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Analysis of an On—-Off Jamming Situation as a
Dynamic Game
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Abstract—The process of communication jamming can be of each contestant has a limitation on its power handling
modeled as a two-person zero-sum noncooperative dynamic capability, which arises because transmitting at very high
game played between a communicator (a transmitter—receiver o ver |evels over a period of time can cause overheating and
pair) and a jammer. We consider a one-way time-slotted packet . .
radio communication link in the presence of a jammer, where consequent th_ermal breakdown of the equ_mer_wt. Analysis of
the data rate is fixed and 1) in each slot, the communicator and such a scenario therefore calls for embedding in the game a
jammer choose their respective power levels in a random fashion suitable model of the thermal limitations of the communicating
from a zero and a positive value; 2) both players are subject to gnd jamming transmitters.
temporal energy constraints which account for protection of the We consider the case in which selected communication and

communicating and jamming transmitters from overheating. The . . trateqi ised i hroni dverell
payoff function is the time average of the mean payoff per slot. jamming strategies are exercised in synchronism averell-

The game is solved for certain ranges of the players’ transmitter defined time slots, indexed by integers2, ..., T'. In the¢,th
parameters. Structures of steady-state solutions to the game are slot (¢ denotes thdorward-time inde} the communicator
also investigated. The_ general behavior of the players’ strategies transmits an information-bearing signal with a power IeVe,l,
and payoff increment is found to depend on a parameter related 5.4 the jammer transmits a jamming signal with a power level
to the payoff matrix, which we call the payoff parameter, and the Yo Iti tural to infer the followina. 1) At the beginni i
transmitters’ parameters. When the payoff parameter is lower “ts* IS haturalto Interthefollowing. ) ebeginning orany
than a threshold, the optimal steady-state strategies are mixed time slot, there is accumulation of thermal energy in the commu-
and the payoff increment constant over time, whereas when it is nicating and the jamming transmitters owing to past transmis-
greater than the threshold, the strategies are pure, and the payoff sjons. 2) Over the current slot duration, a fraction of this energy
increment exhibits oscillatory behavior. is dissipated, while the remainder adds on to the energy gener-

Index Terms—Communication jamming, grid solution, nonco- ated by the current slot’s transmission. 3) To avoid transmitter
operative dynamic game, optimal strategies, temporal energy con- fajlure due to thermal breakdown, the accumulated thermal en-
straints. ergy at the end of any slot should not exceed a threshold for

either player. This justifies the need feamporal energy con-
|. INTRODUCTION straints

To incorporate this kind of reasoning in a model,Zgf rep-
. resent the accumulated thermal energy in the communicating

~ game _betwee_n two o_pponentsc(ammu_mcatm(a rans- 4 ansmitter at the end of time slot, and assume that a fraction
mitter—receiver pair) and @mmer each trying to outdo the 6 of this energy has not been dissipated by the end of the fol-

other by transmitting a signal with a power level greater thzTBWing time slot. Assuming that there is no initial accumulated

that of its adversary. Such a situation can be modeled ag 3,5, energy, the evolution of the accumulated thermal en-

twq-person zert_)-sunmoncooperanv? gamfl] [2], an idea ergy process in the communicating transmitter can be modeled
which was motivated by Shannon’s work on the theory (B‘

communication [3]. However, the transmission equipmen

OMMUNICATION jamming is, in reality, a power

Zo =0
tr—1
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whereC,,., is the thermal breakdown threshold in the commuEertainly, a normalized throughput per packet, averaged over
nicating transmitter. The jammer’s accumulated thermal energlgannel disturbances, can be viewed as one such additive payoff
is assumed to be governed by a similar equation functionG(Xy,, Y3, ).

For noncooperative games between a communicator which
is designed to communicate over a channel, and a hostile
jammer which is designed to jam the communication system,
there are a number of papers in the open literature which
use different types of payoff functions, such as channel
capacity [7], signal-to-noise ratio [8], error probability [9],
the fractionsc being thethermal memory constaof the jam- @nd mutual information [10]. Games with ensemble average
ming transmitter. To survive to the end of stgt the jammer’s power constraints were dealt with in [11]-[15]. In such work,

Wo =0

ty—1

Wtf :6JWtf—l +Y;f = Z 63Y;f—777
=0

tp=1,....T; 0<é; <1 (3)

equipment must operate with static.games were solved analytically, assuming independent
play in each time slot. The use of ensemble averages for
Wi, —n < Jmax, forall n=0,...,t; —1; t; =1,...,7 average-power-constraint modeling does not take into account

(4) the time-varying thermal behavior of the transmitters, and no
parameter corresponding to a thermal memory constant exists
where.J ;. is the thermal breakdown threshold in the jammingn these analyses.
transmitter. The temporal energy constraints of the communi-Dynamic game models were considered in [4]-[6] and
cator and the jammer are thus given by (2) and (4), respectivghys]-[20]. Antijamming codes were studied in [6] using a
These constraints are the elements of our game model which@snstrained game model with probability of correct decision as
count for the prevention of transmission failure due to thermgde payoff. The performance of the arbitrarily varying channel,
breakdown of the players’ transmitters and make the gdyre which can be interpreted as a model of a channel jammed
namic Models with time-averaged power constraints or energyy an intelligent and unpredictable adversary, was studied in
constraints, which, in our framework, can be interpreted as thg], [5], [16]-[18], and [21] from an information theoretic
nondissipative model withc: = 6, = 1, have been investigatedpoint of view. Significant results on the coding capacities of
in [4]-[6]. additive channels were obtained in [22]-[24]. The influence
We assume thatin our slotted time epocliflots, each slot of information in noncooperative games was investigated
may or may not contain a packet, depending on whether or ngt[19] using methods of information theory. Maximin and
the communicator chooses to transmit a signal. Similarly, thginimax detection problems for signals having temporal power
same slot may or may not contain a jamming signal. If the corgonstraints with the payoff as the probability of error of the
municator chooses to transmit in a given slot, a fixed l&Vel detector were formulated and solved in [20].
(C > 0) of thermal energy will be released in the communi- our work differs from those of the past in that the model is
cation transmitter. Similarly, a jammer’s transmission in a timgot directly related to channel capacity, but that it pertains to
slot will release a levell (J > 0) of energy in the jammer’s gne motivated by simplified communication engineering prac-
transmitter. The level€§' and.J can be scaled to pOSSQSS the Unﬂce [25] We first so've a dynamic game over a f|n|te number
of power. The payofiz(X;,, ;,) to the communicatoras a of siots by using dynamic programming, and then consider the
function of whether or not either of the players are transmittingehavior of the optimal strategies as the reverse-time index goes

in time slott s, can be described by a simple22 matrix to infinity. The infinite horizon case is also considered. The gen-
A [G(0,0) G0, J) 0 0 eral behavior of the players’ strategies and payoff increm_ent is
= = , 0<a<l. found to depend on the payoff parameteand the transmit-
G(C,0) G(C, ) 1« ) ters’ parametersiVhen« is lower than a threshold, which is a
f

When the communicator does not attempt a transmission in S;égcrﬂ?xr;gfat:de tﬁzra;nf)tf(feirr?é;:gsqgr?ttgiLf;i?gg;ﬁ;?:gﬁg?;z
ty,i.e., Xy, = 0, the payoff for that slot is 0. At the opposite pay '

extreme, one unit of payoff is given to the communicatorwhevﬁhen it is greater than the threshold, the strategies are pure,

it transmits and the jammer is off. When both players activeﬁnOl the payoff_mgr_ement_exhll?lt_s oscillatory behavitis phe-

- . . omenon is significant since it is the outcome of the temporal
transmit in a time slot, the payodf will fall between these two enerav constraints which introduce dvnamism in the game
extremes. It is plausible that many payoff functions can be not- gy . : y . 9 i

The paper is organized as follows. In Section Il, we describe

malized in this fashion. We shall call the payoff parameter the dvnamic iammin me model by exoressing th ﬁ
A key assumption about the payoff function is that it is additivg'c @ynamic ja g game model by expressing the payott as

over a sequence of slotted transmissions. The oveagibffis a function of the strategies and setting up the evolution equa-

the expected value of the average payoff per slot for actmhggn to solv_e for the optimal strategle_s usmg_dynam|c program
. . ming. Section lll presents a & 2 grid solution for both the
over a sequence df time slots. This can be modeled as i . NP . :
finite horizon and the infinite horizon cases. In Section IV, we

T analyze the structure of coset-generated grid solutions for the
Z E[G(Xy,, Yi,)] (6) game. Section V provides an example of how the game model
ty=1 can be applied to a communication system which employs bi-

2The communicator’s payoff matrix &. Since the game is zero-sum, thenary.pha‘se'Sh“ct keying (BPSK). The conclusions are given in
payoff to thejammeri&G(th th) and the jammer’s payoff matrixisG. ~ Section VI.

gal

el
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Il. DYNAMIC GAME MODEL {x,} %, <000 {o(x,.x,)}
In our model, the sequendeX;, }, X;, € {0, C} for all ( — -\
ty € {1, 2, ..., T}, of communicator power leveldescribes . J

the sequence of communicator’'s decisions to transmit or n

transmit. Similarly, the sequendgd?, }, Y;, € {0, J} for ty,

of jammer power leveldescribes the sequence of jammer’s de Cmﬁgc} RECEIVER

cisions to jam or not. Cones 5. 6(0,0)=0
The players are subject to the constraints (2) and (4). Let tl (2, -x, +6.2, Scm} Go.n=0

operating planeof the communicator (jammer) be thi&,../C L G(G,0)=1

versusc plane ./ J versusé; plane). In order for the en- AG)=a

ergy constraints to come into play, tbperating region®f the ,"I{(l—éc)lx,}

; . . - o Lt Y, e{0d
communicator and the jammer must lie, respectively, within {‘f} by <(07)

_ T _ T
1< Conax. 1= 0¢ and 1< Jma 1 6J- (7) Tmn:{{?ﬁk
C 1-— (50 J 1- 6J
"mlxva.l
Thetransmitter parameter€’,,.x, ¢y Jmax, 67 are assumed to {W:, =¥, +8!Wl,—15"mn}
be known to both players. A
In addition, we assume that both the communicator and tt ((CEAL TREN

jammer have knowledge of their own and their opponent’s au

tions in prior time slotslt is conceivable that the information

about whether the opponent’s transmitter has been on or off

previous slots may be available to the transmitters, depending

on slot durations and propagation delays, or else the inform49- 1. Communication jamming game environment.

tion flow model would have to be adjusted to account for these

delays.Therefore, we have a framework inwhich®) andY:  §,, ¢, by Jiax, z by w in (8). Thus, &7 = {0}, @71 =
areindependentandb) fof = 2, ..., T', X;  andY;, arecon- {0 ¢}, @r_y = {0, 6¢C, C, (14 6¢)CI N[0, Cinax], and so
ditionally independent, giveXy, ..., X;, 1, Y1, ..., ¥3,-1  on. Note that

(and therefore, giver;,_;, Wy, _1). This is adynamic sto-

chastic game modelith a Markovian evolutiorf26], in which

X,, andY;, are thedecision variablesf the two players, and ~ [®:] < 207t 1oy <2t for t=1,...,T,
the accumulated thermal energy p@i;,, W;, ) is the value of Or CPp_y C - C &1 C[0, Coaxls

the stateof the system at the end of slot. Thestate equations Wy CUp g C o C Uy C [0, Jonas]- 9)
that govern the dynamic system are given by (1) and (3). -

We further assume that the payoff parametesee (5) IS | o1y, (2, w) (¢,(#, w)) denote the probability that the com-
known to both sides. The value @ftypically depends onfactors ., \nicator (jammer) selects power lev&l(J) at reverse-time

not known to either transmitter, e.g., the signal—to—interferen%@e_' at the beginning of si& —#), given that the communicator
ratio in the communication receivétart of the objective of this 54 jammer have retainecandw units of energy, respectively.

analysis is to find out how the optimal strategies of the Compefisy nast transmissions. Then, these selection probabilities or
tors depend on this parameter, as a first step toward approacr@?ategies:an be defined as

to the jamming game without precise knowledge:.of
The scenario for the game, along with the parameters, is
shown in Fig. 1. iz, w)

>

Pr(Xp_y =ClZr—4—1 =2, Wr_4_1 = w)
Pr (YT—t = J|ZT—t—1 =z, Wr_4y_1= w)
(10)

1173

. . Qt(zv w)
A. Payoff as a Function of the Strategies

Lett = 1T — t; denote theeverse-time indexrom (1) and
(3), we find thatZ;-_, admits only those energies that belong tg;herez ¢ Gy, we Wypq, t=0,...,T—1.

a set®, defined as The payoffG in (6) can be expressed in terms of a time-re-
versed sequendeSy, - .., St—1} governed by the equations

T—t—1
A

S, =< zi2=C 3,67 B0, ..., Br—i_ 0,1 /

' {7 ? EZ:O R }} So éE[G(XTnyNZT_l, Wr_i]

A
N [07 Cmax]7 t= 17 LR T (8) St :E[{G(XTftv YTft) + Stfl}|ZT7t717 WTftfl]a
fort=1,...,T-1
andWr_, admits only those energies that belong to an analo- Sr 4

gous setl, which can be expressed by replacifidpy J, 6 by G=—7 (11)
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The quantityS; is thus the backwardccumulated payoét the nontrivial elements of the strategy sets, and is therefaena
beginning of slotI" — ¢ given the past energy accumulationsinuous functionabf these elements. Hence
Zgp_4_ 1 andWrp_, 1. Equation (11) can be rewritten as

max g(Po, ey PT—l; Qo, ey QT—I)

Solz, ) {Po,.yPr_1}
’ min g(Po, ey PT—l; Qo, ey QT—I)
0 0 1-— (JO(Zv w) [QO ----- QT—I}
=t-mew) i wl[] ] }
1« %0(#, w) exist.
= po(z, w)[1 — (1 — a@)go(z, w)], z2€®; we Uy
(12a) B. Existence of a Saddle-Point in the Finite Horizon Game
Si1(2, w) While playing the game, the communicator assumes the worst
=[1—=pu1(z, w) pig1(z, w)] case in which the jammer minimizes the payoff over all possible
strategy set sequencé€®y, ..., Qr_1}, against any sequence
{ Silbcz, 6w) Silbez, J +d5w) } that it?};es, ang chooéses a seque{r‘f«?@;r g, 75T_1}>;ucﬂ that
1+5(C+bcz,61w) atS,(CHbdcz, J+6w) the maximinpayoff V7, is achieved. Thus
X {1 G+ (2, w)} , 2 € Dypo; w € Wyyo; Vi, = max min
qry1(z, w) {Po,..,Pr—1} {Q0,..,.Qr_1}
t=0,...,T-2 and (12b) g(Po,...,PT_l; QO,---,QT—l)
g= ST%(O’O) (12c) = {Qg,.lfl,iéqu]}g(PO’ ooy Pro1; Qo,..., Qr-1). (16)
since there is no initial accumulated energy. The constraints (2)On the other hand, the jammer chooses a sequence
and (4), which preclude transmission when energy accumula,, ..., Qr_;} such that theminimax payoff Vi is
tions are too high, force the conditions achieved. This gives
pi(z, w) =0, when z € &, N <%, Cmax} Vo= {QO,.IEIST,l} {PO,I.?%D);A}
J C_J G(Po,...,Pr_1; Qoy--., Qr—1)
2 =0 whenw € &,y N | o=, N N
qt(77 w) ) t+1 < (51 ) max:| ) _ max g(rpo7 o 7KPT71; QO, s QT71)~ (17)
fort=0,...,7T—1. (13) {Po,Proid
Theminimax theorenf27] states that;, < V.
The strategy sets?, for the communicator an@; for the A strategy set sequendé®, ..., Pr_1} satisfying (16) is
jammer at reverse-timgt =0, ..., T — 1, are defined as called anoptimal strategy set sequenfar the communicator,
while a sequencéQy, ..., Qr_,} satisfying (17) is an op-
A Chox — C timal strategy set sequence for the jammer. Our objective in
P = {pt(z’w)U < Se Z) 12 € Qs w € \I/“fl} solving the game is finding optimal strategy set sequences for
the players.
Q2 {(_Zt(Z,TU)U <M _ w) z€®; we ‘Pt+1} The finite dimensional vector of at mo$2(4% — 1))/3
o7 elements [see (15)] of the strategy se®, ..., Pr_i,
(14) Q,, ..., Or_1 has some elements which are zeros [due to

(13)], and each of the other nontrivial elements belongs to
wherel/(-) denotes the unit step function, and takes into accouthie compact convex s¢d, 1]. The payoffG is a continuous
the conditions (13). From (9) and (14), the cardinalities of tHenctional of these nontrivial elements. Therefore, there exists a
setsP; and Q; are given by sequencePj, ..., Py} and a sequencgQy, ..., Q% |}

such that [27]

[Py <4t |y <4t t=0,...,T—1
\ min G(Py, .. v Pr_1; Qoy oy Q1)

i 411 = 47 —1 T {QoyenQr 1}
implyin Py < — <—=. (5 e . .
py g ;| t|_ 3 ’ ;|Qt|_ 3 ( ) Zg(POa'--aPT—l; QOa"'aQT—l)
. .. . . . . VU S max g(POa R} 7)T—l; an ] Q;—l)
Consider thdinite horizon gamgthat is, the case whéhis fi- {Po,...Pr—1}
nite. Each nontrivial element of the strategy $&is . .., Pr_1, <GPy, -y Prq; 98y -ovy Q). (18)

Qo, - .., Qr_1 is a probability by definition, and therefore be-

longs to thecompact convex s@t, 1] on the real line. In addi- From the minimax theorem and (18), we get

tion, itis clear from (12) that the paydf, which can be denoted

by G(Po, ..., Pr_1; Qo, ..., @Qr_1), is affine in each of the Ve=Vu =GPy, ..., Pr_1; Qs -ovy Q1)
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Therefore, the finite horizon game admitsaddle-pointand it Equation (19b) is areverse-time recursiorin terms of

is given by strategy sets S{(z, w). Each optimization process in the recursion involves
solving a matrix game, and this gives tbptimal strategies
Py, P, Qb Oy pi(z, w) andg; (z, w) starting with
: =1, ¢ =1 when 0< < Cmax = C
satisfying (18). Since a saddle-point satisfies the optimali@O(z’ w) =1, gz w)=1 when 0<z< b
conditions (16) and (17), sequenc¢®;, ..., P;_,} and Jmax — J
{95, ..., @~_,} are optimal strategy set sequences for the O<ws s
communicator and jammer, respectively. Maueof the game C. 0
is the quantit)g(Pg, ) Pik“_l; 19/ SR Q;«_l)- pg(z, w) =1, qg(z7 w) =0 when 0<2z< &7
c
C. The Evolution Equation Jmag —J <w< T
For the finite horizon game, a set of optimal strategies can d
be obtained by applyinglynamic programming28] on the Po(z, w) =0, ¢ (z, w) =0
accumulated payoff in (12). From (12) and (13), we obtain the when Cmax—C <2< C
evolution equationas shown in (19) at the bottom of the page, bc o
fort =0, ..., T — 2, where value H) denotes the value of 0<w< Jmax — J
the zero-sum game with payoff mat#, and.S; (z, w) is the I ¥
optimum accumulgted payddk reverse-time given .the.past Pz, w) =0, ¢z, w) =0
energy accumulationsandw. Thevalue of the games given C. .. _C
by when L <z< CmaX7
oc
1 ']max - ]
* _ T oox me= - < Jax- 21
g TST_I(O, 0). (20) 5, <ws (21)
( 0 0 - _
value<[ }):a, ifOSzSM;OSwSM
1 « e, ¥
. Cmax - C J max ~ J
max(0, 1) =1, if 0<2< ; ; ; < w < Jmax
Solz, w) = © d (19a)
. . Cmax - C J max ~ J
min(0, 0) = 0, if ————— <2< Chax; 0SW ——
60 6J
. Cmax - C J max ~ J
07 |f — <=z S Cmax; — <w S Jmax
\ b¢ by
( Si(bcz, byw Si(bcz, J+ 65w s
e ([ St S b ()Gt
14 SHC + bcz, bw) o+ S5(C+bcz, J+85w) el
0 < w < Jma.x - J
fw< 5
H Cmax C
max(S; (bcz, byw), 1 + 57 (C + bez, byw)), if 0<2< s ;
c
Jmax - J
6— <w S ']max
Stz w) = 2
min(57 (écz, bgw), Sf (6cz, J + 6gw)), if mag <2 < Omax;
c
0<w< T |
Sws 5,
. Cmax - C
S:(((SCZ, 6Jw), if —— <z S Cmax;
o¢
Jmax - J
— <w S Jnlax-
\ 6.]

(19b)
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Storage for

(PS(Zyw), QS(Z,’W)), ey (p;‘—l(zaw)v q;‘—l(za w))’
0<2 £ Cmax, 0<w< Jmax

(p:+1 (Z) U)), (I§+1 (Z) ’LU))

(p8(z, w), g5 (2,w))

Evolution
5 Equation
ti= 19

Sy (2, w) (19)

Fig. 2. Roadmap of the computation of optimal strategies.

Note that in (21), whe(C.x — C)/d¢ < 2 < Chax, 0 < w < The mapping of the interval®, (Cpax — C)/8¢], ((Coax —
(Joax — J)/67, the communicator cannot transmit owing ta”) /6, Cmax] ON thez-axis from¢ + 1 to ¢ is therefore given
the constraints, implying$(z, w) = 0. The jammer, although by
having the option of transmitting with any nonzero probability c.  _C
and still maintainingS;(z, w) = 0, chooses to remain idle be- [0, %}
. . . C

cause it has no signal to jam. Therefagg,z, w) = 0.

It can be shown from constraints (2) and (4) and the condition <Cmax —C Cma.x:| —  (Chax — C, 6c¢Cruax]
(13) thatforallt = 1, ..., T — 1, S;(z, w) is nonincreasing bc ’ ’
with increase inz and nondecreasing with increase i and (Cimaxs C + 6cCax]-

that (24)
Sincel < z < Cyax forall ¢, the interval Cryox, C4 60 Chiax]

need not be considered. Also note that Cpax — C] C

a— [07 Cmax - C]v [07 Cmax]

pi(z,w)=1, ¢/(z, w)=0

[0, (Cmax — C)/6c]. Now if the condition
Cmax - C
when 0<z< ————, co_c
¢ 6C0max S = - < C (25)
']max - ] 60
— <w S ']max
¥ is satisfied, then we have
; = :07 ; = = 0
pt (7 w) Qt (7 w) _ C [Ca Cmax] C ((Cmax - C)/(SC, Cmax]
When 60 <z S Cmaxa (Cmax - 07 6C0max] C [07 (Cmax - C)/(SC]
0SwS Jmax: (22) and the interval mapping farfrom ¢ + 1 to ¢ becomes
Therefore, the only unknown optimal strategies gféz, w) [0 Crnax — C} . [0 Clrax — C}
andg; (z, w), when0 < 2 < (Cpax — O)/b6c, 0 < w < b¢ oc
(Jmax — J)/6s, t=1, ..., T — 1. Aroadmap of the compu- Crax — C
tation of optimal strategies is shown in Fig. 2. <T’ Cmax:|
<011136X — Ca Cma.x:| - |:0a Cmag — C:| . (26)
ll. A 2x 2 GRID SOLUTION UNDER CERTAIN ¢ ¢
OPERATING CONDITIONS The condition (25) for the communicator can be rewritten as

In the evolution equation (19), the communicator’s past en- <Cmax _ O) <Cmax ~-C_ O)
ergy accumulatior at reverse-time + 1 has two images &t bc >0 bc
6C — max» 6C

6C27 when XTftfl =0 (23) It tivel 1 < CmaX
or, alternatively, as———-
C+6cz,  when Xp_,_; = C. YT = To

<0

<1l+4+6b6c. (27)
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w From (19a) and (29), the solution of the evolution equation at
t = 0 simplifies to
Irmaz SO =a, S% =1, 89 =59 =0. (30)
St St In accordance with the & 2 grid structure ofS} (z, w) in
(29), the communicator’s optimal strategy(z, w) and the
Tinan—J jammer’s optimal strategy; (z, w) are denoted as
oy
Pijs ;s fori=1,2, j=1,2 t=0,...,T—1.
Sh St
From (21) and (22), we have
0 o Pla=1 qa=0, phy=q5 =0, phy=q5=0,
cmgé—c C,.. t=0,...,7T-1 (31)
Fig. 3. Optimum accumulated payoff forax 2 grid solution. andp?;, = ¢{; = 1. Therefore, we just need to solve for the

optimal strategiep!; andg!, fort =1, ..., 7 — 1.
. . , " , Substituting the payoff function of (29) in (19b), and using
This specifies the operating condition of the commumcat?éz)’ we obtain the following system of equations [29];
for the optimum accumulated payoff to hawwo intervals
[07 ((Cmax - C)/(SC)]: ((Cmax - C)/607 Cmax] or Simplyone t41 Sll 512
critical point (Cpuax — C) /8¢ on thez-axis for allt. We shall Sy = value <[1 LSt g st D (32a)
call (27) thecommunicator's one-critical-point regiorit is 2 2

indicated in Fig. 8, region “1.” It corresponds to the condition Sift =148 (32b)
that the communicator may pick any sequence of “transmit/no SiFl =gttt — st . (32¢)
transmit” choices which does not include two consecutive
transmits. The reverse-time initial conditions are given by (30).
In additionto (27), when the jammer’s parameters also satisfy
the analogous condition A. Solution to the Finite Horizon Problem
1 oo When the duration of play or horizon lendthis finite, the
e Sy <! + 64 (28) evolution equation (32) can be solved to obtain the optimal
J strategiespt, ¢¢, for t = 1,...,7 — 1. From (20), the

Q% T—1 :
which is thejammer’s one-critical-point-regionS; (=, w) in value of the game ig* = (1/7).5;,"". We will formulate the
(19) has a 2 2 grid structureon the(z, w) plane for allt (see evolution equation in terms of the payoff increments to obtain

Fig. 3), and can be defined as the solution. _ .
Theincrement of the optimum paydt,, i, j € {1,2}, in
( gt 0 <, < Chax — € going from¢ to ¢t + 1, is bounded and lies in [0, 1], since each
11 moszs S element of the payoff matrié [see (5)] lies in0, 1]. We denote
T —J this increment by\!;. Thus
0 S w S ma;
J A ot+1 . . . —
) . Cone — C Ay =85 = SE, i=1,2 7=1,2; t=0,....T—2
129 |f 0 S z S e ——
c and the conditio) < A}; < 1 holds.
Iwax = g Substituting Si+* =" S!; + AL in (32) and eliminating
Sz, w) A . oy . (29) St Si,, and S, (32a) simplifies to
Sh, i P < 2 < O EEVT=RRY:
21 5 2 0 1-XNT — A
¢ XiT? = value 1 - ,
0<w<Jmax_J 1_)‘11 a_)‘ll
=7 = 51 t=0,...,7T—4. (33)
. o Cax — C _ : : .
Sk, if — s < 2 < Chax; This can be rewritten as second-order nonlinear difference
¢ equation
']max - ] < < ]
- ¢ W S Jmax
\ 8y i (LA MDA -NTYH o,
)\11 = 2_a_)\t+1_)\t s |f )\11<1 &
for t =0,...,7 — 1. We shall call a solution corresponding 4 e
to (29) a 2x 2 grid solution theoperating conditiongor which =a— A7, A =21- £=0,...,T—-4

are given by (27) and (28). (34)
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having initial conditions
l—« 0.9 J
)‘?1 = 2
1 1 0.8-
AL = —ga, for 0<a<3 CONN
Ja—1 1 ?\10.7- Jammer (g11)
= , for —<a<l. T
2 2 5
B06f 1
In addition, from (33), the optimal strategig§, , ¢!, are gov- &
erned by the equations ?

o
2]

Communicator (p11}

+1 +1
( t+3 t+3) _ < 1- )‘il — )‘51 1- )‘tll ) , 0.4

R e A . (G
if Ai; <1—a 0% o1 o0z 03 04 05 06 07 08 08 i
Payoff parameter {alpha}
=(1, 1), if Xy >1—0a; t=0,...,7—4
(36) Fig. 4. Steady-state strategigs:, q:1 versus payoff parameter in 2 x 2
grid solution.
with . ) o ) ]
Proposition 1 and (36) imply that the finite horizon optimal
1 1 1 strategie®!; andqt, converge tsteady-state strategies
Pii =1 = 2
: t
1 1+ . 1 pir = lim pj,
(pflv (]%1) = <_7 OC_) s if 0<a< = t—00
37 3(1—a) 2 . 1-a
1 - )\ —
=L, it J<a<l (37) 20=3) ~a
:(3_a)_ =) -a) if0<04<2
WhenXi{; = 1 — ain (33), we have 2a ’ 3
t+1 1 if 2 <a<l
0 o — A7 =1, - <«
A2 = value <[ L T D — oA 3
L-=XNT a—Ay qu = lim qi
and it is clear thay!T® = 1. However, anyp!T® € [0, 1] 1=
will give the valuea — AT, In our scenario, the communi- C2(1-)N) -«
cator would rather transmit with probability 1, and therefore we
choosept® = 1. _ -tV -a)0-a) 2
To investigate the behavior of the optimal strategigsand 4l -a) 3
¢t, ast — oo, we analyze difference equation (34). The fol- 2
lowing proposition establishes the behavionéf for ¢t — oc. =1 if 3 se<l (39)
Proposition 1: Whent — oo, the solution\!; of the differ-
ence equation (34) A plot of p;; andg;; versusa is shown in Fig. 4. Fob <
a < 2/3, the strategies are mixed, and 3 < « < 1, the
(5—a)—/(9—a)(1—a) strategies are pure. In the mixed strategy zone, pgtlandg; |
converges to = s , increase with increase im, butpi; < qi1.
i 0 < 2 Whent — oo, the payoff increment profiléprofile of /\ﬁj)
Mo<asg on the(z, w) plane is a constank for 0 < « < 2/3, but
. oscillates between two patterns as shown in Fig. 5(a) and (b)
oscillates betweefl — «) and(2« — 1) for 2/3 < a < 1.
. . L2
withaperiodof 2if - < a < 1 (38)
3 B. The Infinite Horizon Game
for all initial conditions\?;, A\l; € R. We treat the infinite horizon problem as the limit of the finite

The proposition can be proved by first finding the local Lyahorizon case with horizon length as? — oo, provided the
punov exponents of (34), and then applying the multiplicatiygayoff G remains bounded and the optimal strategy sequences
ergodic theorem of Oseledec to obtain the global Lyapunov e§ga1T1_t-f +H {qlTl_tf} converge to well-defined limits for every fi-
ponents [30]. The proof is given in [31]. nite forward-time index .
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w w
Jma:v Jma:v
l—a | 2a—-1 20—1| 1—«
J’ITL[LCL‘_J Jmaz_J
oy LF
l—a | 2a—-1 20—1| 1—«
z z
O Cmaa:_c C O Cmaa:_c C
60 max 50 maxr

(a) (at t, t+2,t+4,...) = (b) (at t+1,t+3,t+5,...)
Fig. 5. Oscillatory behavior of payoff increment profile wher» oo for 2/3 < a < 1.

0.5 T T T T

We find from (5) that the payoff in (6) satisfiedd < G <1
and is therefore bounded. Also, the sequence

T = 045}
Z E[G(thv Y;j)]
tf=1 T—1

is nondecreasing for increasifigand thel'th term of the se- o4r

quence lies if0, T']. Therefore, the limit

Value

T
A . 1 0.351 alpha/2
tf=
exists and lies i, 1] for any choice of strategies. We cgll, 03 [5-apha-sqri{(9-alpha)(i-glpraye

the payoff of the infinite horizon game
Since it has already been found from Proposition 1 and (3¢

that the optimal strategy sequendgs, } al’.]d{qfl} converge 0% 52 08 04 05 08 07 08 09 1

to well-defined limitsp;; and 1, respectively, when the re- Payoff parameter (alpha)

verse-time index — oo, we have, for every finite s

Fig. 6. Value of infinite horizon game versus payoff parameter
lim p " = lim ¢, " =
e P11 P11, o q11 qi1
. IV. COSET-GENERATED M x N GRID SOLUTIONS
wherep;; andg;; are given by (39).
It is also clear that strategigs; andgy; constitute the sta-  In the 2 x 2 grid solution considered so far, the optimum
tionary solution of the evolution equation (32), that is, they a®ccumulated payoff; (z,w) has one critical poin{Cpax —
the optimal stationary strategiesf the game a§” — oo. The C)/éc on thez-axis, and another critical poiliY.max — /) /6,
value of the game for the infinite horizon case is therefore givé thew-axis for allz. From the evolution equation (19), we find
by [see (12c¢), (20), and (38)] that in generab; (~, w) has a grid structure on tlfe, w) plane
. for all ¢, the boundaries of the grids being determinedtiycal
G-a)-yO-a)(l- O‘)’ points Thus,S;(z, w) has one critical point on either axis, and,
8 ast increases, the number of critical points on the respective
(1—a)+(2a—-1) axes may or may notincrease depending orofi@ating points
2 (bc's Crmax/C), (67, Jmax/J).
o 9 Define an operatoZ which maps the communicator’s past
=5 M g<a<l (40)  energy accumulation at reverse-time to that att + 1 as

G = if 0<a<

[OCT I V]

A plot of G*_ versus« is shown in Fig. 6. In the figure, the z
region0 < « < 2/3 corresponds to the constant payoff in- A | 67
crement profile, while the regio?/3 < « < 1 corresponds to 2(z) = s C _
the oscillatory profile as stated in Proposition 1. As result, when [ if €<z < Cpax-

« € (0, 2/3], the value of the game is simply the payoff incre-

mentA = ((5 — ) — /(9 — «)(1 — «))/8. On the other hand, An analogous operatd# which maps the jammer’s past energy
whena € (2/3, 1), since the period of oscillation % the value accumulationy at¢ to that at+ 1 can be expressed by replacing
is (A + AT /2 =((1—a) + (20— 1))/2 = /2. C by J, ¢ by 67, Cuax BY Jumax, 2 by w in (41). LetUc(t)

if 0<2<C
(41)
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denote the communicatortsitical point setat reverse-time, If we define M disjoint intervals along the-axis as
andi{;(t) the jammer’s. Then

o _c o _c A2 ag, a1, A2 (a1, @, i=2..., M
Z/{C‘(O) =q—— N [07 Omax) =N

b bc and N disjoint intervals along the-axis as
U;(0) = {J“%J_J} N[0, Jmax) = {J“%J_J} (42) B b bi], BiS(hj_1. bl j=2....N
since, from (7), we have thenS; (z, w) has anM x N grid structure given by
v e sty e SO T e

The backward recursions that describe the communicator’s an‘bne wayof obtaining the communicator's critical points
jammer’s critical point set computations are given by

ai, ..., ap—1 Satisfying (48) is to consider the situation when,
Uc(t+1) = {ZUc() Ut} N[0, Coax) for somer € {1, ..., M — 1}, critical pointa,. satisfies
Ur(t+1) ={WUBD) WU O} N[0, Jmax)  (44) g— > Crass “6;0 <0. (50)
c c
fort = 0,1, 2,... . Therefore, at every reverse-time step, th$h 48) imoli
number of critical points on the-axis orw-axis can at most en (48) implies
double. If we have the condition a1 Gp1 apy1 — C ap—1 — C
{ak}u{_,.., }U{ }
Uc(0) Uc(0) - C b¢c b¢c b¢c b¢c
Z CmaX7 —— <0 (45)
bc bc :{ala ey a]\l—l}

which is the same as (27), théf: () = {(Cmax — C)/8c} fOr  \ynereq, is given by (47), and this results in tieeitical point
all ¢. Similarly, the condition generation syster{82]

ug(O) 2 ']maX7 % < 0 (46) ag :acl = Z(CLJ\{) = Z(Cmax)
J J 4

e =Z(a,_)=2" , i=2 ..., M-2
guarantees that; (t) = {(Jmax — J) /6 } for all t. Conditions e (i1 (@) Mtl
(45) and (46) specify the operating conditions for a 2 grid r = ey = 2(acy, ) =27 (am) (1)
solution, which have already been found earlier [see (27) aWFlnere[cl ..., cai—1] is some permutation dt, ..., M — 1]

(28)]- ) o ) » _ satisfyinge; = k, epr—1 = r, for which the above form ex-

We are interested in finding operating conditions for whiclyis \we shall call (51) theelevant formof the critical point
there are at most/ —1 critical point's ofS} (2, w) on thez-axis generation system. The vectas, ..., cas_:] shall be called
andV —1 critical points on thev-axis for allt, thatis,57(z, w) e critical point generation index vectoif a system can be
has anM x N grid structure Say, for some reverse-time: \itten in the form of (51), we say that it haselevant solution

S;;(z, w) h_as griti(_:al pointsy, . . S aM -1 (ay << ap;—1) (ai, ..., ap—1)-
on thez-axis lying in[0, Umax), and critical point$, , ..., by —y Let a full cyclotomic coset mod@2 — 1) be written as an
(br < --- < by1) on thew-axis lying in [0, Juax), Where /4 oje (v1, ..., var), wherey; < -+ < vy, The coset
M, N €12,3, 4,5, ...}. Sinceldc(0) C Uc(n) andUts(0) ©  can also be written a8y, v, -. ., ve,,_, ), Where thecoset
Uy (n) [see (42) and (44)], assume generation index vectdts, . .., cy/—1] is some permutation of
a Chax — C b Jmax —J [1, ..., M —1]forwhich we obtain theoset generation system
A M
forsomek e {1,..., M -1}, le{l,...,N—1} Ve, =20y Mod (27 — 1)

— M _ ;i — _
(47) Ve, =2V,.,_, mod(2 1), i=2,...,M—1 (52)

which has the same form as (51).

For a given M, let the operator7,; operating on
Uc(t) ={a1, ..., a1}  and ve{l,...,2" — 2} be defined as
Us(t) ={b1, ..., by_1}, forall £ > 7. (48)

Let us force the conditions that

Tu(v) 2 2vmod (2 —1). (53)
This implies thatS; (z, w) has anM x N grid structure on ) ) o
the (z, w) planeVt > 5. Fort < n, the elements of{-(t) Comparing (51) and (52), we find that the following isomor-

and U, (t) which do not belong to{as, ..., ay—1} and phisms hold for each generation index vedtar ..., cp1]:
{bl_, oo bt} respectivel_y, are treated esdundant critical (UM Vers ooy Veryy) e (Cunascs Geys - vy Gy )
points Thus, anM x N grid structure ofS;(z, w) can be Ty e Z. (54)

generalized for alt > 0. Also, let
R Thus, we conclude that the numberoofset-generated relevant

ag 2 0, apm 2 Chax, bo 2 0, Oy = Jmax- solutionsof the critical point generation system for any natural
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M=2
coset critical point critical point set one-critical-point
(v2,v¢,) | generation system {a1} region
ag = Cpus Cmaz—C 1 o}
_ m < 1+6
(2)1) a = ar‘:CC {—S‘é—} mg_—%u< +é¢c
M =3
coset critical point critical point set two-critical-point
(v3, Ve, ¥c,) | generation system {a1, a2} region
a‘3 - C‘mnz
-C _ —
412 | e = 532 {Cngz=C Cog=C} | < Doz <148}
az = fré
a3 = Chus
— Crmas—C(1+6 _
(6,5,3) o = =€ | (Omea=CU+00) Cnga=C} | I¥0g < Cpw < 1450463
ax—C c c
a1 = A=
M=4
coset critical point critical point set three-critical-point
(4, Vey , Ve, Ves ) | generation system {a1,a2,03} region
a‘4 - Cmuw
ay3—C
ay = —%— _ _ —
(8,1,2,4) o — f_}.c {ngz_c’gmgg_g,gmgg.ﬁ} -1—_1655 Q%u<1+5%
C
- a
as — 3-2
ag = Chas Coen—C(144
— MeT C
a3 = H= {“_521_2’ 146 G
(12,9, 3, 6) _ a EC Cmuz_Cﬁ+6 c _c 1—_?? < %‘E < l+5c+§g
a; = = R Cz, __m%z_} c
a = £ ¢
: = £
= C
24 omaz (Cra=ClLtdo %) .
3 = % 3 148 +9,
(14,13,11,7) e o _oile, T OO0 < Cmaz < 1450443463,
ay = ‘maz—C(143¢) Cmgz cy 1-o%
agoC L ’ c
a; —25—0

Fig. 7. Tabulation of each coset, its critical point generation system, the critical point set, and the corresponding coset-geherdtgdritical-point region

for M = 2, 3, 4.

numberM > 2 equals the numbek(M) of full cyclotomic
cosets mod2" — 1) given by [33]

L5

d|M

h(M)

wherey is theMobius function of number theary

Thecommunicator’s coset-generatéllf — 1)-critical-point
region for which aq, ..., ap;_1 are thecoset-generated crit-
ical pointsof S;(z, w) on thez-axis for all¢ is given by (50).
Thejammer’s coset-generatédv — 1)-critical-point regionfor
which by, ..
the w-axis for all¢ can be found in an analogous way.

ForM = 2, 3, 4, the possible sets dff — 1 coset-generated
critical pointsay, ..., ay—1 and each of thé (/) coset-gen-
erated M — 1)-critical-point regions are shown in Fig. 7. Fig. 8

., byy_1 are the coset-generated critical points on 12r 1

/
1.9+ ! .

;

141-deltaC)’

Q

X

© . / -
E1A5

(&)

1.4F y 1
1.3r b

1 l/deltaC

11k b

1 ! L . L . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
deltaC

shows a plot of these Coset'gen_erated critical-point regions ﬁ& 8. Commmunicator’s coset-generated critical-point regiong fdr —
the (6c, Cmax/C) plane (operating plane of communicator)1) = 1, 2, 3.

Thus, the number of one-critical-point regionshi&) = 1,

the number of two-critical-point regions ig3) = 2, and the the region given by (43). For operating points outside these re-

number of three-critical-point regions ig4) = 3. All these gions, coset-generated grid solutions do not exist.

regions are disjoint, are bounded by the cur¢gs../C =

For given M and N, the game has(M)i(N) different

1/(1 = 6¢), Crax/C = 1/b6c, Cmax/C = 1, and lie within coset-generated/ x N grid solutions For a solution with
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index vector [cy, ..., cpr—1] Of the communicator's coset Since the PSD of the total noise(r) + nj(r) is
(vi, ..., va) and [c], ..., cy_,] of the jammer's coset (No/2) + (Y;,/(2B)), the symbol-error probability for
(v, ..., Vi), the coset-generated operating conditiomse the receiver is given by

[using (50)]

_ 2BT. X
Aepr_y Aepy, — C P(X, V. )= _ sty
— > - e 5 = = —_ | .
5o 2 Crmax, 5o <0 (Xpy, Yiy) =Q @ NoB+Ys,
berv_s > ] M <0 (56)
6J —_ max» 6J M

Th . _ /s h is (for th . The transmitter—receiver link can be viewed as a binary
epointay, = (Cmax—C)/8c on thez-axis (for the communi- Sémmetric channel, and therefore a reasonable measure of the

cator) given by (47) and (51) corresponds to the coset elemg hmunicator's performance is the channel capacity, which (in
vk, Which can be shown to be thargest odd elememf the bits/symbol) is given by

coset(zy, ..., vpr). Similarly, the pointy; = (Jyax — J) /65
(for the jammer) corresponds to the coset elemgrthe largest Ceap(Xt,, Yy,) =1+ Po(Xy,, Yy, ) log, Po(Xy,, Y3,)
odd element of the cosétf, ..., v} ). The procedure for for- +1-P(X,,, Y,)]

mulation of the evolution equation using coset generation index
vectors has been presented in [34]. A general way of expressing
analytically the behavior of optimal strategiegas oo has not SinceC..;,(0, 0) = C..p,(0, J) = 0, we can define the payoff to

x logy[l — Pe(Xy,, Yy )] (57)

yet been found. the communicator as
There exist other kinds af/ x N grid solutions in which Coap(Xt,. Yi,)
one or both of the players’ critical points are not generated by G(Xi,, Yiy) = e C 0 (C, 0) (58)
cap 9

cosets. For example, if we choose o ) ) }
which is nondecreasing with an increaseXip, and a decrease
Cnax/C = (1 + 6% — 62)/(1 — 82) in Y;,, and satisfies the conditions

andéc is not too large, then there are three critical points G(0,0) =G(0, J) =0, G(C,0)=1,

(1 3

62.C/(1 =62, 6cC/(1—8L), C/(1 —62) 40 < /ﬂ)
NoB+J

on thez-axis. As an illustration, considég = 2/3, Cax/C =

31/19. The critical points , a2, az on thez-axis are generated x log, Q <1 / ﬂ)
as NoB+J

31 18 27 | 2BT,C
_ _ -° _ et 1-— _
a4—190—>a2—190—>a3—190—> +|: Q( NoB+]
12 18
4 =—C—sap=—C. loee 11— 2BT,C
19 19 X 082[ Q NoBiJ J

We will not consider such investigations here. a=G(C J) =~ S
2BT.C
V. AN EXAMPLE OF BPSK SGNALING +Q < NoB )

Consider a situation in which the transmitter communicates 2BT,.C
with a coherent receiver over an AWGN channel by employing xlog, Q < NOB )
BPSK signaling with carrier frequengy. The jammer tries to
jam the receiver’s signal by injecting additional noise into the + [1 -Q < 2BTSC>}
receiver. When symbal (i = 0, 1) is transmitted, the received NoB
signal over the yth symbol interval (time slot) of duratidfy, is 2BT.C
il )

(1) =/2X;, cos(2rm for 4 im) + n(T) + ny(7), (59)

(t;— V)T, <7 <t;Ty; ty=1,....,T (55) corresponding to the payoff matr{ in (5).

To compare a randomized power game situation with a
where X;, is the communicating signal power(r) the fixed power scheme, consider the following two cases. 1) The
additive channel noise, and;(7) the additive jamming noise. communicator and jammer randomize their power levels over
The noisesn(r) and ns(r) are assumed to be independenf0, C} and {0, J}, respectively, and the conditions (27) and
zero-mean white Gaussian random processes with two-sid28) for a 2x 2 grid solution hold. 2) The communicator and
power spectral densities (PSD8)/2 andY;, /(2B), respec- jammer use fixed power leveS and./, respectively, satisfying
tively, Y;, being the jamming signal power adglthe channel C' < Cuax(1l — é6c) andJ < Jnax(1 — 67) owing to the
bandwidth. temporal energy constraints.
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fixed strategy cs
.. 08 1
=
o
=
A~
0.6} B
randomized strategy case
04 . . ; . . . :
-6 -4 -2 0 2 4 6 8 10
Signal-to-white-noise-ratio CTs/NO (in dB)
0.3 (b) Cmax/]mgx:O.l, dellaC:QSj, deltal=0.1
randomized strategy case
L 02ZF T 4
o s
o
=
A 01 - ‘_‘_;f;iz(;e‘c!_stralegy case J
0 . . . . . . ;
-6 -4 -2 0 2 4 6 8 10
Signal-to-white-noise-ratio CTs/NO (in dB)
Fig. 9. Payoff versus signal-to-white-noise-raitd’; /N, (in decibels) for

randomized and fixed strategy cases with channel bandwidts 1/7'; and
BPSK signaling when (al',.x = 10Jmax, 6 = 0.1,6, = 0.5 and (b)
Crmax = 0.1Jpax, 6 = 0.5,6, = 0.1.

In case 1), let
Cma.x 1 2
== <1+6c+1_6c>
J, 1
— max 1 _ 62 60
2 <1 +65 * J) (50)
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than a threshold, but pure when it is higher. The mixed strate-
gies give rise to a constant payoff increment profile on the en-
ergy accumulation plan€ {, w) plane], while the pure strate-
gies result in an oscillatory profile, except for the fact that at the
threshold the strategies are pure but the payoff increment pro-
file is a constant. We have also shown how some grid solutions
can be obtained from cyclotomic cosets. An example of a typ-
ical communication scenario comparing the use of randomized
strategies with that of fixed ones is also presented.

The oscillatory behavior of the payoff increment and the role
of the threshold for its appearance are very interesting for both
the practical communication jamming problem as well as the
game-theoretic problem perse. In infinite time games, people
usually consider stationary nonoscillatory behavior, whereas
our study indicates that oscillatory ones should be a legitimate
object of study. Actually, other game applications, such as
battle of species models, lead to similar oscillatory behaviors
as time increases.

It is also to be noted that two assumptions in the model we
have considered are: 1) both players have precise knowledge of
the payoff parameter and the transmitters’ parameters; 2) each
player obtains correct feedback information about the other’s
past actions. A situation in which the knowledgecofind the
transmitters’ parameters is not precise and the feedback infor-
mation is not always correct calls for an adaptive game model,
and is an interesting and relevant topic for further research.
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