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On the Existence of Nash Strategies and Solutions 
to Coupled Riccati Equations 
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Abstract. The existence of linear Nash strategies for the linear- 
quadratic game is considered. The solvability of the coupled Riccati 
matrix equations and the stability of the closed-loop matrix are investi- 
gated by using Brower's  fixed-point theorem. The conditions derived 
state that the linear closed-loop Nash strategies exist, if the open loop 
matrix A has a sufficient degree of stability which is determined in terms 
of the norms of the weighting matrices. When A is not necessarily stable, 
sufficient conditions for existence are given in terms of the solutions of 
auxiliary problems using the same procedure. 

Key Words. Nonzero sum linear-quadratic games, Nash strategies, 
coupled Riccati equations, Brower's fixed-point theorem. 

1. Introduction 

T h e  p r e s e n t  work  dea l s  wi th  the  ex is tence  of  l inear ,  c l o s e d - l o o p  Nash  
so lu t ions  to the  con t inuous ,  t ime - inva r i an t ,  n o n z e r o - s u m ,  l i n e a r - q u a d r a t i c  
d i f fe ren t ia l  game ,  ove r  an infini te  p e r i o d  of  t ime.  
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The Nash solution for the linear-quadratic game has been studied in 
several papers (Refs. 1-10); yet, little is known compared to what is known 
about the corresponding classical control problem (Refs. 11-12). The 
closed-loop Nash strategies are not necessarily linear (Ref. 6}; and, even if 
restriction to linear" strategies is made, little is known concerning their 
existence, properties, interpretation in terms of solutions to the coupled 
algebraic Riccati system, and the stability of the closed-loop system. For the 
linear--quadratic game over a finite period of time [0, T], there are certain 
existence results for closed-loop Nash strategies, assuming that T is 
sufficiently small and/or that the strategies lie in compact subsets of the 
admissible strategy spaces (Refs. 3, 7, 8). In Refs. 2, 5, the boundedness of 
the solutions of certain Riccati-type differential equations is assumed in 
order to guarantee the existence of Nash strategies. Finally, Ref. 15 deals 
with the static N-person Nash game, under compactness and convexity 
assumptions for the strategy spaces and concavity assumptions for the 
criteria. 

For the infinite-time case considered here, there is no existence result 
available known to us. Although our results do not solve the problem 
completely, they are applicable to a subclass of problems. They are stated in 
terms of conditions on the norms of the matrices involved, and they do not 
depend on controllability or observability assumptions. They can be viewed 
as conditions for solution of certain coupled algebraic Riccati-type matrix 
equations. 

The structure of this paper is as follows. In Section 2, we describe the 
system, the type of the Nash solution sought, and formulate the problem. 
These questions are pursued in Sections 3 and 4. The conditions derived in 
Section 3 state that linear, closed-loop Nash strategies exist, if the open-loop 
matrix A has a sufficient degree of stability, which is determined in terms of 
the norms of the weighting matrices. Section 4 contains some extensions of 
the conditions derived in Section 3 which do not require stability of the 
open-loop matrix. Our conclusions are given in Section 5. 

2 .  P r o b l e m  S t a t e m e n t  

Consider the dynamic system described by 

=Ax+Blux+B2u2, x(0) =Xo, 

and two functionals 
+ o 0  

Jl(ul, u2)=Io (x'Olx +u'iRl,ul+u~R12u~)dt, 

t "  +ec~ 

= |  , + t + ~ U J2(ul, u2) (x O2x u2Rz2u2 ulR21 i) dt, 
J0 

t E [0, +o0), (1) 

(2) 
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where x, ul, u2 are functions of time taking values in R ", R "~, RmL 
respectively, and A, B1, B2, Oi = O1, R~i =R~j, Rii >0 ,  i , / =  1, 2 are real, 
constant matrices of appropriate dimensions. 

The problem is to find u*, u~ as linear functions of x, i.e., 

~*, = -L*,x, 

with L* a real, constant matrix, such that Ji(u*, u~) is finite (see Appendix 
B), i = 1, 2, and 

.r~; = ] l ( u L  u~) <-.rl(ul, u*) 

or* = ] 2 ( u L  , , < T  ~ , u,) U2 ) - -  d2~/ , /1 ,  _ 

for every ul = - L I x ,  

for every u2 = - L 2 x .  
(3) 

The conditions (3) are the Nash equilibrium conditions. It is known (see Ref. 
~/* U*  1) that a necessary condition for the existence of such controls 1, 2 is that 

there exist constant, real, symmetric matrices K1, K2 satisfying 

0 = K 1 A  + A ' K 1  + 0 1 - K 1 B  1R -[~B IK1 - K 1 B z R  ~ B  'zK2 

--1 I --1 --1 r 
- K 2 B 2 R  22 B2K1  + K z B 2 R  22 R 12R 22 B z K 2 ,  

O = K 2 A + A ' K z + Q 2  -1 , -1 , -- K 2 B 2 R  2z B 2 K 2  - K a B  1R t 113 tK1 

- 1  t - 1  --1 t 
- K 1 B 1 R  11 B1KE + K 1 B 1 R  11 R z l R  11B1K1. 

(4) 

It can be proved that, if such gi 's  exist and the closed-loop matrix 

f i , = A - B 1 R [ ~ B ~ K 1 -  -1 , B 2 R  22 B 2K2 (5) 

has Re [A (4)] < 0, i.e., A is asymptotically stable (a.s.), and s 

t - 1  -1  r 
C)~+KjBiR j j  RisRij BiK~->.O, i # ] ,  i , ]= 1,2, (6) 

then the strategies 

ui = - L ~ x  - 1  , : - R u  B i K i x ,  i = 1, 2, (7) 

satisfy (3) and J*, J*  are finite. In relation to this, see Proposition 1 in Ref. 4. 
The proof of Proposition 1 in Ref. 4 does not hold under the assumptions 
stated there; see Appendix A. 

In the next section, we will deal with the solution of (4) and try to find 
conditions under which solutions exist and yield a.s. fi,. 

s Fo r  (6) to hold,  i t  suffices for  e x a m p l e  tha t  Q i > - O ,  R i i  >--0. 
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3. Condit ions for Existence of Solutions 

We start by introducing the following notation: 

--i ! S1 = B1R,IB1, 

Sm= B2R 2~ R12R 2~ B'2, 

0], s=[ sl s2 

O=[~01 ~2 ] '  J : [ ~  / ] ,  

D R - I D ,  82 ~/--)2 22/--~ 2~ 
(8) 

-I D D--l~r S02 ~ B1R 11 -*'~21 *'~ 11 ~1, 

so=[So I 2 ,  
where I denotes the n x n unit matrix. Using this notation, (4) assumes the 
form 

O=~(K)&F'K  +KF + Q - K S K - K J S K J - J K S J K  +JKJSoJKJ. (9) 

Consider the space X of 2n x 2n real, symmetric,  constant matrices of 
the form 

where M and N are n x n matrices. X is a linear subspace of the space of 
2n x 2n real matrices. All norms of the matrices to be considered here are 
the sup norms, 

Ilell = sup{llnxH: Ifxll = 1}, 

and the norms of the vectors are the square-root  Euclidean norms. It is easy 
to see that, for Y ~ 32, 

[1YI] = max(llMl], [[N[I). 

We denote by I0 the 2n x 2n unit matrix; and, for R -> 0, we set 

BR ={Y c X  :I[YII<-R}, 

i.e., BR is the compact  ball of radius R centered at the zero e lement  of X. We 
define the function qb f rom X into X by 

• (K) = ~ ( K )  + K .  (10) 

Clearly, if K c X, then dp(K) e X, and dp is continuous. The following lemma 
is proved by using Brower ' s  fixed-point theorem (see Ref. 13, p. 161). 

L e m m a  3.1. If, for some R -> 0, 

(311Sll ÷ j]Soll)R 2 + ([[/o + 2F[ [ -  1 )g  + IlOll-< 0 (11) 

holds, then there exists K c X, with ]]KI[-< R, which satisfies ~ ( K ) =  0. 
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Proof .  For  h a fixed real  number ,  we have  

qb(K) = K (F  + •Io) + (F '  + (1 - A) Io)K + 0 

- K S K  - KJSKJ  - JKSJK + JKJSoJKJ, 

f rom which, for  K ~ BR, using the obvious  fact tha t  llJll = 1, we get 

N'(K)It-< R (tlAZo + FII + t1(1 - h ) I o  + FH) + tl 011 + n 2(3ltstl + JlSolt). 

Since 

IIIo + 2F[[-< ]lh/o + F[I + II(1 - ;t )Io + FII, 

with equal i ty  for  a = ~, we set  h = ~ (best a) .  The  result  now follows by direct  
appl icat ion of B rower ' s  t heo rem.  

Le t  us in t roduce  the  t r ans fo rma t ion  

K = a K ,  (12) 

where  a # 0 is a cons tant  and  g e X. Subst i tut ing K = a K  in (9), we obta in  

O= ~ ( K )  = ~( ,~R)  ~= y~,~(R) 

= (aF) 'R  + R (~F) + 0 - R(ee 2 s ) g  - g J ( a  ~S)gJ  

- J R  (a 2S )JR + JKJ (a 2So)JKJ. (13) 

App ly ing  L e m m a  3.1 to 

~,o(g)  ~ = ~ ( g ) +  g ,  

we obta in  that,  if for  s o m e  R ---0 it holds that  

(3tlSII + IlSoll)a 2 R 2 + (lli + 2oeAll_ 1)R + tIOll <- O, (14) 

then  there  exists g e X, []gl[-< R, which satisfies 

~(g)=0. 
But  then  

K = a K  

satisfies 

~ ( K )  = ~ ( R )  = 0 a n d  I IKH-  < t~[R. 

We  thus have  p r o v e d  the  fol lowing l emma.  

L e m m a  3.2, If  for  some  a # 0, R - > 0 ,  (14) holds, then  there  exists 
K ~ X, IIKI[-< fa IR, which satisfies 

~(K)=0. 
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The scaling introduced in (12) helps to improve (11) and get (14), 
because in proving Lemma 3.2 we applied Lemma 3.1 to a whole class of 
~b~'s which are nonlinear (quadratic in/~) and asked that at least one of them 
have a fixed point via Brower's theorem. As it turned out, if one of them (say, 
qb~) has a fixed point, then all of them have, since 

~ ( s )  = ~ ( ~ s )  = ~ ( ( ~ /  ~ )s), 

although (14) may not hold for 13 # d. 
Set 

a = 311Stt+ll&ll, b=lll+2o~AIl, q =ltOll, e = , / (qa) .  (15) 

Then,  (14) assumes the form 

aa 2R 2 + (b - 1)R + q -< 0. (16) 

If a = 0, then 

B1 = 0 and B2 = 0. 

and the game is meaningless as such. Therefore,  assume a # 0. Inequality 
(14) is satisfied for some R -> 0 iff 

(i) 1 - b +2lalE,  
or  

(ii) q = 0  a n d l < b .  

In Case (ii), R = 0 is the only solution to (16), and thus Lemma 3.2 
guarantees only the solution K1 = 0, K2 = 0. Consequently, we will concen- 
trate on Case (i), i.e., when 

1 >-11I +2c~All+21alE.  (17) 

If (17) holds, then (16) is satisfied for all R:  R1 ---R -<R2, where 

1 - b + ~/[(b - 1)2-- 4a2e2!_> O. (lS) 
RI ,2  = 2 a e a  

In this case, Lemma 3.2 guarantees the existence of solutions K1, K2 with 

ttKdi, tlK21l-< Ic~ tR. 
We have the following theorem. 

Theorem 3.1. Let  a > 0. If, for some a # 0, (17) is satisfied, then for 
every R : R I < - - R < R 2 ,  where R1, R2 are as in (18), there exist K~, /(2 
satisfying (4); such that 

ltKilt-< latR -< la IR2 ---~ 211AII/(BltStl + ItSoll) -- M. (19) 
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Proof .  T h e  p roof  has a l ready  been  given,  except  for  the r igh t -hand  
side of  ( t9) .  Since 

we have  

and  so 

1 = l l I  + 2 a A  - 2c~Aii-  llI + 2aA]l + 2la IlIAII, 

1 - b  -< 21o~lllAl], 

1-b+.J[(1-b)2-4a2e] (1-b)+#[(1-b) 2] 
la]Rz = ]at 2 a 2 a  ~ 2 i a l a  ~ 2HA]I/a = M.  

[ ]  

Not ice  in passing tha t  M is i n d e p e n d e n t  of the  magn i tude  of a.  Befo re  giving 
the next  t h e o r e m  which provides  us with necessary  and  sufficient condi t ions  
for  the  exis tence of  an a ~ 0 satisfying (17), we s ta te  the fol lowing l emma ,  
the p roof  of  which is given in A p p e n d i x  C. 

L e m m a  3.3.  Le t  F be  a real  n x n matr ix ,  y and  p real  number s  7 ~ O, 
and A (F) = o- +jw  be any  e igenva lue  of F. Then ,  the fol lowing results  hold. 

(i) If 

lII+ rll---p, (20) 

then  

(o- + 1/~/) 2 + w z <_ (p/~,)2. (21) 

(ii) 
(iii) 
(iv) 

W e  set  

If 

t hen  (20) holds.  

If y > 0 and  p = 1, then  ~r < 0 or  o- = w = 0 for  every  A (F). 
If  y < 0 and  p = 1, then  o" > 0 or  o- = w = 0 for  every  A (F). 
Le t  F = T A T  -1, where  A is the  Jo rdan  canonical  f o rm of F. 

p'=IiTH" tlT-1tl, p '>- l .  

III +  AII p/p',  

(v) If  A is d iagonal  and  

(22) 

(o- + 1 / 7 ) 2 +  w 2 ~ ( o /o ' 7 )  z 
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holds,  then  (20) holds. In par t icular ,  if F is symmetr ic ,  then  (20) is equiva len t  
to (21). 6 

Theorem 3.2. Let h (A) = cr +fw be an e igenvalue  of A. 

(i) If  • = 0 and  (17) is satisfied for  some  a ¢ 0, then  for  every  h (A) it 
holds tha t  

= R e  h (A) < 0 or  A (A) = 0 if a > 0, 

o - = R e h ( A ) > O o r  h ( A ) = O i f  a <O, 

(o" + 1 / 2 a ) 2  + w 2 -< ( 1 / 2 a ) 2  

llg~lI, llgdt-< (1 -III + 2~al{)/Io, ]a. 

(23-1)  

(23-2)  

(23-3)  

(24) 

(ii) If  e # 0 and  A = - • I ,  then  any  0 < a --< 1 / 2 •  satisfies (17) and  

IIKd, ltKdl-< = •/a. ( 2 5 )  

(iii) If  • # 0, A ~ - E L  and (17) is satisfied for  s o m e  a • 0, then  for  any 
h (A) it holds that  

o~< - •  or  a (A) = - • i f  a > 0 ,  
(26) 

cr > +•or h ( A ) = • i f  a > 0 ,  

and IIKd, IIK2]I satisfy (19). M o r e o v e r ,  ]a 1< 1 /2• .  
(iv) If A ~ - d ( A  # d )  is d iagonal izable ,  A = T A T  -1, where  A is the 

Jo rdan  canonical  f o rm of A,  p ' =  lIT[[" [[T-Z[[, and for  some  3, > 0(~, < 0) it 
holds tha t  

then 

( o r + •  + 1 / " / ) 2 +  W 2--- 1 / p ' T  2 

a = "//2(1 + •y )  

( ( O ' - - •  + 1 / 7 ) 2 +  W 2 <  1/p'y2), (27) 

(a = y /2(1  - ey)) 

satisfies (17). 

6 The assumption that  A is diagonal in (v) is essential. As  a counterexample,  let 

L1 1] F = A =  ~ _½ , T = T - I - - 1 ,  o = l ,  

in which case (21) is satisfied for all 3, : 0 < 2/-< 4; but, for x --- ( 1/x/2) (1, 1 )', one has IlxlI = 1, 

I1(i + 2/F)xlI = ,/(1 + 2/2/4) > 1. 
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Proof. 
(14) follows from (19). 

(ii) The first part is trivial. Expression (25) follows as (24). 
(iii) Let b = 1/12oe!. Then, (17) yields 

b-E>--llbI+ell ifc~>0, 

b-~>- t lb I+nl l  i f a < 0 .  
Necessarily, 

Let 

then, 

We set 

and we have 

(i) Expressions (23) follow from Lemma 3.3 (i), (ii), (iii), and 

.y = 1/(b -E); 

1 _> L[z + ~,(A + a)t l  

1 -----Ill + T ( - A  + EI)H 

if oe > 0 ,  

i f a  <0 .  

F = ± A  + EI, 

1 --> IlI+ ~/rtl. (28) 

Expressions (26) follow now from Lemma 3.3(ii)-(iii). 
(iv) We bring (17) to the form (28) and apply part (v) of Lemma 3.3. 

E] 

If A is symmetric, then the existence of 7 satisfying (27) is equivalent to 
the existence of o~ satisfying (17). For (17) to hold, it suffices that 

1 -> ~/{tr [(I+2o~A)'(I  + 2~A)]} + 21a ie. 

By using the fact 

ttMIt 2-< tr (M'M), 

it follows that the existence of an a > 0 satisfying (17) is guaranteed in the 
following two cases (assuming that A is not a scalar). 

(i) tr A-<=e, 

tr A ' A  < e 2, 

A = (n -- 1)tr A ' A  + (tr A)2 + 2E tr A + (2 - n)e  2 >-- O, 

1/2a --> [ - (e  + tr A ) -  ~/A]/[2(E 2 -  tr A'A)];  

(ii) tr A ' A  > E2 

t r A  -- -e .  

b - e > 0 .  
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W e  shall now consider  the stabili ty of  the c losed- loop  mat r ix  (5). Le t  

a '  = 411sll + IlSoll, 

E '= , /qa ' ,  e ' 2=  E 2 + I N I  " IIOII, 

1 - b + ~/[(1 - b) 2 - 4 a  2E2] 
R z  = 2aZa , (29) 

1 - b + ~/[(1 - b )  2 - 4a 2Et2] 
R~ = 2 2a , , 

where  a, e, q, b are  as in (15). 

T h e o r e m  3.3. Le t  Re[h  (A)]  < 0. 

(i) If, for  s o m e  a > 0, it holds  tha t  

1 - [ [ I  + 2aA]] + 2ae,  (30-1)  

1 > Ilz + 2aa]l ,  (30-2) 

a2[lSllR 2 2 2 < ~  IlSolIR= +11OII, (30-3) 

then  the re  exist KI ,  K2, I lgdl -  ~R2,  i = 1, 2, solving (9) and  A given by Eq.  
(5) is a.s. 

(ii) If, for  s o m e  o~ > 0, it holds tha t  

1 _>_ II/+ 2aAH + 2 a , ' ,  (31-1)  

1 > tli + 2aAll,  (31-2)  

IIOIIor IlSoll # o, (31-3)  

then  there  exist K1, K2, llgill-< ~R~, i = 1, 2, solving (9) and A given by Eq.  
(5) is a.s. 

P r o o L  (i) Re la t ionsh ip  (30-1) m a k e s  T h e o r e m  3.1 appl icable.  W e  
have  

III + 2 , ~ t l  -- ti1 + 2o~ (A - $1 a /~ i  - &~R=)II <-lfI + 2~Alt + 4 a  211Stl IIRII. 

Since, by  L e m m a  3.3, A will be  a.s. if 

tli + 2~AII < i 

for  s o m e  a > 0, it suffices tha t  

III + 2aAII  + 4~ 211Sll HKII < 1. 
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Relationship (30-2) implies R2 > 0. Using K = a/£ and (19), we have that it 
suffices that 

(III+ 2aall - 1)R2 + 4a 2 IISIIR ~ < 0; 

and, since (14) holds for R = R2, it suffices that 

4~ 2llSi]R ~ < (31]sll + l[sol[)~ ZR ~ + ti QII, 

which is equivalent to (31-3). 
(ii) Relationship (31-1) implies that the inequality 

a'a2R2+(HI+2,A][-  1)R +q  ~ 0  

is satisfied for all R :R~ ~ R  ~R~,  where 

1 - HI + 2c~A [1 ± ~/[(1 - flI + 2aA [I) z - 4a  2e t2] 
R ~ , 2 =  

2a2a,  

R ~ -- R ~ >-- 0. Relationship (31-2) implies that R ~ > 0. If the above inequal- 
ity holds for some R and o~, then (14) holds for the same R and ~, since 
a<-a'. Therefore, there exist K1, /£2, tlK~I[~o~R~, i =  1, 2, solving (9). 
Repeating the analysis of (i), we have that, for fi~ to be a.s., it suffices that 

4~2]IS[IR~ 2 < (41ISll + ]ls011)~ 2R ~ = + [IO1[, 

which holds by (31-3). [] 

If equality is allowed in (30-3) or 

IIO]l = I[S0l[ = 0 

in (31-3), then the conclusions of (i) and (ii) in the given theorem change and 
allow .4 stable, i.e., 

Re[A (_A)]- 0. 

The geometric interpretation of the conditions given in Theorems 3.2 
and 3.3 is given in Figs. 1 and 2. Figure 1 corresponds to Theorem 3.2, pa, ts 
(i), (ii), (iii), which say that a necessary condition for the existence of an ce > 0 
satisfying (17) is that the eigenvalues of A lie in a disk centered at - 1 / 2 a  
with radius r = 1 /2a  - E, for some a > 0, which is equivalent to saying that all 
A(A)'s lie in the open half-plane on the left of the line el, or = -E, or at -E. 
Figure 2 corresponds to Theorem 3.2, part (iv), where it is assumed that A is 
diagonalizable. It shows that, if the eigenvalues of A lie in a disk as in Fig. 2 
with radius r=(1/~ /p ' ) (1 /2a-e)  and centered at - 1 / 2 a ,  then this 
satisfies (17), and thus (9) has a solution. If A is symmetric, then p' = I and 
0 = 90 °. If a < 0, then we have the mirror images with respect to the jw-axis 
of the circles, cones, and lines depicted in Figs. 1, 2. 
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Fig. 1. 

jw 

E 1 
a>O 

[® ,-,-,- x(A)] 

1, O" 

Regions of eigenvalues of A in accordance with Theorem 3.2 (i)-(iii). 

Employment of a different function qb in (10) and application of 
Brower's theorem may in general provide different, perhaps better, exis- 
tence results. Another suitable qb can be defined as follows. If K solves (9) 
and A (and thus F) is a.s., then/~ = K/a, where a > 0, solves equivalently 
(see Appendix D) 

+ o o  

g = fo exp(aFt)(Q - R a s R  -gJce2SRJ-Jgc~2sJg 

+ ygJa 2So JR J) exp(aF't) dt, (32) 

Let qb~(/~) denote the right-hand side of (32). Let also 

A = TAT -1, 

jw 

1 

~ ~  tanO= p~_ I 

[® ~ x(A)] 

Fig. 2. Region of eigenvalues of A in accordance with Theorem 3.2 (iv). 



JOTA:  VOL.  28, NO. 1, M A Y  1979 61 

A being the Jordan canonical form of A, with m x m the dimension of the 
largest Jordan block, m -< n. Let  also a, q, e be as in (15), o~ > 0, and 

p = lIZll lIT-111, 

,~ = max Re[A (A)] < 0, 
(33) 

m--1 
r r (w)=  E [(i+J)!/i!J!](w/2) i+i+l for w > 0 ,  

i,i=O 

# = rr(1/(-o~£)), 

and E(rn, oe)>0 be such that 

7r(1/e(m, o~)) = 1/2aE. 

Clearly, e(m, ~) exists and is unique, for given oe and m. 

that 
Theorem 3.4. L e t A  be a.s. and T, A, m, rr, e(m, ~ ) a s  above. If it holds 

2 -  < -E(m,  ~)(1/ol),  

then there is K e X which satisfies (9), and 

Ilgll -< ~R2 = ~ (1/2aa2){1/p2gr + ~/(1/p %fi "2 -4qac~ 2)} -< 2121/ao 2. 

(34) 

(35) 

In addition, if A is diagonalizable (i.e., m = 1), then 

2 E(1, ~) = s ea  

for every ce > 0. 

Proof.  Let  g = ~g,  ,~ >0 ,  tlgll-<e, e ->0. In order to use Brower 's  
theorem we ask for ]Fo~(K)][-< e for some a and R. It suffices that 

I I~  (-g)[I =I l I [  °° exp(aFt) (Q - K a  2 SI~ - -  KJa 2 SI~J - -  J/~c~ 2 S J I  ~ 

+ JRJa ZSoJK, J )  e x p ( a F ' t )  dtll 

Io -<[llO]]+(31lsll+llSoll),~2e 2] Ilexp(o~ft)llZ dt<--R; 

or, by using (69) (see Appendix  E), 

aa2R 2 -  (1 /pZ#)R  + q -< O, (36) 

which holds because of (33)-(34). The rest is easy to prove. D 
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~>0 

® 

®i 

jw 
63 

l-¢(m,a) 

i--r 

[® ~ ×(A)] 

Fig. 3. Regions of eigenvalues of A in accordance with Theorem 3.4. 

It is remarked that, if A is diagonalizable, then (34) gives A -<-e02. 
Introduction of o~ > 0 induces no improvement  of the result, which is in 
agreement  with the fact that scaling cannot facilitate the existence of 
solutions of (9). In case A has Re[A (A)] > 0, we can have results similar to 
those of Theorem 3.4 by employing a < 0. 

The geometric interpretation of Theorem 3.4 is given in Fig. 3 and 
shows simply that, if the eigenvalues of A lie on the closed half-plane on the 
left of the line e2, 

o" = -E(m, ~)/~ ,  

for some c¢ > 0, then there exists K which solves (9). If A is diagonalizable, 
then 

-~(m,  ~ ) /~  = -E0:" 

and, since p -> 1, the line e2 is on the left of el. In this case, a combination of 
Theorem 3.2(iv) and Theorem 3.4 gives an easily verified sufficient condi- 
tion for solvability of (9). 

Finally, Theorem 3.3 (ii) can be interpreted along the same lines as 
Theorem 3.2, using Figs. I and 2, where e' is used instead of e. So, if e' # O, A 
is diagonalizable, and all A (A)'s lie in a disk as in Fig. 2 with e' in place of e, 
then (9) has a solution and the closed-loop matrix A is a.s. If e' = 0 and A is 
diagonalizable, 

IIO11= 0, , =0 ,  

then if the eigenvalues of A lie in the interior of the disk in Fig. 2, the same 
conclusion holds. The version of Theorem 3.3 with ~ < 0 and Re[A (A)] > 0 
gives ,~ unstable, i.e., Re[A (A)] > 0, and is thus of no interest to us. 
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We close this section with five remarks. 

(i) The only assumption on the Qi, Rii's used in developing the proofs 
in this section was that R ~-~, R ~-~ exist. Neither Q~ -> 0 or Q~ -- 0 or Rej -> 0, 
nor any controllability, observability, or optimality conditions were used. 

(ii) If 

= Q + K S K  + JKJSoJKJ >- 0 

(it suffices that R12 and R 2 1 - 0 )  and A is a.s., since 

a standard result in Lyapunov theory yields K -> 0. Since 

3"~[ = x'oKixo 

(see Ref. 4), we will have J*  -> 0 for every x0, as it should be expected in case 
Oi, Ro>-O, i, ]= 1, 2. 

(iii) Consider the single Riccati equgtion 

K A  + A 'K + 0 - K B R - 1 B ' K  = 0, (37) 

where R > 0 and A is a.s., with O not necessarily positive definite. Then, 
Brower 's  theorem provides results which can be used to verify easily 
whether the frequency condition of Lemma 5 in. Ref. 11 holds. It is easy to 
prove (as in Theorems 3.1 and 3.2) the following results. 

(a) If there is o~ > 0 such that 

I -Ill + 2,~AII + 2~ 4Ill01111BR-~B'II], (3s) 

then (37) has a solution K. If in addition 

 211SlIR2<IIOil, I>III+2 Ail, (39) 

where 

1 - I l l  ÷ 2o~AII + -,/[(1 -II1 ÷ 2o~AII) z -  41101[ IIBR-1B'II] 
R2 = , (40) 21NI 

then A - B R - 1 B ' K  is a.s. 

(b) If there is an c~ > 0 such that 

I --Ill + 2~II + 2~'/24[IIO1111BR-IB'II], (4 I) 

then (37) has a solution K and A - B R - t B ' K  is a.s. 
Let  now Q = - C ' C < - O ,  and assume (A, C) observable and (A, B)  

controllable. Using Lemma 5 of Ref. 11, we see that (38) and (39) or (41) 
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imply that 
I - B ' ( - j w  -A')-~C'C(jw - A ) - I B  >- 0 

Also, since 
+ o o  

K = J. exp(Ft)(Q -KSK)  exp(F't)dt 

it will be 

for all real w. (42) 

and O -< 0, 

K_<0. 

In order to guarantee the fixed-point property of ~(K),  one could (iv) 
have employed contraction-mapping machinery. Then, • should map a 
closed set Do C X into itself; in addition, ~ should be Lipschitzian with 
Lipschitz constant L, 0-< L < 1, on Do. But, since qb is quadratic in K, Do 
should be bounded in order to guarantee that qb is Lipschitzian there. 
However, this amounts to Do compact, and we could consider Do a ball BR 
(w.l.o.g.). So, in order to use the contraction-mapping theorem, we should 
have made assumptions to guarantee that L < 1, in addition to those made to 
allow the use of Brower's theorem, and this would result in a weaker 
conclusion. 

(v) The assumptions of Theorem 3.1 guarantee the existence of K1, 
/£2 solving (4), which lie in BRr Thus, if the solution of (4) is unique, it will be 
in BRr If not, then there may be additional solutions K1, K2 in BR, R > R1, 
which are not in BR1, which solve (4). 

4. Extensions 

Let us now try to relax the assumption on A to be a.s. Two approaches 
will be considered. In both of them, we use the solution of an appropriately 
defined auxiliary problem in order to show existence of solutions to our main 
problem via Brower's theorem. 

Consider first the optimal control problem 

. [ul]  x(0)=xo, .¢c =Ax +[B1 : B 2 ]  u2 ' 

min x'Ox+[u'~ u2]R[.2j ) dr, 
where 

t~ = ½(O1 + O2), 
1 q_ ~ 

/~  = [ g ( R l l  0 R21)  0 0 

(43) 

(44) 

with/~1,/~z > 0. 7 Under certain assumptions (controllability-observability 

7 For this to hold, it suffices that R~i > 0, R# -> 0, i ~ j, i, j = 1, 2. 
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and O >- 0, or see Theorem 2, page 167 in Ref. 14, or Remark (iii) in Section 
3), there exists/~ satisfying 

0 = /~A + A ' / ~  + 1~ - / ~  (S, + S2)K, (45) 

with 

such that 

solves (43), and such that 

ut]  [/~71Bi/~x] 

u2 = - L t ~ t B ' 2 R x J  
(46) 

A = A - (Sl + S2)K; (47) 

i.e., the closed-loop matrix for (43) is a.s. Let 

K1 = /~  + At, /£2 = K -1- ~2 (48) 

be substituted in (4); and, by using (45), we obtain 

0 = A I A  + A'A1 + zXl(St + $ 2 -  St - $2)/~ + K(g t  + $2 - S~ - S2)At 

-[" A2(S01 -- S 2 ) K  -1- K ( S o t  - S2 )~2  - / ~ l S l A t  - &tS2~k2 - ~2S2A1. 

+ zX2sol& + ½ ( o r -  0 2 )  + g ( g t  + g2 + S o t -  & - s 2 -  & ) g ,  
: z (49) 

0 = A2A + A'A2 + ~2(S~ + $2 - Sl - S2)R + R ( S t  + S2 - Sl - S2)A2 

+ ~ ( S o 2 -  & ) R  + K ( S o 2 -  & ) A t -  A2S2±2- ~ 2 S ~ & -  & & ~ 2  

-1- AtS02A1 "}" ½(02  --  Q I )  - t - /~(81  "~ S2 -{- S02 - 51 - S2 - Slk)R, 

where Si, Soi are given in (8). 
Let a be as in (15) and 

= [[R(~t + g 2 -  s ,  - &)ll + ~ t ,  

/x~ = maxillR (So, - $2)[[,[[K(So2- &)[I}, 

4 = max{H½(Q, - 02) + R(St  + 82 -Jc 8Ol - S t  - 82 - S z ) R l l ,  (50)  

• 1[½(o2 - o r )  + R ( ~  + ~2 + So~ - Sl - & - & ) R  IJ}, 

/~ = l]I + 2oe~][ + 2oqx, 

1 - a + x/f(1 - g)2 _ 4c~ Za 24] 

2ol2a 
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The proof of the following theorem is similar to the proofs of Theorems 
3.1 and 3.3. 

z 
Theorem 4.1. Let A, tz, 4 be as in (47), (50), ce # 0. Then, the 

following results hold. 
(i) If, for some a > 0, 

1 -> I[I+ 2o~.~ il + 2~ [u + 4(a4)], (51) 

then there are a l ,  Az such that 

K1 = R + a ~ ,  K z = R + a 2  

solve (4) and 

(ii) If, in addition to (51), 

1>/~, 2 "2 o~ I[S[IRz < ~21lSollR~ + 2a/z 1/~2 + 4, (52) 

then the closed-loop matrix A [as in (5)] is a.s. 
(iii) If, for some a > 0, 

1 -> [lI+ 2a~tl + 2={~ + 4[(a + INt)4]}, 

1 > l;, (53) 

qor  ][Sd[or lzl # 0, 

then both (i) and (ii) above hold. 

Proof. Equation (49) can be written as 

o = a P  + P ' ~  + 0(A) 

[½(O1 -- 0 2 )  + R (S l  "4- S2 + S01 -- S1 - S2 - S 2 ) K  + 
t 0 

0 ] 
½(02- 0~) +g(gt  + s2 + So2 - & - sz - S l )KJ '  

where 
Z F=[A oj 

Using similar methods as in the proof of Lemma 3.2, we conclude that it 
suffices that 

aa  2R + [IJI + 2 a ~ l l -  1 + 21za ]R + 4 -~ 0 (54) 
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in order for (49) to have a solution A1, A2, where 

tlAd[, lt&iI ~ ~R, 

The rest follows as in the proofs of Theorems 3.1 and 3.3. 
The usefulness of the approach presented is cIear in case the game is 

used to describe a situation where two independent controllers desire to 
achieve the same objective using slightly different information (Oi) or 
control effort (Rii). 

Consider now the two independent control problems 

t *  o o  

minimize [ (x 'Olx  + u~Rmul) dr, 
ao 

(55) 
2 = A X + B l U l ,  x(0) = x0, t E [0, +00). 

and 
0 0  

minimize Jr ° ( X ' Q 2  X + U~R22U2) dr, 

.~=Ax+B2u2,  x(0) = x0, t E [0, +o0). 
(56) 

Under proper assumptions, the two Riccati equations 

0 = A 'R1 + R1A  + Ol - 1~1Sff221, 

o = A'R2 + R2A + 0 2 -  &S2R2  
(57) 

have solutions/(1,/~2, 

ul = - R  7~BiK,x,  uz = - R ~ B ~ g 2 x  

solve (55) and (56), and 

A1 = A  -$11721, A 2 = A - S 2 t ( 2  (58) 

are a.s. Let 

K1 = K1 + 2~1, Kz = g z  '}" ~2, (59) 
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Then ,  (4) can be wri t ten as 

0 = ff='A + A F  - ASA - A J S A J  - J A S J A  + J A J S o J A J  - K J S K J  

- J K S J R  + J K J S o J g J  - K J S  A J  - ~ J S g J  - J g S J  A 

- J A s J R  + J A J S o J R J  + J R J S o J 2 x J .  

Let  also 

~z = IIKSll + tlRJSoll + tlRJSlI, 

gl = ] [ K J S K J  + J g s J R  - J g J S o J g J ] [ ,  

/7 = Iti + 2aPl l  + 2oq2, 

/~2 1 - / 7 +  ~/[(1 - tff)2- 4a2a41 
- 2 a 2 a  

Theorem 4.2. Le t /3 , /2 ,  4 be as in (59), (61), a # 0. 

(i) If, for  some a > 0, it holds that  

1 --- [1I + 2aPll  + 2a[t2 + , / ( a4 ) ] ,  

then  there  exists A1, A2 such that  

g l  + A1, K2 + Az 

solve (4) and 

IIA,II-< a ~ = .  

(ii) If, in addi t ion to (62), 

1 >/7, - =IISIIR~ < ~ =llSollR~ + 2a  (llgJSoll + IIRJSII)R= + 4, 

then  the  c losed- loop matr ix  A,  given by (5), is a.s. 
(iii) If, for  some ~ > 0, 

1 --> Ill + 2oaell + 2a  {/2 + -/[a (4 + IlStl)]}, 

l > b ,  

c~ or llSoltor tlRJSoll + IIgJSll # 0, 

then  bo th  the conclusions (i) and (ii) hold. 

P r o o L  Work ing  as in T h e o r e m  4.1, it suffices tha t  

a a  aN 2 ..1_ [llI+ 2=PlI- 1 + 2a/2 ]R + 4 -< 0 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 
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in order for (60) to have a solution A, where 

Ilati-- 
and so on. [] 

The usefulness of this approach lies in the fact that the results which 
pertain to the case where the system is controlled separately by the decision- 
makers can be used to check the existence of the solution when the two 
decision-makers control it jointly and use Nash strategies. 

Theorems 3.2, 3.3, 3.4 and the interpretations in Figs. 1, 2, 3 hold also 
for the two approaches presented, with the appropriate modifications. For  
example, for Theorems 3.2, 3.4, Figs. 1, 2, and the first approach, one 
should use A, tx + 4(a4), Ix + 4[(a + llSt[)q] instead of A, e, E', respectively. 

Finally, note that the existence results in all cases developed previously 
are dependent on the parameter E (or e'). Since e is a function of the 
weighting matrices and since rescaling the criteria will affect the weighting 
matrices, it is of interest to point out how this scalling affects the existence 
results. Nothing changes in the game if we have 

Jl =r,Ji, 

instead of Ji, r~ > 0, i = 1, 2. So considering r~Qi, rgR~i instead of Oi, R~j we 
have 

e 2= max(rll[Oll[, r2l[O:ll)[3max(l]Slll/rl, lls2H/r2)+max(l[Sm[l/rl, ]]S02]1/r2)] 

o r  

2 
e = eZ(r) = max(llOdl/r, IiO2tl) " [3 max(rllS, II, tlS;H) + max(rltSodt, ltso211)], 

where r = r2/rt. Carrying out the minimization of e2(r) with respect to r, we 
find the minimum e* 

e* = 4{3 maxfllOdl' II&lt, llOzll" lls211] + max[llOll[" llsol]l, 110211 tlSo211]}. 
(66) 

The value of r* at which e(r) becomes minimum is given by the following. 
Let 

r~ = min(l[Sall/[tS~]], tlSo2H/l[Solti), r0 = max(ltszl[/l[sx]t, ][So2]]/Hs01H), 

e = ltOall/llo21I. 

Ir f-<r,~ -<rm then r* is any point in [~, r~]. 
If r~ - f - -  ro, then r* = f. 
If r~ -<- r o _< f, then r* is any point in [ro, f]o 

For e' as in (29), the same analysis holds, and the optimum s'* is given 
by a relation exactly the same as (66), but with 4 multiplying the first term 
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instead of 3. We can consider in all of our conditions that e(E') is given by 
(66). Notice also that a similar procedure will give the minimum values of 
~x +~/(aq), see (50), (61). It is interesting to notice that, if ~-<r~, then all 
r : ? -  < r-< r~ give the same e*. Actually, as (3) indicates, the existence of 
solutions for the game should not depend on multiplying J1 or J2 by a 
positive constant. Our conditions have at least preserved this property for an 
interval [L r~] or [r~, ~]. 

5. Conclusions 

This paper provides partial results concerning the existence of linear 
Nash strategies. The applicability of fixed-point theorems (Brower's 
theorem) was demonstrated, and some existing results were interpreted in a 
new manner [Remark (iv) in Section 3]. The generalization of our results to 
the N-player case is obvious. It should be pointed out that, for many of the 
conditions presented, no assumptions of controllability, observability, or 
semidefiniteness were made. Therefore, we have singled out a region of 
parameter space (A, B~, O~, Rii) where the existence of solutions does not 
depend on controllability and observability. This region is necessarily 
contained in the region where A is asymptotically stable, or is the neighbor- 
hood of a parameter point for which a solution of an auxiliary control 
problem exists. Outside this region, the existence of solutions will depend in 
general on controllability and observability properties, but presently condi- 
tions under which existence can be guaranteed are not known. 

6. Append~ A 

In Ref. 4, Proposition 1 states that given (1), (2), where Rll, R22;>0, 
then if K1, K2 satisfying (4) exist and A, given by (5), is a.s., then the 
strategies (7) satisfy (3). This is not true, as the counterexample 

f0 +~ 
2 = x + u + v ,  - J2  = J1 = (x2+uZ-2v2) dt 

demonstrates. This example is used in Ref. 9 to show that, in the zero-sum 
case, the linear solution for the game over a finite period of time [0, T] does 
not, as T + +oe, tend to the linear solution of the infinite-time case. But, if 
one makes additional assumptions, then the conclusion holds. 

The correct form of Proposition 1 in Ref. 4 is the following. 

Proposition 6.1. Given the system (1) and the two functionals (2), 
where Qi, Rii are real, symmetric matrices and Rl l ,  R22>0,  assume that 
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there exist real, symmetric matrices Kt,  K2 satisfying (4) and (5) and either 
(i) or (ii) hold: 

(i) Oi+KiR~lRiiR[ilKi>-O, i ,]  = 1, 2, i ~ j .  
(ii) The two control problems 

t "  minjo (x ' [Qi+KjR~lRi jR~Kj]x+u~Ruui )  dt, i # j ,  i , j =  1, 2, 

2 = (A - BiR~iB}Ki)x  + Biu~, 

satisfy the conditions of Theorem 2, p. 167 of Ref. 14. Then, the strategies 
(7) satisfy (3) and J*,  J*  are finite. 

7. Appendix B 

The case where at least one of J*,  J2* is ±oo can also be examined. For 
example, if we are interested in a linear Nash equilibrium where J*  = ± m  
and J*  is finite, then this amounts to seeking 

ui = - L ' x ,  i = 1, 2, 

where (i), (ii), (iii) below hold. 

(i) The control problem 
-boo 

J2=Io  (x ' (Qv.+L~'R2iL*)x +u2R2~uz)dt, 

Yc = (A - B 1 L * ) x  + B2u2 

has J*  2 = rain Jz finite. For example, assume controllability and Q2+ 
L * ' R  L* >- O. 1 21  1 

(ii) The problem 

Io ÷oo L ( x ' (O l  + * * = L2Ri2Lz  )x + u'iRllUl) dt, 

2 = ( A - B 2 L * ) x  + B i u i  

has J l = + o o  for every u l = - L ~ x ,  which means roughly that some 
uncontrollable mode h of the pair (A  - B 2 L * ,  B1), which does not lie in the 
null space of Ol +L'~Ri2L*, has Re[A]-> 0. 

(iii) The following hold: 

L* -1 , = R 22 B2K2, 

K 2 ( A - B 1 L ~ )  + , , , ,  , -1 , (A - B i L l  ) K2+(Q2 + L1 R21L1 ) - K 2 B 2 R 2 2 B 2 K 2  = 0. 
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Similarly, one can form conditions for the cases 

j *  = y *  = ±co, J *  = -oo, J*  finite. 

8. Appendix C: Proof of Lemma 3.3 

(i) Let  v be an eigenvector of F corresponding to cr +/ w  = A (F) and 
Ilvll = 1, w.l.o.g. Then,  

o - I I / +  3,rll-> lift + ~,r)vll = 11 + ~,(o- +/w)l ,  

and (21) follows. 
(ii) This follows trivally from (21) by noticing that (21) corresponds to 

a disk with center at - 1 / 3 / a n d  radius 1/13'1, which, in case 3' > 0 and p -< 1, 
lies in the left half-plane of the (o-, jw)-plane. 

(iii) See (if) above. 
(iv) The proof is trivial. 
(v) This follows by using (iii). If F is symmetric, then 

and thus 

T '=  T -1 and IIT'II = IITII = ~/[A max(T 'T) ]  = 1, 

p ' = l .  []  

9. Appendix D 

Consider the matrix differential equation 

I(1 = K 1 A  + A ' K 1  + QI - K1S1K1 - K1S2K2 - K2S2K1 + K2SotK2,  (67) 

I<2 = K 2 A  + A 'K2 + Q 2 -  K a S 2 K a -  K z S 1 K t -  K1S tK2  + K1So2K1, (68) 

where K~, / (2  are time-varying, t ->- 0, and 

KI(0) = Ft, Kz(0) = F2 

are the initial conditions. Then,  it follows that, for t -> 0 sufficiently small, it 
holds that 

t t 

K~(t) = exp(At)F~ exp(A't)  + Jo exp(Acr) 

x [O1 - K1S1K1 - KaS2K2 - K2S2K1 + KzSolK2] exp(A'o-) do-, 
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and a similar result  holds for  K2(t). The  constant  matr ices Ft,  F2 solve (67), 
(68) iff 

Ft = exp(At)F1 exp(A' t )  + to'exp(Ao-) 

× [O1 - FISIF1 - F1S2F2 - F2S2FI + F2So1F2] exp(A'o.)  do-, 

and a similar result  holds for  F2. Because  A is a.s. and Ft,  F2 are constant ,  the 
integral 

t "  +oo 

Ioo = Jo exp(Ao-)[O1 - r t s l r t -  F 1 S z F 2 -  F2S2F1 + F2SolF2] exp(A'o.)  do. 

exists. Also, with w = o. - t, 

f +~ exp(Ao.)[O1 - F1StF1 - F1S2F2 - F2S2F1 + FzSmF2] exp(A'o.)  do- 

t '  -boo 

Jo exp[A(w + t)][O1 - F1S1FI - F1S2F2 - F2S2F1 

+ F2So1F2] exp[A ' (w + t)] dw 

= exp(At)Io~ exp(A' t ) ,  

and thus 

fo ff loo = + = + e x p ( A t ) l o o e x p ( A ' t ) ,  

f rom which we conclude that  

/oo = F1. 

A similar result  holds for  F2. In t roducing  scaling, 

F1 = ceF2, o~>0,  

and setting 

we have (32). 

K / ~  F i ,  

10. Appendix E 

It is easy to see that  

II exp(Ft)ll-< IITI[ Jl T-l[[ ]! exp(At)l[. 
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Let t > 0 and 

I' 1 A =  -/2 0 , 

o J~, 

where the ~'s are the Jordan blocks of dimension ml . . . . .  ink, with 

m l + "  • " + m k = n .  

Let 

I 
1 t/l! t2/2! 

exp (Jit) = exp(hit)A~ = exp(h~t) 1 

0 

Then, 

Ilexp(At)l[= max llexp(hit)Aill<---exp(£t) max IIA,II. 
i = 1  . . . . .  k i = 1  . . . . .  k 

. . .  tm'-l/(mi--1)!] 

• " " 1 

We have 

A i = 1 +  

t I10 t/2! 
0 1 

-T  
0 ~ 0 

I 

• " " t'-2/(i" 1" - 1)!] 

= I +  
_ 0  i t~ , l  

So, if 

then 

x = ( x l ,  . . .  ,x~)' ~ R  ~, d = ( x 2 , . . . ,  xi)', 

Ila,I1 = sup I1hixll <-- sup {llxl] + tllL~ll} 
Ilx]l= 1 IIx]l= 1 

= 1 + t sup 2 ItL;II = 1 + t sup ItL;II = 1 + tllLII, 
x~+. • -÷x t=1 I1~11~ 1 

For ~i, we have 

~' = I O1 t/2! tz/2 • 3 . . .  t i -2 /2 . . .  ( i - l )  1 

J • " • 1 
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F', F: 
I ', (,/2)| 

--i+|o '~ | 
! Lo 
LO-I- 

_ r o i(t/2)L] 

=~+[-o-~--o--j. 
We have again 

t / 3   3j3 11] 
0 

IILtt ~ : + ( t /2) l tLII ,  
and thus 

{{A,{ I --< 1 + ~[I + (t/2)H~,i{{]. 

Continuing similarly, we end up with 

{IA, II-< 1 + t(1 + t/2(1 + t /3 ( . . .  ((1 + t/i - 2)(1 + t/i - 1>). . .  3)) 

= 1+t / l !+t2 /2!+.  • .+t i - : / ( i -1) ! .  

Therefore,  if 
m = m a x ( m : , . . . ,  mk), 

then 

]]exp(Ft)[[-< I[TI[ ]]T-:I[ [[exp(at)[[ 

< ]{TII {}Z-: l lexp(~t)  l + - - + . - .  ~ = . 

- I! (m--- P j=o 

Direct calculation (recall that A < 0) gives 

~o Hexp(Ft)H2dt<-P2fo exp(2ht)[j~okj!lJ dt 

f + o o ;  :oex p ) i+~  2 - -  - -  t 

= p (2ht dt 
• t O  i , =  , • 

= P  i,i=oE i!/'! =PZTr( - l /h )"  (69) 
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