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Analysis of an On–Off Jamming Situation as a
Dynamic Game

Ranjan K. Mallik, Member, IEEE, Robert A. Scholtz, Fellow, IEEE, and
George P. Papavassilopoulos, Senior Member, IEEE

Abstract—The process of communication jamming can be
modeled as a two-person zero-sum noncooperative dynamic
game played between a communicator (a transmitter–receiver
pair) and a jammer. We consider a one-way time-slotted packet
radio communication link in the presence of a jammer, where
the data rate is fixed and 1) in each slot, the communicator and
jammer choose their respective power levels in a random fashion
from a zero and a positive value; 2) both players are subject to
temporal energy constraints which account for protection of the
communicating and jamming transmitters from overheating. The
payoff function is the time average of the mean payoff per slot.
The game is solved for certain ranges of the players’ transmitter
parameters. Structures of steady-state solutions to the game are
also investigated. The general behavior of the players’ strategies
and payoff increment is found to depend on a parameter related
to the payoff matrix, which we call the payoff parameter, and the
transmitters’ parameters. When the payoff parameter is lower
than a threshold, the optimal steady-state strategies are mixed
and the payoff increment constant over time, whereas when it is
greater than the threshold, the strategies are pure, and the payoff
increment exhibits oscillatory behavior.

Index Terms—Communication jamming, grid solution, nonco-
operative dynamic game, optimal strategies, temporal energy con-
straints.

I. INTRODUCTION

COMMUNICATION jamming is, in reality, a power
game between two opponents, acommunicator(a trans-

mitter–receiver pair) and ajammer, each trying to outdo the
other by transmitting a signal with a power level greater than
that of its adversary. Such a situation can be modeled as a
two-person zero-sumnoncooperative game[1] [2], an idea
which was motivated by Shannon’s work on the theory of
communication [3]. However, the transmission equipment
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of each contestant has a limitation on its power handling
capability, which arises because transmitting at very high
power levels over a period of time can cause overheating and
consequent thermal breakdown of the equipment. Analysis of
such a scenario therefore calls for embedding in the game a
suitable model of the thermal limitations of the communicating
and jamming transmitters.

We consider the case in which selected communication and
jamming strategies are exercised in synchronism overwell-
defined time slots, indexed by integers . In the th
slot ( denotes theforward-time index)1 the communicator
transmits an information-bearing signal with a power level,
and the jammer transmits a jamming signal with a power level

. It is natural to infer the following. 1) At the beginning of any
time slot, there is accumulation of thermal energy in the commu-
nicating and the jamming transmitters owing to past transmis-
sions. 2) Over the current slot duration, a fraction of this energy
is dissipated, while the remainder adds on to the energy gener-
ated by the current slot’s transmission. 3) To avoid transmitter
failure due to thermal breakdown, the accumulated thermal en-
ergy at the end of any slot should not exceed a threshold for
either player. This justifies the need fortemporal energy con-
straints.

To incorporate this kind of reasoning in a model, let rep-
resent the accumulated thermal energy in the communicating
transmitter at the end of time slot, and assume that a fraction

of this energy has not been dissipated by the end of the fol-
lowing time slot. Assuming that there is no initial accumulated
thermal energy, the evolution of the accumulated thermal en-
ergy process in the communicating transmitter can be modeled
by

(1)

where is thethermal memory constantof the communicating
transmitter. The constraint for survivability of the communica-
tion transmitter to the end of slot is simply that

for all

(2)

1We are usingt to denote the forward-time index to distinguish it from the
reverse-time indext which will be used later.
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where is the thermal breakdown threshold in the commu-
nicating transmitter. The jammer’s accumulated thermal energy
is assumed to be governed by a similar equation

(3)

the fraction being thethermal memory constantof the jam-
ming transmitter. To survive to the end of slot, the jammer’s
equipment must operate with

for all

(4)

where is the thermal breakdown threshold in the jamming
transmitter. The temporal energy constraints of the communi-
cator and the jammer are thus given by (2) and (4), respectively.
These constraints are the elements of our game model which ac-
count for the prevention of transmission failure due to thermal
breakdown of the players’ transmitters and make the gamedy-
namic. Models with time-averaged power constraints or energy
constraints, which, in our framework, can be interpreted as the
nondissipative model with , have been investigated
in [4]–[6].

We assume that in our slotted time epoch ofslots, each slot
may or may not contain a packet, depending on whether or not
the communicator chooses to transmit a signal. Similarly, the
same slot may or may not contain a jamming signal. If the com-
municator chooses to transmit in a given slot, a fixed level
( ) of thermal energy will be released in the communi-
cation transmitter. Similarly, a jammer’s transmission in a time
slot will release a level ( ) of energy in the jammer’s
transmitter. The levels and can be scaled to possess the unit
of power. The payoff to the communicator, as a
function of whether or not either of the players are transmitting
in time slot , can be described by a simple 22 matrix2

(5)
When the communicator does not attempt a transmission in slot

, i.e., , the payoff for that slot is 0. At the opposite
extreme, one unit of payoff is given to the communicator when
it transmits and the jammer is off. When both players actively
transmit in a time slot, the payoff will fall between these two
extremes. It is plausible that many payoff functions can be nor-
malized in this fashion. We shall call the payoff parameter.
A key assumption about the payoff function is that it is additive
over a sequence of slotted transmissions. The overallpayoff is
the expected value of the average payoff per slot for activities
over a sequence of time slots. This can be modeled as

(6)

2The communicator’s payoff matrix isG. Since the game is zero-sum, the
payoff to the jammer is�G(X ; Y ) and the jammer’s payoff matrix is�G.

Certainly, a normalized throughput per packet, averaged over
channel disturbances, can be viewed as one such additive payoff
function .

For noncooperative games between a communicator which
is designed to communicate over a channel, and a hostile
jammer which is designed to jam the communication system,
there are a number of papers in the open literature which
use different types of payoff functions, such as channel
capacity [7], signal-to-noise ratio [8], error probability [9],
and mutual information [10]. Games with ensemble average
power constraints were dealt with in [11]–[15]. In such work,
static games were solved analytically, assuming independent
play in each time slot. The use of ensemble averages for
average-power-constraint modeling does not take into account
the time-varying thermal behavior of the transmitters, and no
parameter corresponding to a thermal memory constant exists
in these analyses.

Dynamic game models were considered in [4]–[6] and
[16]–[20]. Antijamming codes were studied in [6] using a
constrained game model with probability of correct decision as
the payoff. The performance of the arbitrarily varying channel,
which can be interpreted as a model of a channel jammed
by an intelligent and unpredictable adversary, was studied in
[4 ], [5], [16]–[18], and [21] from an information theoretic
point of view. Significant results on the coding capacities of
additive channels were obtained in [22]–[24]. The influence
of information in noncooperative games was investigated
in [19] using methods of information theory. Maximin and
minimax detection problems for signals having temporal power
constraints with the payoff as the probability of error of the
detector were formulated and solved in [20].

Our work differs from those of the past in that the model is
not directly related to channel capacity, but that it pertains to
one motivated by simplified communication engineering prac-
tice [25]. We first solve a dynamic game over a finite number
of slots by using dynamic programming, and then consider the
behavior of the optimal strategies as the reverse-time index goes
to infinity. The infinite horizon case is also considered. The gen-
eral behavior of the players’ strategies and payoff increment is
found to depend on the payoff parameterand the transmit-
ters’ parameters.When is lower than a threshold, which is a
function of the parameters, the optimal steady-state strategies
are mixed and the payoff increment constant over time, whereas
when it is greater than the threshold, the strategies are pure,
and the payoff increment exhibits oscillatory behavior.This phe-
nomenon is significant since it is the outcome of the temporal
energy constraints which introduce dynamism in the game.

The paper is organized as follows. In Section II, we describe
the dynamic jamming game model by expressing the payoff as
a function of the strategies and setting up the evolution equa-
tion to solve for the optimal strategies using dynamic program-
ming. Section III presents a 2 2 grid solution for both the
finite horizon and the infinite horizon cases. In Section IV, we
analyze the structure of coset-generated grid solutions for the
game. Section V provides an example of how the game model
can be applied to a communication system which employs bi-
nary phase-shift keying (BPSK). The conclusions are given in
Section VI.
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II. DYNAMIC GAME MODEL

In our model, the sequence , for all
, of communicator power levelsdescribes

the sequence of communicator’s decisions to transmit or not
transmit. Similarly, the sequence , for ,
of jammer power levelsdescribes the sequence of jammer’s de-
cisions to jam or not.

The players are subject to the constraints (2) and (4). Let the
operating planeof the communicator (jammer) be the
versus plane ( versus plane). In order for the en-
ergy constraints to come into play, theoperating regionsof the
communicator and the jammer must lie, respectively, within

and (7)

Thetransmitter parameters , , , are assumed to
be known to both players.

In addition, we assume that both the communicator and the
jammer have knowledge of their own and their opponent’s ac-
tions in prior time slots.It is conceivable that the information
about whether the opponent’s transmitter has been on or off in
previous slots may be available to the transmitters, depending
on slot durations and propagation delays, or else the informa-
tion flow model would have to be adjusted to account for these
delays.Therefore, we have a framework in which: a) and
are independent and b) for , and are con-
ditionally independent, given ,
(and therefore, given , ). This is adynamic sto-
chastic game modelwith a Markovian evolution[26], in which

and are thedecision variablesof the two players, and
the accumulated thermal energy pair is the value of
thestateof the system at the end of slot. Thestate equations
that govern the dynamic system are given by (1) and (3).

We further assume that the payoff parameter[see (5)] is
known to both sides. The value oftypically depends on factors
not known to either transmitter, e.g., the signal-to-interference
ratio in the communication receiver.Part of the objective of this
analysis is to find out how the optimal strategies of the competi-
tors depend on this parameter, as a first step toward approaches
to the jamming game without precise knowledge of.

The scenario for the game, along with the parameters, is
shown in Fig. 1.

A. Payoff as a Function of the Strategies

Let denote thereverse-time index. From (1) and
(3), we find that admits only those energies that belong to
a set defined as

(8)

and admits only those energies that belong to an analo-
gous set which can be expressed by replacingby , by

Fig. 1. Communication jamming game environment.

, by , by in (8). Thus, ,
, , , and so

on. Note that

for

(9)

Let denote the probability that the com-
municator (jammer) selects power level( ) at reverse-time
(i.e., at the beginning of slot ), given that the communicator
and jammer have retainedand units of energy, respectively,
from past transmissions. Then, these selection probabilities or
strategiescan be defined as

(10)

where , , .
The payoff in (6) can be expressed in terms of a time-re-

versed sequence governed by the equations

for

(11)
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The quantity is thus the backwardaccumulated payoffat the
beginning of slot given the past energy accumulations

and . Equation (11) can be rewritten as

(12a)

and (12b)

(12c)

since there is no initial accumulated energy. The constraints (2)
and (4), which preclude transmission when energy accumula-
tions are too high, force the conditions

when

when

for (13)

The strategy sets for the communicator and for the
jammer at reverse-time, , are defined as

(14)

where denotes the unit step function, and takes into account
the conditions (13). From (9) and (14), the cardinalities of the
sets and are given by

implying (15)

Consider thefinite horizon game, that is, the case whenis fi-
nite. Each nontrivial element of the strategy sets ,

is a probability by definition, and therefore be-
longs to thecompact convex set on the real line. In addi-
tion, it is clear from (12) that the payoff, which can be denoted
by , is affine in each of the

nontrivial elements of the strategy sets, and is therefore acon-
tinuous functionalof these elements. Hence

exist.

B. Existence of a Saddle-Point in the Finite Horizon Game

While playing the game, the communicator assumes the worst
case in which the jammer minimizes the payoff over all possible
strategy set sequences , against any sequence
that it uses, and chooses a sequence such that
themaximinpayoff is achieved. Thus

(16)

On the other hand, the jammer chooses a sequence
such that the minimax payoff is

achieved. This gives

(17)

Theminimax theorem[27] states that .
A strategy set sequence satisfying (16) is

called anoptimal strategy set sequencefor the communicator,
while a sequence satisfying (17) is an op-
timal strategy set sequence for the jammer. Our objective in
solving the game is finding optimal strategy set sequences for
the players.

The finite dimensional vector of at most
elements [see (15)] of the strategy sets ,

has some elements which are zeros [due to
(13)], and each of the other nontrivial elements belongs to
the compact convex set . The payoff is a continuous
functional of these nontrivial elements. Therefore, there exists a
sequence and a sequence
such that [27]

(18)

From the minimax theorem and (18), we get
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Therefore, the finite horizon game admits asaddle-point, and it
is given by strategy sets

satisfying (18). Since a saddle-point satisfies the optimality
conditions (16) and (17), sequences and

are optimal strategy set sequences for the
communicator and jammer, respectively. Thevalueof the game
is the quantity ; .

C. The Evolution Equation

For the finite horizon game, a set of optimal strategies can
be obtained by applyingdynamic programming[28] on the
accumulated payoff in (12). From (12) and (13), we obtain the
evolution equation, as shown in (19) at the bottom of the page,
for , where value ( ) denotes the value of
the zero-sum game with payoff matrix, and is the
optimum accumulated payoffat reverse-time given the past
energy accumulationsand . Thevalue of the gameis given
by

(20)

Equation (19b) is areverse-time recursionin terms of
. Each optimization process in the recursion involves

solving a matrix game, and this gives theoptimal strategies
and starting with

when

when

when

when

(21)

value if

if

if

if

(19a)

value if

if

if

if

(19b)
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Fig. 2. Roadmap of the computation of optimal strategies.

Note that in (21), when ,
, the communicator cannot transmit owing to

the constraints, implying . The jammer, although
having the option of transmitting with any nonzero probability
and still maintaining , chooses to remain idle be-
cause it has no signal to jam. Therefore, .

It can be shown from constraints (2) and (4) and the condition
(13) that for all , is nonincreasing
with increase in and nondecreasing with increase in, and
that

when

when

(22)

Therefore, the only unknown optimal strategies are
and , when ,

, . A roadmap of the compu-
tation of optimal strategies is shown in Fig. 2.

III. A 2 2 GRID SOLUTION UNDER CERTAIN

OPERATING CONDITIONS

In the evolution equation (19), the communicator’s past en-
ergy accumulation at reverse-time has two images at

when

when
(23)

The mapping of the intervals ,
on the -axis from to is therefore given

by

(24)
Since for all , the interval
need not be considered. Also note that

. Now if the condition

(25)

is satisfied, then we have

and the interval mapping for from to becomes

(26)

The condition (25) for the communicator can be rewritten as

or, alternatively, as (27)
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Fig. 3. Optimum accumulated payoff for a2� 2 grid solution.

This specifies the operating condition of the communicator
for the optimum accumulated payoff to havetwo intervals

, or simplyone
critical point on the -axis for all . We shall
call (27) thecommunicator’s one-critical-point region. It is
indicated in Fig. 8, region “1.” It corresponds to the condition
that the communicator may pick any sequence of “transmit/no
transmit” choices which does not include two consecutive
transmits.

In addition to (27), when the jammer’s parameters also satisfy
the analogous condition

(28)

which is thejammer’s one-critical-point-region, in
(19) has a 2 2 grid structureon the plane for all (see
Fig. 3), and can be defined as

if

if

if

if

(29)

for . We shall call a solution corresponding
to (29) a 2 2 grid solution, theoperating conditionsfor which
are given by (27) and (28).

From (19a) and (29), the solution of the evolution equation at
simplifies to

(30)

In accordance with the 2 2 grid structure of in
(29), the communicator’s optimal strategy and the
jammer’s optimal strategy are denoted as

for

From (21) and (22), we have

(31)

and . Therefore, we just need to solve for the
optimal strategies and for .

Substituting the payoff function of (29) in (19b), and using
(22), we obtain the following system of equations [29]:

value (32a)

(32b)

(32c)

The reverse-time initial conditions are given by (30).

A. Solution to the Finite Horizon Problem

When the duration of play or horizon lengthis finite, the
evolution equation (32) can be solved to obtain the optimal
strategies , for . From (20), the
value of the game is . We will formulate the
evolution equation in terms of the payoff increments to obtain
the solution.

The increment of the optimum payoff , in
going from to , is bounded and lies in [0, 1], since each
element of the payoff matrix [see (5)] lies in . We denote
this increment by . Thus

and the condition holds.
Substituting in (32) and eliminating

and , (32a) simplifies to

value

(33)

This can be rewritten as asecond-order nonlinear difference
equation

if

if

(34)
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having initial conditions

for

for

(35)

In addition, from (33), the optimal strategies are gov-
erned by the equations

if

if

(36)

with

if

if (37)

When in (33), we have

value

and it is clear that . However, any
will give the value . In our scenario, the communi-
cator would rather transmit with probability 1, and therefore we
choose .

To investigate the behavior of the optimal strategiesand
as , we analyze difference equation (34). The fol-

lowing proposition establishes the behavior of for .
Proposition 1: When , the solution of the differ-

ence equation (34)

converges to

if

oscillates between and

with a period of 2 if (38)

for all initial conditions .
The proposition can be proved by first finding the local Lya-

punov exponents of (34), and then applying the multiplicative
ergodic theorem of Oseledec to obtain the global Lyapunov ex-
ponents [30]. The proof is given in [31].

Fig. 4. Steady-state strategiesp ; q versus payoff parameter� in 2 � 2
grid solution.

Proposition 1 and (36) imply that the finite horizon optimal
strategies and converge tosteady-state strategies

if

if

if

if (39)

A plot of and versus is shown in Fig. 4. For
, the strategies are mixed, and for , the

strategies are pure. In the mixed strategy zone, bothand
increase with increase in, but .

When , thepayoff increment profile(profile of )
on the plane is a constant for , but
oscillates between two patterns as shown in Fig. 5(a) and (b)
for .

B. The Infinite Horizon Game

We treat the infinite horizon problem as the limit of the finite
horizon case with horizon length as , provided the
payoff remains bounded and the optimal strategy sequences

, converge to well-defined limits for every fi-
nite forward-time index .
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Fig. 5. Oscillatory behavior of payoff increment profile whent ! 1 for 2=3 < � < 1.

We find from (5) that the payoff in (6) satisfies
and is therefore bounded. Also, the sequence

is nondecreasing for increasingand the th term of the se-
quence lies in . Therefore, the limit

exists and lies in for any choice of strategies. We call
thepayoff of the infinite horizon game.

Since it has already been found from Proposition 1 and (36)
that the optimal strategy sequences and converge
to well-defined limits and , respectively, when the re-
verse-time index , we have, for every finite

where and are given by (39).
It is also clear that strategies and constitute the sta-

tionary solution of the evolution equation (32), that is, they are
theoptimal stationary strategiesof the game as . The
value of the game for the infinite horizon case is therefore given
by [see (12c), (20), and (38)]

if

if (40)

A plot of versus is shown in Fig. 6. In the figure, the
region corresponds to the constant payoff in-
crement profile, while the region corresponds to
the oscillatory profile as stated in Proposition 1. As result, when

, the value of the game is simply the payoff incre-
ment . On the other hand,
when , since the period of oscillation is, the value
is .

Fig. 6. Value of infinite horizon game versus payoff parameter�.

IV. COSET-GENERATED GRID SOLUTIONS

In the 2 2 grid solution considered so far, the optimum
accumulated payoff has one critical point

on the -axis, and another critical point
on the -axis for all . From the evolution equation (19), we find
that in general has a grid structure on the plane
for all , the boundaries of the grids being determined bycritical
points. Thus, has one critical point on either axis, and,
as increases, the number of critical points on the respective
axes may or may not increase depending on theoperating points

, .
Define an operator which maps the communicator’s past

energy accumulation at reverse-time to that at as

if

if
(41)

An analogous operator which maps the jammer’s past energy
accumulation at to that at can be expressed by replacing

by , by , by , by in (41). Let



MALLIK et al.: ANALYSIS OF AN ON–OFF JAMMING SITUATION AS A DYNAMIC GAME 1369

denote the communicator’scritical point setat reverse-time,
and the jammer’s. Then

(42)

since, from (7), we have

(43)

The backward recursions that describe the communicator’s and
jammer’s critical point set computations are given by

(44)

for . Therefore, at every reverse-time step, the
number of critical points on the-axis or -axis can at most
double. If we have the condition

(45)

which is the same as (27), then for
all . Similarly, the condition

(46)

guarantees that for all . Conditions
(45) and (46) specify the operating conditions for a 22 grid
solution, which have already been found earlier [see (27) and
(28)].

We are interested in finding operating conditions for which
there are at most critical points of on the -axis
and critical points on the -axis for all , that is,
has an grid structure. Say, for some reverse-time,

has critical points ( )
on the -axis lying in , and critical points
( ) on the -axis lying in , where

. Since and
[see (42) and (44)], assume

for some

(47)

Let us force the conditions that

and

for all (48)

This implies that has an grid structure on
the plane . For , the elements of
and which do not belong to and

, respectively, are treated asredundant critical
points. Thus, an grid structure of can be
generalized for all . Also, let

If we define disjoint intervals along the-axis as

and disjoint intervals along the -axis as

then has an grid structure given by

if

for (49)

One wayof obtaining the communicator’s critical points
satisfying (48) is to consider the situation when,

for some , critical point satisfies

(50)

Then (48) implies

where is given by (47), and this results in thecritical point
generation system[32]

(51)

where is some permutation of
satisfying , , for which the above form ex-
ists. We shall call (51) therelevant formof the critical point
generation system. The vector shall be called
the critical point generation index vector. If a system can be
written in the form of (51), we say that it has arelevant solution

.
Let a full cyclotomic coset mod be written as an
-tuple , where . The coset

can also be written as , where thecoset
generation index vector is some permutation of

for which we obtain thecoset generation system

mod

mod (52)

which has the same form as (51).
For a given , let the operator operating on

be defined as

mod (53)

Comparing (51) and (52), we find that the following isomor-
phisms hold for each generation index vector :

(54)

Thus, we conclude that the number ofcoset-generated relevant
solutionsof the critical point generation system for any natural
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Fig. 7. Tabulation of each coset, its critical point generation system, the critical point set, and the corresponding coset-generated(M � 1)-critical-point region
for M = 2; 3; 4.

number equals the number of full cyclotomic
cosets mod given by [33]

where is theMöbius function of number theory.
Thecommunicator’s coset-generated -critical-point

region for which are thecoset-generated crit-
ical pointsof on the -axis for all is given by (50).
Thejammer’s coset-generated -critical-point regionfor
which are the coset-generated critical points on
the -axis for all can be found in an analogous way.

For , the possible sets of coset-generated
critical points and each of the coset-gen-
erated -critical-point regions are shown in Fig. 7. Fig. 8
shows a plot of these coset-generated critical-point regions on
the plane (operating plane of communicator).
Thus, the number of one-critical-point regions is ,
the number of two-critical-point regions is , and the
number of three-critical-point regions is . All these
regions are disjoint, are bounded by the curves

, , , and lie within

Fig. 8. Commmunicator’s coset-generated critical-point regions for(M �

1) = 1; 2; 3.

the region given by (43). For operating points outside these re-
gions, coset-generated grid solutions do not exist.

For given and , the game has different
coset-generated grid solutions. For a solution with
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index vector of the communicator’s coset
and of the jammer’s coset

, the coset-generated operating conditionsare
[using (50)]

The point on the -axis (for the communi-
cator) given by (47) and (51) corresponds to the coset element

, which can be shown to be thelargest odd elementof the
coset . Similarly, the point
(for the jammer) corresponds to the coset element, the largest
odd element of the coset . The procedure for for-
mulation of the evolution equation using coset generation index
vectors has been presented in [34]. A general way of expressing
analytically the behavior of optimal strategies as has not
yet been found.

There exist other kinds of grid solutions in which
one or both of the players’ critical points are not generated by
cosets. For example, if we choose

and is not too large, then there are three critical points

on the -axis. As an illustration, consider ,
. The critical points on the -axis are generated

as

We will not consider such investigations here.

V. AN EXAMPLE OF BPSK SIGNALING

Consider a situation in which the transmitter communicates
with a coherent receiver over an AWGN channel by employing
BPSK signaling with carrier frequency. The jammer tries to
jam the receiver’s signal by injecting additional noise into the
receiver. When symbol( ) is transmitted, the received
signal over the th symbol interval (time slot) of duration is
given by

(55)

where is the communicating signal power, the
additive channel noise, and the additive jamming noise.
The noises and are assumed to be independent
zero-mean white Gaussian random processes with two-sided
power spectral densities (PSD’s) and , respec-
tively, being the jamming signal power andthe channel
bandwidth.

Since the PSD of the total noise is
, the symbol-error probability for

the receiver is given by

(56)

The transmitter–receiver link can be viewed as a binary
symmetric channel, and therefore a reasonable measure of the
communicator’s performance is the channel capacity, which (in
bits/symbol) is given by

(57)

Since , we can define the payoff to
the communicator as

(58)

which is nondecreasing with an increase in and a decrease
in , and satisfies the conditions

(59)

corresponding to the payoff matrix in (5).
To compare a randomized power game situation with a

fixed power scheme, consider the following two cases. 1) The
communicator and jammer randomize their power levels over

and , respectively, and the conditions (27) and
(28) for a 2 2 grid solution hold. 2) The communicator and
jammer use fixed power levels and , respectively, satisfying

and owing to the
temporal energy constraints.
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Fig. 9. Payoff versus signal-to-white-noise-ratioCT =N (in decibels) for
randomized and fixed strategy cases with channel bandwidthB = 1=T and
BPSK signaling when (a)C = 10J , � = 0:1, � = 0:5 and (b)
C = 0:1J , � = 0:5, � = 0:1.

In case 1), let

(60)

while in case 2) we assume that each player transmits at the
maximum allowable power level to prevent the opponent from
taking any advantage, implying

(61)

When the communicator and jammer operate over a long pe-
riod of time ( , the number of time slots, is large), the optimum
payoff in case 1) is the value of the infinite horizon game
given by (40) with as in (59), while in case 2), the payoff is
simply , where is given by (58). With ,
plots of the payoffs for the randomized strategy case 1) and the
fixed strategy case 2) versus the signal-to-white-noise-ratio

are shown in Fig. 9. The plots reveal that when the
communicator’s transmitter is more powerful than the jammer’s
[characterized by , as in Fig. 9(a)], the
payoff is higher for the fixed strategy case. However, when the
jammer’s transmitter is more powerful than the communicator’s
[characterized by , as in Fig. 9(b)],
the randomized strategy case gives a higher payoff. Therefore,
a communicator with a powerful transmitter is better off by
transmitting at a fixed power level, since this compels the weak
jammer to do the same. On the other hand, when the jammer’s
transmitter is strong and the communicator’s is weak, the com-
municator should use a randomized transmission scheme; this
also forces the jammer to randomize its transmission.

VI. CONCLUSIONS

The main finding is that under certain operating conditions,
the dynamic jamming game which we have considered admits
steady-state optimal strategies that are mixed whenis lower

than a threshold, but pure when it is higher. The mixed strate-
gies give rise to a constant payoff increment profile on the en-
ergy accumulation plane [ plane], while the pure strate-
gies result in an oscillatory profile, except for the fact that at the
threshold the strategies are pure but the payoff increment pro-
file is a constant. We have also shown how some grid solutions
can be obtained from cyclotomic cosets. An example of a typ-
ical communication scenario comparing the use of randomized
strategies with that of fixed ones is also presented.

The oscillatory behavior of the payoff increment and the role
of the threshold for its appearance are very interesting for both
the practical communication jamming problem as well as the
game-theoretic problem perse. In infinite time games, people
usually consider stationary nonoscillatory behavior, whereas
our study indicates that oscillatory ones should be a legitimate
object of study. Actually, other game applications, such as
battle of species models, lead to similar oscillatory behaviors
as time increases.

It is also to be noted that two assumptions in the model we
have considered are: 1) both players have precise knowledge of
the payoff parameter and the transmitters’ parameters; 2) each
player obtains correct feedback information about the other’s
past actions. A situation in which the knowledge ofand the
transmitters’ parameters is not precise and the feedback infor-
mation is not always correct calls for an adaptive game model,
and is an interesting and relevant topic for further research.
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