‖ŷ‖ = 1 satisfy (3.61), the optimum of (3.60) is always greater
than or equal to 1. Actually, instead of solving the problem (3.60) for its global optimum,
all we need is a point (x, y) where J(x, y) > 1. Note that (3.60)–(3.61) is a nonlinear
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programming problem where a convex function is to be maximized subject to an infinite
number of quadratic constraints (parameterized by z) all of which are ellipsoids centered
at the origin.

We note that the BMI can be formulated as follows: Find an n×m matrix N of rank
1 (i.e., N = xyT ) such that for all z, with ‖z‖ = 1,

Tr(G(z)N) = xT G(z)y < 0;(3.62)

that is, in the Hilbert space of n×m real matrices find a hyperplane that strictly separates
the origin from the set W = {G(z) | ‖z‖ = 1} and in addition it should hold that the
matrix N that defines the perpendicular to this hyperplane is of rank one. In the absence
of the restriction rank(N) = 1, the problem may be interpreted as the LMI,

ε∗ = min
ε,N

ε(3.63)

subject to

Tr(NG(z)) ≤ ε, ∀z, ‖z‖ = 1(3.64)
|[N ]ij | ≤ 1, ∀i = 1, . . . , n; j = 1, . . . ,m;(3.65)

a solution exists if and only if the minimal cost ε∗ < 0. If the rank of N is restricted
to be less than min{m,n}, the LMI formulation fails. We notice that the (3.63)–(3.65)
formulation of the BMI comes remarkably close to an LMI. At the same time however,
this problem formulation signifies the role that rank restricted LMIs play in the control
synthesis problems in a rather transparent way.

We shift our attention now to the cone programming formulations of the BMI.

3.2 Cone Programming Approach

We present an approach for solving the BMI based on its connections with certain problems
defined over matrix cones. These problems are, among others, the cone generalization of
the linear programming (LP) and the linear complementarity problem (LCP) (referred to
as the Cone-LP and the Cone-LCP, respectively). Specifically, we show that solving a given
BMI is equivalent to examining the solution set of a suitably constructed Cone-LP or Cone-
LCP. In this direction we end up addressing all of the issues raised above pertaining to the
BMIs and global optimization techniques.

The main results proved in this section are the following.
Theorem 3.2 ([39]). The BMI is an instance of the EFP.
Theorem 3.3 ([39]). The BMI has a solution if and only if a suitably constructed

SDCP with a copositive linear map has a rank one solution.
The emphasis of this section is on the matrix theoretic aspects of the cone problems

which the BMI leads to. In this direction, we spent quite an effort to understand the
geometry of a certain classes of matrix cones, and subsequently to establish their relevant
properties, helpful in our understanding of the BMI.

The rest of this section is devoted to the proofs of the above two theorems.

3.2.1 Few Initial Steps. Let us rewrite the BMI (1.1) as:∑
i

xi

∑
j

yjFij =
∑

i

xiF
y
i > 0(3.66)
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where,
F y

i =
∑
j

yjFij ∈ SRp×p.

As it becomes apparent by the subsequent developments, it is convenient to assume that
m = p, and when necessary, that yj ’s (1 ≤ j ≤ m), are nonnegative. The first assumption is
made to avoid defining inner products between matrix classes of different dimensions. The
second assumption is made in §3.2.2 to facilitate the formulation of the problems in terms
of dual cones. In §3.2.3 shall drop the non-negativity assumption on the vector y for the
Cone-LCP formulation. These assumptions are warranted for the following reason. First,
note that if we define F x

j =
∑

i xiFij ∈ SRp×p (1 ≤ j ≤ m), then
∑

i xiF
y
i =

∑
j yjF

x
j .

But the last sum is a linear inequality in F x
j ’s. Thus, as it is customary in the Linear

Programming, one can assume that m ≤ p and that yj ’s are positive (by an appropriate
augmentation). Now we would only need to define Fij ≡ 0 (1 ≤ i ≤ n;m < j ≤ p), for the
assumption m = p to be justified.

Recall that the Gordan’s theorem of alternative [8], [57], relates the solvability of the
following two systems of linear inequalities: Given A ∈ Rm×n, the system Ax > 0 has a
solution if and only if the system yT A = 0, y ≥ 0, y 6= 0, has no solution. This theorem can
be generalized for the linear inequalities over matrix cones as follows:

Proposition 3.1. Given the symmetric matrices A′
is ∈ SRp×p (1 ≤ i ≤ n), the system∑n

i=1 xiAi > 0, has a solution if and only if the system,

Tr(AiZ) = 0, (1 ≤ i ≤ n), Z ≥ 0, Z 6= 0,

has no solution.
¿From the Gordan’s theorem of alternative over the cone of symmetric positive semi-

definite matrices, one concludes that the BMI (1.1) does not have a solution if and only
if,

(∀y ≥ 0) (∃Z ≥ 0, Z 6= 0) : Tr(F y
i Z) = 0.(3.67)

Therefore, the BMI (1.1) has a solution if and only if,

(∃y ≥ 0) (∀Z ≥ 0, Z 6= 0) :
∑

i

Tr(F y
i Z)2 > 0.(3.68)

Now let,

Fi = [

p︷ ︸︸ ︷
vec Fi1 0 . . . 0,

p︷ ︸︸ ︷
0vec Fi2 . . . 0, . . . ,

p︷ ︸︸ ︷
0 0 . . .vec Fip] ∈ Rp2×p2

(3.69)

and Y =diag(y) ∈ SRp×p. Since (F y
i )T = F y

i =
∑

j yjFij (recalling that Fij ’s are symmetric
matrices),

vec (F y
i )T = Fi vec Y ;(3.70)

thereby,

Tr(F y
i Z) = (vec (F y

i )T )T (vec Z)
= (Fivec Y )T (vec Z)
= (vec Y )T F T

i (vec Z).(3.71)

Combining (3.68) and (3.71) we conclude that (1.1) has a solution if and only if there exists
Y ≥ 0, Y =diag(y), for some y ≥ 0, such that for all Z ≥ 0, Z 6= 0,

(vec Z)T {
∑

i

Fi(vec Y )(vec Y )T F T
i } (vec Z) > 0.(3.72)
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Let X = (vec Y )(vec Y )T , Y ∈ Rp×p, and,

M(X) =
∑

i

FiXF T
i .(3.73)

We observe the following:
1. According to (3.69), for all p × p skew-symmetric matrices Z, Fi vec Z = 0

(i = 1, . . . , n). Consequently, if there exists a matrix Y ∈ Rp×p such that (3.72)
holds, then one can assume that Y is symmetric, since the skew-symmetric part of Y
does not contribute to the left hand side of the inequality (3.72): Let Y = Y1+Y2, with
Y1 and Y2 being the symmetric and skew-symmetric part of Y , respectively. Then for
1 ≤ i ≤ n, Fi vec Y = Fi(vec Y1 + vec Y2) = Fi vec Y1.

2. According to (3.70), for all matrices Y ∈ Rp×p, Fi vec Y = vec Wi, for some
Wi ∈ SRp×p. Therefore if X = (vec Y )(vec Y )T , then M(X) can be represented by,

M(X) =
∑

i

(vec Wi)(vec Wi)T .(3.74)

Remark 3.1. Suppose that the vector y is not required to be nonnegative in the above
analysis. It is clear that the above steps are still valid with the obvious modifications, and
that the end result would read as follows: The BMI has a solution if and only if there exists
a diagonal matrix Y , such that for all Z ≥ 0, Z 6= 0, the inequality (3.72) holds. We shall
use this observation later in §3.2.2.

The inequality (3.72) can be interpreted as requiring M(X) to belong to a certain
matrix class. The matrices in this class are symmetric (given that X is symmetric) and
have quadratic forms which are positive over the vec form of the non-zero matrices in
SRp×p

+ . This observation justifies the introduction of the following matrix classes.
Denote by PSD, the class of p2 × p2 symmetric positive semi-definite matrices, i.e.,

matrices for the which the quadratic form is nonnegative over the vec form of the p × p
matrices (Rp×p),

PSD = {A ∈ SRp2×p2
: (vec Z)T A (vec Z) ≥ 0;Z ∈ Rp×p}.(3.75)

Let PSD0 denote the subset of p2×p2 symmetric matrices with quadratic forms nonnegative
over the vec form of the symmetric p× p matrices (SRp×p), and with the vec form of the
skew-symmetric matrices (SKRp×p) in their null space, i.e.,

PSD0 = {A ∈ SRp2×p2
: (vec Z)T A (vec Z) ≥ 0;Z ∈ SRp×p;

A(vec W ) = 0; for all W ∈ SKRp×p}.(3.76)

Clearly both PSD (3.75) and PSD0 (3.76) are closed convex cones. Moreover, it can be
shown that certain essential features of the PSD cone can be generalized for the class of
PSD0 matrices, including rank one decomposition property, self-duality, and the unity rank
of the extreme forms [24], [39].

Let C denote the class of symmetric PSD-copositive matrices,

C = {A ∈ SRp2×p2
: (vec Z)T A (vec Z) ≥ 0; Z ≥ 0}.(3.77)

A particular subset of C which be useful in our cone formulations is a subset of matrices in
C which have the p× p skew-symmetric matrices in their null space, i.e.,

C0 := {A ∈ C : Avec W = 0; W ∈ SKRp×p}.(3.78)
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Finally, let B denote the class of symmetric PSD-completely positive matrices,

B = {A ∈ SRp2×p2
: A =

t∑
i=1

(vec Zi)(vec Zi)T ;Zi ≥ 0, t ≥ 1}.(3.79)

One can establish the following results.
Lemma 3.1 ([39]). The matrix classes B, C, and C0 are closed convex cones in SRp2×p2

.
Moreover, B∗ = C, C∗ = B, C is solid, and B is pointed.

Lemma 3.2 ([39]). The extreme forms of B are matrices (vec Z)(vec Z)T , Z ≥ 0.
Note that B ⊆ PSD0 ⊆ PSD ⊆ C, and PSD0 ⊆ C0 ⊆ C.

It is now observed that Equation (3.72) states whether a nonlinear combination of
matrices F ′

is ∈ Rp2×p2
(1 ≤ i ≤ n), belongs to the interior of the cone of PSD-copositive

matrices C. In fact, due the particular form of the linear map M (3.74), M(X) is required
to be in C1 := C0 ∩ int C.

3.2.2 EFP Formulation of the BMI. We present the proof of Theorem 3.2 in this
section, i.e., the reformulation of the BMI as the EFPB(M), where M is defined by (3.73),
and B is the cone of PSD-completely positive matrices.

Proof. [39] If the BMI has a solution X, then there exists Y = diag(y), y ≥ 0,
X = (vec Y )(vec Y )T , such that M(X) ∈ int C, and hence, the EFPB(M) has a so-
lution.

Conversely, suppose that the EFPB(M) has a solution X. Then there exists V ≥ 0,
such that X = (vecV )(vec V )T and M(X) ∈ int C, i.e., for all Z ≥ 0, Z 6= 0,

(vec Z)T {
∑

i

Fi(vec V )(vecV )T F T
i } (vec Z) > 0.

Let V = T T Y T be such that Y is diagonal, T is nonsingular, and T T = T−1. Then
vec Y = (T ⊗ T )vec V .

We observe that,

(vec Z)T {
∑

i

Fi(vec Y )(vecY )T F T
i } (vec Z)

= (vec Y )T {
∑

i

Fi(vec Z)(vec Z)T F T
i } (vec Y )

= (vec V )T (T ⊗ T )T {
∑

i

Fi(vec Z)(vec Z)T F T
i } (T ⊗ T )(vec V )

= ((T ⊗ T )(vec Z))T {
∑

i

Fi(vec V )(vec V )T F T
i } (T ⊗ T )(vec Z) > 0

The last inequality follows from the fact that if vec W = (T ⊗ T )vec Z, Z ≥ 0, and T is
nonsingular, then W ≥ 0, since W = TZT T .

Therefore the diagonal matrix Y , is a solution to the EFPB(M). Now define the vector
y ∈ Rp

+ by yi = Yii (1 ≤ i ≤ p).
Remark 3.2. Suppose that the nonnegativity assumption on the vector y is dropped. It
then follows that the BMI is also equivalent to finding an extreme form X of the PSD0

cone (3.76) such that M(X) ∈ intB∗ ≡ int C, and in fact, M(X) ∈ C1 := C0 ∩ int C. This
observation shall be used in Section 3.2.3.
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The implication of Theorem 3.2 is that the BMI is equivalent to checking whether
the image of an extreme form of the matrix cone B under the linear map M (which is
constructed from the original data of the BMI), is in the interior of the dual cone B∗. This
equivalence thus provides a rather simple geometric interpretation of the BMI feasibility
problem.

An immediate consequence of the EFP formulation is the following characterization of
the BMI instances for which a solution exists.

Corollary 3.1 ([39]). The BMI has a solution if the linear map M (3.73) is B-
positive.
Proof. [39] If M is B-positive, then every (non-zero) extreme form of B is mapped to the
interior of B∗ ≡ C. Therefore the EFPB(M), and consequently the BMI, have a solution.

3.2.3 Cone-LCP Formulation of the BMI. In this section we explore the idea of
establishing a connection between the BMI and the class of linear complementarity problems
over matrix cones (Cone-LCP). The EFP formulation of the BMI discussed in §3.2.2 is our
main tool in this direction. In particular we shall provide a proof of Theorem 3.3.

Our motivation for the Cone-LCP approach is twofold. First, the complementarity
formulation enables one to address the two important structural issues (2) and (3)
mentioned in the opening paragraph of §3. The basic idea is to use the rich theory that
has been developed for the linear complementarity problems over the last few decades
to examine the properties of the BMI. Additionally, we shall show that the Cone-LCP
that arises from the BMI can be formulated on the PSD cone, rather than the less
(computationally) understood matrix cone B of §3.2.2. The complementarity problem
over the PSD cone also has the advantage of being readily amenable to an interior
point approach [30]. However, one has to note that a “general” Cone-LCP is a difficult
computational problem, as is the LCP itself. One of the main advantages of the Cone-LCP
formulation however, is the ability of recognizing efficiently solvable instances.

In this section we shall assume for the moment that the Cone-LCPs of the form
Cone-LCPPSD(Q,M), with M being a PSD-copositive (see §1.1), can be solved with a
“reasonable” efficiency. This assumption is guided by the fact that a usual copositive LCP
is a more tractable problem than a general LCP.

The starting point for the Cone-LCP approach is the remark made after the proof of
Theorem 3.2: the BMI has a solution if and only if the image of an extreme form of the
matrix cone PSD0 under the linear map M , is in the interior of C, or in fact in C1. As
the next proposition states, the cone PSD can substitute the cone PSD0 in the above
statement.

Proposition 3.2 ([39]). There exists an extreme form of the matrix cone PSD, X,
such that M(X) ∈ int C, if and only if there exists an extreme form of the matrix cone
PSD0, Y , such that M(Y ) ∈ int C.
Let us denote by p̄ = p(p + 1)/2 the dimension of the space of symmetric p × p matrices.
Before stating the main result of this section we make the following observation.

Lemma 3.3 ([39]). Let Y be an extreme form of the cone PSD0. Then there exists a
symmetric W ∈ PSD0, such that Tr(Y W ) = 0 and rank (W ) = p̄− 1.

Consider the Cone-LCPPSD(Q,M) and let M be defined by the equation (3.73): Find
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X ∈ SRp2×p2
(if it exists) such that:

X ∈ PSD(3.80)
Q + M(X) ∈ PSD∗ ≡ PSD(3.81)

Tr(X(Q + M(X))) = 0(3.82)

Theorem 3.4 ([39]). The BMI has a solution if and only if there exists a matrix
Q ∈ int (−C) (or Q ∈ −C1), such that the Cone-LCPPSD(Q,M) has a rank one solution.

Proof. [39] Suppose that the BMI has a solution X∗, that is, X∗ = (vec Y )(vec Y )T ,
Y ∈ SRp×p, M(X∗) ∈ int C, and in fact M(X∗) ∈ C1. By Lemma 3.3, there exists
W ∈ PSD0, rank W = p̄− 1, such that Tr(WX∗) = 0. Without loss of generality, assume
that ‖W‖ = 1.

Let Qα = αW −M(X∗). Note that since M(X) is symmetric (for X ∈ PSD0), Qα is
also symmetric. Moreover, Qα(vec Z) = 0, for all Z ∈ SKRp×p, since both M(X) and W
are in the PSD0 (see Equation (3.74)). It suffices to show that there exists an α > 0, such
that Qα ∈ int (−C) (or Q ∈ −C1). Since M(X∗) ∈ int C and B is closed, there exists β > 0,
such that

inf
U∈B;‖U‖=1

Tr(UM(X∗)) ≥ β > 0.

Hence, for all U ∈ B, ‖U‖ = 1,

Tr(UQα) = Tr(U(αW−M(X∗))) = α(Tr(UW ))−Tr(UM(X∗)) ≤ αTr(UW )−β ≤ α−β.

Therefore choosing ᾱ < β, we see that for all U ∈ B, ‖U‖ = 1,Tr(UQᾱ) < 0. Hence
Qᾱ ∈ int (−C) (in fact Qᾱ ∈ −C1).

Moreover,
0 = ᾱ(Tr(X∗W )) = Tr(X∗(Qᾱ + M(X∗))).

By construction, X∗ ∈ PSD, rank X∗ = 1, and (Qᾱ + M(X∗)) ∈ PSD0 ⊆ PSD.

On the other hand suppose that there exists a rank one matrix X∗ in the solution set
of the Cone-LCP (Q,M), with Q ∈ int (−C). Then there exists Z∗ ∈ Rp×p such that,

X∗ = (vec Z∗)(vec Z∗)T ∈ PSD

Since Q ∈ int (−C) and Q + M(X∗) ∈ PSD, using the inclusion B ⊆ PSD, one has the
following:

∀A ∈ B (A 6= 0) : Tr(AM(X∗)) = Tr(A(Q + M(X∗)−Q))
= Tr(A(Q + M(X∗)))−Tr(AQ) > 0

The last inequality follows from the fact that, for all A ∈ B (A 6= 0), Tr(AQ) < 0. Conse-
quently, M(X∗) ∈ int C.

In view of Proposition 3.2, there exists a rank one matrix,

Y ∗ = (vec W ∗)(vec W ∗)T ∈ PSD0, W ∈ SRp×p
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such that M(Y ∗) ∈ int C. Therefore the BMI has a solution.

The above proof can be modified in an obvious way to conclude that it is only sufficient
to take Q ∈ −C1.

We shall refer to the special case of the linear complementarity problem over the positive
semi-definite cone (3.80)–(3.82), as the Semi-Definite Complementarity Problem (SDCP).
An immediate consequence of the above theorem is that if a matrix Q ∈ int(−C) cannot
be found for which the corresponding SDCP has a solution, then the BMI does not have a
solution.

Corollary 3.2 ([39]). The BMI does not have a solution if the SDCP (3.80)–(3.82)
is not solvable for any Q ∈ int (−C) (or in fact Q ∈ −C1).

It is noteworthy that the linear map M in the SDCP formulation, which arises in the
context of the BMI, is itself copositive with respect to the matrix cone PSD. Proposition
3.3 ([39]). The linear map M defined by (3.73) is PSD-copositive. Consequently if we
define M∗(X) =

∑n
i=1 F T

i XFi, and the implication:

X ∈ PSD, Tr(XM(X)) = 0 ⇒ M(X) + M∗(X) = 0(3.83)

holds, then for all Q ∈ −C1, the Cone-LCPPSD(Q,M) is solvable if it is feasible.
Another Cone-LCP formulation of the BMI, in addition to the one mentioned above, is
to incorporate the problem of finding the matrix Q in Theorem 3.4, in setting up the
corresponding Cone-LCP. For this purpose it is convenient to associate to the matrix cones
PSD, B, and C (subsets of SRp2×p2

), the cones PSD, B, and C (subsets of Rp4
), which are

obtained by applying the vec operator to these matrix cones, i.e.,

PSD = {x ∈ Rp4
: x = vec A,A ∈ PSD}

and,
B = {x ∈ Rp4

: x = vec A,A ∈ B}; C = {x ∈ Rp4
: x = vec A,A ∈ C}.

It is easy to verify that PSD, B, and C are closed convex cones in Rp4
.

Recall that for all A,B ∈ SRp2×p2
,

Tr(AB) ≥ 0 ⇐⇒ (vec A)T (vec B) ≥ 0.

Therefore, in view of the relation PSD = PSD∗, the only matrices in PSD∗ that are the
vec form of a symmetric matrix are those in PSD.

Let F =
∑n

i=1 Fi ⊗Fi ∈ Rp4×p4
. For the linear map M defined by (3.73) and using the

property of the Kronecker products, vec M(X) = F vec X. Combining the above ideas
with the result of Theorem 3.4, one readily obtains the following corollary.

Corollary 3.3 ([39]). Let,

M̃ =

(
0

−Ip4×p4

0
F

)

and ,

Z =

(
vec −Q
vec X

)
∈ C × PSD.
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Then the BMI has a solution if and only if the homogeneous Cone-LCPC×PSD(0, M̃) has a
solution of the form,

Z̃ =

(
vec − Q̃

vec X̃

)

where −Q̃ ∈ int C, and X̃ has rank one.
We note that if Q ∈ −C and X ∈ PSD, then Q + M(X) is automatically symmetric

and therefore if vec (Q + M(X∗)) ∈ PSD∗, then Q + M(X∗) ∈ PSD.

The above corollary reduces the BMI feasibility problem to the problem of examining
the solution set of a certain Cone-LCP. This can be a “tractable” problem if the solution
set is finite, or if the linear map M̃ enjoys certain “additional” properties. Since there
are various results in the complementarity theory which pertain to the cardinality of the
solution set of a Cone-LCP [28], classification of the efficiently solvable instances of the
BMI can be based on these results as well.

4 Computational Aspects of the BMI

This part of the chapter is devoted to a brief overview of the computational methods for
solving the BMI, those which are directly related with the presentation of §2 and §3. We
shall first provide few words on the approaches which are not touched upon in this section.

Motivated by observing that the function

F (x, y) =
∑
ij

xiyjFij(4.84)

is convex in x for a fixed y and vice versa, Goh et al. [21] proposed a global optimization
algorithm based on the branch and bound strategy for solving the BMI; in this approach,
the bilinearity of the function (4.84) is successively employed in the bounding part of
each iteration. The dissertation of Liu [34] discusses many interesting aspects of the
parallel implementation of BMI solvers which are based on the branch and bound strategy
(see also [35]). In [3] a global optimization technique based on the generalized Benders
Decomposition which is used in bilinear and biconvex programming [16], [17], [60] is
proposed. Finally we should mention the alternating LMI method [29], but this later
class of algorithms is not guaranteed to find a feasible point of the BMI (1.1), even if one
exists.

Back to the methods which are linked directly to the aspects of the BMI investigated
in this chapter, we present a brief overview of each.

Starting with the optimization problem (3.40)–(3.41) obtained trivially from the BMI
feasibility problem, one can proceed to devise a computational method based on the fol-
lowing strategy. Initially pick an arbitrary x0 and y0 and then choose α0 > 0 such that
(3.41) is satisfied (thus we obtain a feasible point for the optimization problem); proceed
by trying to reduce αk at each step without leaving the feasible region. In the spirit of the
interior point methods for solving the LMIs and Semi-Definite Programming problems, Goh
et al. [18] proposed using the logarithmic barrier functional to ensure that the iterations
stay inside the feasible region:

A Barrier Method for the BMI:
1) Fix ε > 0, δ > 0, µ0 > 0, and θ > 1.
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2) Choose some (x0, y0) and α0 such that (α0 − δ)I + F (x0, y0) ≥ 0. Let k = 0.

3) Until αk − αk+1 < ε:

3a) (αk+1, xk+1, yk+1) = arg minα,x,y(µkα− log det(αI − F (x, y)).

3b) µk = θµk.

3c) Let k = k + 1. Go to 3.

2
The local minimization step (3a) is initiated from (αk, xk, yk). The convergence of

the above algorithm is contingent upon a wise choice of the parameter θ. Note that as
µk → ∞, the first term of the objective functional in (3a) approaches that of minimizing
the parameter α, whereas its second term ensures that this minimization is performed
without leaving the feasible region of (3.40)–(3.41).

Under some mild conditions, the barrier method described above is guaranteed to
converge to a local minimum of (3.40)–(3.41). The choice of the parameter θ is guided
by the methods for solving LMIs and it is closely related to the self-concordant barrier
parameter for the cone of positive semi-definite matrices [43].

We observe that our choice of the initial points x0 and y0 can be influenced by the
results of the more conservative approaches, such as the alternating LMI approach or the
D-K iteration. In any event the algorithm above, which is based on the BMI formulation
of the µ/km synthesis problem along with a methodology borrowed directly from convex
programming, is guaranteed to provide improvements over that of the existing methods [19].

Barrier methods are not the only variant of the interior point methods which can be
used for obtaining local solutions to BMIs, although they are probably among the best
well-understood. Other ipm solution methods for locally solving the BMI is presented in
the dissertation of Goh [19], and in particular one which corresponds to the method of
centers in the spirit of [5] and [27]. Computational examples are also provided in [19].

Motivated by the reformulation of the BMI as a concave minimization problem
presented in §3.1, Safonov and Papavassilopoulos [55] proposed the following conceptual
algorithm for finding a feasible point of (1.1). The approach is based on the optimization
problem (3.60)–(3.61) which is obtained directly from Theorem 3.1. In order to solve (1.1),
we can solve a sequence of problems of the type (3.60)–(3.61), each one having a finite
number of inequalities. At the beginning of Step k, assume that the points z(1), . . . , z(k−1)

have been generated from an arbitrary initial guess z(1) with ‖z(1)‖ = 1. Then, the k-th
step of the algorithm is: Solve for a globally maximizing pair (x, y) in

J
(k)
∗ = maxJ := ‖x‖2 + ‖y‖2(4.85)

subject to[
x
y

]T [
I 1

ρ(i) G(z(i))
1

ρ(i) G
T (z(i)) I

] [
x
y

]
≤ 1, i = 1, . . . , (k − 1).(4.86)

If the global minimum J
(k)
∗ = 1, stop; the problem (3.60) is infeasible. If J

(k)
∗ > 1, let

the solution be (x(k), y(k)) and solve

max
‖z‖=1

zT H̄(x(k), y(k))z(4.87)
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where

H̄(x(k), y(k)) =
n∑

i=1

m∑
j=1

x
(k)
i y

(k)
j Hij .(4.88)

Note that the maximal value in (4.87) is the maximal eigenvalue λmax(H̄). Take z(k) ∈ Rk

to be a maximizing z in (4.87), i.e., z(k) is any unit norm eigenvector of the matrix (4.88)
associated with λmax(H̄). If λmax(H̄) < 0, we stop and the pair (x(k), y(k)) provide a
solution of BMI (1.1); otherwise we choose ρ(k) > λmax(H̄) and go to Step k + 1.

It can be shown that this process will stop in a finite number of steps if (1.1) has a
solution; otherwise (1.1) is infeasible.

Note that solving (4.85) for the global maximum may be quite a time consuming
problem, although there exist several algorithm for solving nonconvex maximization
problems of this type [26].

Finally we observe that it is not necessary to solve (4.85) for the global maximum, but
we can stop as long as a pair (x(k), y(k)) with ‖x(k)‖2 + ‖y(k)‖2 > 1 has been generated.
This may be detrimental to the speed of convergence of the algorithm but avoids spending
a lot of time in finding the global maximum of (4.85). If one chooses to do this, it might
be advisable now and then to solve (4.85) globally.

Lastly we mentioned the solution method based on the SDCP approach, which is based
on examining the solution set of a given SDCP. We note that often an SDCP has only a
finite number of solutions — in fact, there are many classes of SDCPs for which one can
guarantee even the uniqueness of the solution. This is the main advantage of the SDCP
approach, since examining the feasible region defined by an LMI for the existence of a
rank one matrix is itself a difficult computation problem (the rank minimization problem
under LMI constraints is a powerful framework for studying many robust control synthesis
problems as well [14], [40]).

The results of §3.2 provide an explicit expression for the linear maps that appear in
the SDCP formulation of the BMI based on the matrices F ′

ijs (i = 1, . . . , n; j = 1, . . . ,m).
The complementarity theory can be used to classify instances of the BMI which reduce
to a convex optimization problem over the positive semi-definite cone. For example, as
the result of Corollary 3.1 that B-positivity guarantee the existence of a feasible point for
the BMI, thus reducing the BMI to characterizing a single matrix. The existence of the
interior point methods for monotone SDCPs also provide local and in some cases, globally
convergent methods for certain classes of the BMIs.

5 Conclusion

Rooted in some of best traditions in control theory, the BMI provides a framework to address
the most important issues facing the field of robust control. The BMI formulation offers
direct interpretation of the robust control synthesis problem, exemplified by a search for
the parameters of the controller on one hand, and the multiplier on the other — and at the
same time, it has lead to elegant mathematical investigations in optimization theory, some
of which were presented in this chapter. Lastly, and most importantly, the BMI formulation
promises efficient, reliable, and automated procedures for the synthesis of nonconservative
robust controllers, improving upon those obtained by employing the existing methods,
including the D-K and the M -K iterations.
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