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In the literature on nonconvex optimization problems, re-
A parallel method for globally minimizing a linear program  verse convex programs, a problem closely related to concave
with an additional reverse convex constraint is proposed which minimization (cf. [4, 5, 11-14, 18, 25, 27, 29, 33]), has at-
combines the outgr approximation technique and the cutting 5cted the attention of a number of authors [6-9, 21, 22,
plane method. Basicallyp (<n) processors are used for a prob- 31] since Rosen [22] first studied it. The problem of linear

lem with n variables and a globally optimal solution is found rograms with an additional reverse convex constraint is an
effectively in a finite number of steps. Computational results are prog

presented for test problems with a number of variables up to 80 INteresting problem in reverse convex programs. Essentially,
and 63 linear constraints (plus nonnegativity constraints). These the feasible regions (i.e., intersection of a polyhedron and the
results were obtained on a distributed-memory MIMD paral- complementary set of a convex set) for this class of optimiza-
lel computer, DELTA, by running both serial and parallel al- tion problems are nonconvex and often disconnected, and such
gorithms with double precision. Also, based on 40 randomly feasible set results in the computational difficulty.

generated problems of the same size, with 16 variables and 32 |n recent studies for linear programs with one additional
linear constraints (plus x > 0), the numerical results from dif- o\ erse convex constraint, Hillestad [7] developed a finite pro-
fc_aren,t number proce;sors are reported, including the serial algo- cedure for locating a global minimum. Hillestad and Jacob-
rithm’s.  © 1997 Academic Press . . . .

Key Words: reverse convex constraint; linear program; global sgn [8] gaye chargctenzanons of optimal s_olut!ons and pro—
optimization; parallel algorithm. vided a finite algorithm based on these optimality properties.
Subsequently, Thuong and Tuy [28] proposed an algorithm
involving a sequence of linear programming steps and con-
cave programming steps. To increase efficiency, an outer ap-

1. INTRODUCTION proximation method in [13, p. 490] was used for the above
concave programs. In addition, Pham Dinh and El Bernoussi

With rapidly advancing computer technology, particularlj21] improved both the results and the algorithms described by
in the area of parallel machines, and the current advancedif{estad and Jacobsen [8], Thuong and Tuy [28]. For the pro-
parallel algorithms (see, for example, [1, 2, 19, 20, 23, 2gedure of Tuy cuts [29], Gurlitz and Jacobsen [6] showed that
32]), solving nonconvex optimization problems for global od.t ensures convergence for two-dimensional problems but not
tima using parallel algorithms seems to be considered cofft higher-dimensional problems. They also modified the edge
putationally tractable. However, due to the variety of noncogearch procedure presented by Hillestad [7]. However, these
vex problems and the absence of complete characterizati@@ known to be rather time-consuming, or no computational
of global optimal solutions of nonconvex problems (e.g., theRXperiments have been performed. Since the computational ef-
is no local criterion for deciding whether a local solution i€0rt required strongly depends on the size of the problem and
global), it is necessary to devise parallel algorithms suited #§ type (e.g., linear objective function, linear constraints, or
particular classes of nonconvex problems. So far, althougtRd€Verse convex constraint), it is necessary to create an effi-
|arge number of methods have been proposed, 0n|y a fewqi_#nt algorithm to lower the Computational load. A promising
the presented algorithms have been programmed and tes@proach is to design a parallel algorithm for the above prob-
The aim of this paper is to introduce and study a parallel 4ems.
gorithm for a class of nonconvex problems and demonstrateln this paper, we develop two new algorithms—serial
its efficiency through extensive testing in a parallel machirfd parallel algorithms—to solve linear programs with an

(DELTA). additional reverse convex constraint. Basically, the serial

algorithm can be regarded as a modification of algorithm 1
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92 LIU AND PAPAVASSILOPOULOS

the serial algorithm presented here may be more efficient in 2. PROBLEM STATEMENT AND BASIC PROPERTIES

many problems since it is based on the following: Theorem 4,

cutting plane methods, and the outer approximation schemelhis section introduces the main results corresponding to
with a simpler polyhedronsg (see Section 4). Generallythe characterization of optimal solutions of the linear program
speaking, the serial algorithm presented here has to solve pwith an additional reverse convex constraint problem. Consider
linear programs and concave minimization subproblems H}€ problem

the methods mentioned in [13, p. 490; 28]. The algorithm

in [13, p. 490] seems to be more efficient than that in (LRCP) Minimize{cx: x € DN G}

[28] because the latter requires more work to solve the

concave programming subproblem, due to its lack of the oulghere D = {x € R™ Ax < b, x > 0}, A anm x n matrix,
approximation technique. In fact, for the outer approximatiof c R™ andG = {x € R™: g(x) > 0}, g a finite convex func-
method, a solution of the concave minimization problem capn defined throughouR". We useA; to denote theéth row
frequently be found before revealing all the extreme points gf A. Assume thatD is bounded, and N G # ¢. For any

the feasible set. The algorithm in [13, p. 490] constructs rbnempty polyhedral seéd c R", we denoted by (D) the
decreasing sequence 8f, i.e., &  C S—1 C --- C S D D set of vertices oD, E(D) the set of edges ob, anddG the

(D is a bounded polyhedron; see Section 2), whgte= boundary ofG for any nonempty seG c R". Notice that, in
S-1U{xeR™h(x) <0} or S =S 1U{x e R cx<cx} general, a concave minimization problem

(h(x) denotes a linear constraint &f, xx € D, andc is a cost
vector). However, such a construction of tBeg may require

us to do a rather expensive computation. For example, when
|V ()], the number of vertices i, is very large (this often
occurs ifn is large), the complexity of the computation o
V (&41) may increase considerably, in particular for formin
Si1 = S U{Xx € R" cx < cx}. Also, the storage of the
vertices is a big problem. In this proposed serial algorithm, the

reconstruction of a polyhedr(ﬁf (see Section 3) is proceeded Minimize {t: x € D, y1 <t < y2, g(X, 1)

as soon as a feasible point has been detected in step 2 of Phase =t — f(x) >0}, (1)

II. With this construction ofS), the amount of work required

to cglculate the newly generated .vertices may be lower th@herey,, , are some constants R.

that in [13, p. 490]; and the maximum memory to store the

vertices can also be reduced. Although a simple constructionl HEOREM 1 [8].  Let D be a bounded polyhedron, and de-
of § is used, the computation of generating new verticé9® the convex hull of DG byconv(DNG). Then we have:

is still the most expensive portion in the serial algorithm. i, conv(D N G) is a bounded polyhedron ammbnv(D N
To remedy this problem, a parallel algorithm was developegl) = conv(E(D) N G).
based on the serial algorithm. In Section 6, the computationalii,  An optimal solution fo(LRCP)lies in the set [D) N G.
results constitute a very important part of the present work
since they employ a parallel machine (DELTA) to demonstrate THEOREM 2 [8]. Let D be a bounded polyhedron, §
that the parallel algorithm is accurate and efficient for the N G, and Dy) = {x € D: cx < cy}. If for every
tested problems. For example, the parallel algorithm for 1, ¥6c V(D(y)) we have
processors and the serial algorithm have average computation
times of 25.48, 3.47, and 75.16 s for 40 randomly created":
problems of the same size (32 constraints and 16 unknowns)'."
Also, the different size tested problems with a number q
variables up to 80 and 63 linear constraints can be solvé
in a good reasonable time. DerFINITION 1 [13, 21]. The reverse convex constraint
The organization of this paper is as follows. In Section 2, th@ = {x € R", g(x) > 0} is called essential in the problem
basic properties of optimal solutions for linear programs witfLRCP) if we have
an additional reverse convex constraint are stated. Section 3 is
devoted to descriptions of the algorithms. Section 4 discusses
the details of the implementation of our algorithms. In Section
5, two examples are presented to illustrate both serial and
parallel algorithms. Finally, in Section 6, a numerical report COROLLARY 1 (see, e.g., [13]). If the constraint G= {x €
including both serial and parallel algorithms running on thB": g(x) > 0} is essential i(LRCP)and DN G # ¢ then
parallel machine DELTA is given. there is an optimal solution fofLRCP)lying on E(D) N 3G.

(CP) Minimize{f(x): s.t.x e D}
here f (x) is a continuous concave function & and D is

as in (LRCP), can be rewritten as a (LRCP) by introducing an
Sdditional variable,

g(z <O0or
g(z) = 0and cz= cy,

ny is an optimal solution fqiLRCP).

min{cx: X € D} < min{cx: x € DN G}.
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Proof. Let X be an optimal solution to (LRCP). Accord- THEOREMS5 [30]. Let DNG # @ and let G be essential. If
ing to Theorem 1,X is a vertex of con¢E(D) N G) = the problem(LRCP)is stable, then a point* € DN G is an
conv(E(D) \ int G% where intGC is the interior set ofG®, optimal solution to probleniLRCP)if and only if
the complementary set @. If X ¢ 3G theng(X) > 0 andX
must be a global solution to m{ex: x € D}. But G is essen- max{g(x): X € D(v*)} = 0.
tial in (LRCP). This implies thag(X) =0, i.e.,Xx € 0G. N

Note that if the constrainG is not essential, then (LRCP)
will be equivalent to the trivial linear programming problem, 3. ALGORITHM DESCRIPTION
min{cx: x € D}. T. Pham Dinh and S. El Bernoussi [21]

pointed out that ifG is essential in (LRCP), then the sufficient In this section, we present serial and parallel algorithms for
condition in Theorem 2 is also necessary. (LRCP). Both algorithms are based on Theorems 1 and 4 and

Corollary 1 and primarily make use of the outer approximation
THEOREM 3 [21]. Let D be a bounded polyhedron and lescheme and the cutting plane method.
x* € D be such that ¢x*) = 0. Let D(x*) = {x € D: ¢cx <

cx*}. If the constraint G is essential ilLRCP), then the nec- 3.1. Serial Algorithm

essary and sufficient condition fof xo be an optimal solution

of (LRCP)is that for eachv € V(D (x*)) we have: Initialization
i. gw)<Oor Step 0. Let xg solve min{cx: x € D} and letvg € V(D) N
i. g(v)=0andcv = cx*. G. Setk = 0.

THEOREM 4. Assume that DY G # ¢ and G is essential _ St€P 1. If g(x0) = 0, stop; xo is optimal to (LRCP).
in (LRCP). Letv € D and D(@) = {x € D: cx < cv}. For a Otherwise starting fromg, pivot via the simplex algorithm for

point v* € D(%) N G to be an optimal solution to the problemS°IViNg the linear programming md&wo —xo)x: x € D} until
(LRCP), a sufficient condition is a pair of verticesy; and vy are obtained such that(v1) < 0

andg(vp) > 0.
max{g(x): x € D(v)} = 0and
cv® = min{cx: g(x) =0, x € D(v)}.

Step 2. Solve the line search problem

Minimize «
Proof. If max{g(x): x € D@} = 0 and cv* = subject to g(v1 + a(v2 — v1)) > 0
min{cx: g(x) = 0, x € D(v)}, theng(x) < 0 for eachx Dca<1

in D(v) andcx > cv* for eachx in D(v) N G. Hencew* is
an optimal solution to (LRCP). l and setzgp = vy + @(v2 — v1), Wherew is an optimal value of

Remark. Let v* be optimal; then thsufficient conditionn the line search problem.

Theorem 4 is alsmecessaryf we havev = v*. Step 3. Find a polyhedrorﬁéJ containing a vertexg such
that D(zo) = {x € D: cx < ¢z} € § C {x € R™ ¢cx < ¢z},
delete the redundant constraints according/’(csg), and go
to Phase II.

Note that maxg(x): x € D()} is equivalent to
min{—g(X): x € D(v)}, which is a concave minimization
over D(v). Hence, only the vertices db(v) are considered.

COROLLARY 2. Assume that DY G # ¢ and G is essen- Phase |

tial. Letv € D and D(v) = {x € D: cx < cv}. Fora point  step 1. Starting fromxy, pivot via the simplex algorithm
v e V(D@) NG, if for solving the linear programming miex: x € D(z_1)}
max{g(x): x € V(D())} = 0and until a pair of verticesv; and vp are obtained such that

g(v1) = 0 andg(vz) < 0.
cv = min{cx: g(x) =0, x € V(D(®@))}, .
Step 2. Find 0< & < 1 such thaig(vy + a(vz — v1)) =0

1[1)1, v2] with the surfaceg(zx) = 0.

DEFINITION 2 [30]. Problem (LRCP) is said to be stable i
Step 3. Find a polyhedron$ of vertex xo such that
min{cx: x € D, g(xX) > €} | D) = {x e D:cx < ca} € § c {x € R™ ¢cx < ¢z}
. ) (such a polyhedron will be discussed later) and delete the
min{ex: x € D, g(x) = 0y ase | 0. redundant constraints according\quf).
If problem (LRCP) is stable, then one has* = cv in Phase Il
Theorem 4 and it can be rewritten as following. Leti =0.
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g =0
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FIG. 1. An example for unstable problem.

Step 1. SetV = {v: gv) = 0, forv e V(§)}. If
max{g(v): v € V(§)} = 0 andV C D(z), then stop:
v* € argMin{cx: g(x) = 0, x € V} is a global solution for
(LRCP). Otherwise, go to Step 2.

Step 2.

(a) If there is a € argMin{cv: v € V(S;), g(v) = 0} such
thatv € D, then setxx;1 = v, k = k+ 1, and go to Phase I.
Otherwise, go to (b). '

If there existw € argMax{g(v): v € V(S), g(v) > 0} such
thatv ¢ D, then find a constrainp;x — g; < 0 of D which is
the most violated by and seISkfl ={xe S( pjx—dj <0}
Compute the vertex sat, T of S (from knowledge oM}),
and leti =i + 1, go to Step 1.

Remarks.

» For the search of anyg € V(D) N G in Step 0, see the
methods described in Horst and Tuy [13] or Pham Dinh and

PAPAVASSILOPOULOS

If g(x%) < 0 then starting fromx%, pivot via solving
max{d% x: x € D} until a pair of verticea'! andv'2 obtained
such thatg(v'!) < 0 andg(v'?) > 0.

Otherwise, set'! = x? andv'2 = x9.

Solve the line search problem with the serial algorithm and

setd = vt + @2 —v'h).

Step 2. Choosez’ = min{cZ, i =1, ..., n} and do Step
3 of the initialization of the serial algorithm.

Phase |

Step 1. For pointxk and itsn neighboring vertices"', i =
1, 2, ..., n, processoi will do if g(xk) >0

o if gxXX) < 0 then setv'l = xK and v'2 = xM.
Otherwise, starting fronxX/, pivot via solving mincx: x €
D(zx—1)} until a pair of vertices/'! andv'2 obtained such that
g(v'l) > 0 andg(v'?) < 0. FindZ the intersection point of
[v'%, v1?] with the surfaceg(Z‘) = 0.

Else

« if g(x¥) > 0 then setv'l = xX and vi2 = xM,

Otherwise, sed' = v® — xX, starting fromxX, pivot via
solving max{d'x: x € D(z-_1)} until a pair of verticesv'!
andv'? obtained such thaj(v'?) < 0 andg(v'?) > 0. Findz¢
the intersection point off %, v'2] with the surfaceg(z) = 0.

Step 2. Find a polyhedronS? of vertex x° such that

D(z) = {x € D: cx < ¢} ¢ § C {x € R": ¢cx < ¢Z} and
delete the redundant constraints according\/t((ﬁg), where

Ekzmin{czf:i =12 ....n

Bernoussi [21]. If no suchy exists, then there is no feasiblePhase I

solution.

« If xp is a degenerate vertex @, then select another

vertex X, such thatxo is nondegenerate argix;) < 0. If no

such vertex exists, apply the procedures discussed in Section
» Step 1 of Phase Il is based on Theorem 4. For an unsta
problem such as that in Fig. 1, Theorem 4 will be morﬁ_

efficient than Theorems 2 and 3.

Let j =0.

Step 1. SetV = {v: g(v) = 0, for v ¢ V(S)). If
X{g(v): v € V(§)} = 0 andV C D(z), then stop:
e argMin{cx: g(x) = 0, x € V} is globally optimal for
RCP). Otherwise, go to Step 2.

» For a stable problem, step 1 of Phase Il can be replacedstep 2.

by: If max{g(v): v € V(S)} = 0, then stop: v* €
argMin{cx: g(x) =0, x € V(§)ND(z)} is a global solution
for (LRCP). Otherwise, go to Step 2.

3.2. Parallel Algorithm

Initialization

Step 0. Let x% solve min{cx: x € D} andv® € V(D)NG.
Setk = 0.

Step 1. If gix% > 0, stop; x° is an optimal solution.

(a) If there is a feasible vertex e argMin{cv: v € V(Si),
g(v) > 0} such thaw € D, then sex*t1 = 7, k = k+ 1, and
go to Phase I. Otherwise go to (b). _

(b) If there exist € argMax{g(v): v € V(S)), g(v) > 0}
such thatv ¢ D, then find a constrainprx — g < 0 of
D which is the most violated by and s'etsfrl = {x €
S prx—gr < 0}. Compute the vertex s&t) ™ of S/ ™*(from
knowledge ofV,)), and letj = j + 1, go to Step 1.

Remarks.

Otherwise, execute the following in parallel: for processor « The line search in Step 1 of Initialization and Phase
i, find x%, a neighboring vertices of® (if x° is a degenerate | can be performedr{/p] times, wherep is the number of
vertex, choose another verte® where g(x°) < 0). Let processors anchf p] is the smallest integer which is greater
do =0 — X0, thann/p.
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* The (b) of Step 2 can be performed by a parallehg polyhedron is constructed. According to the techniques of
computation. For example, Ieﬁ(si) ={ve V(si): prv— outer approximation and of cutting plane the best choicsfof
g > 0}, whereprv — g = 0 is a cutting plane. Denote byshould be that it must be simple, be close enougtax),
IV*(S))| the number of the vertices & (S)). For a cutting and have a small number of vertices. Therefore, we would like
planeprv — g = 0, |V+(Si)| — M, and p = the number of O create the polyhedrof mentioned in Step 3 of Phase |
processors, the calculation of the vertex V‘éfﬁiﬂ) of Sliﬂ by using the same polyhedral cone (fixed constraints binding

o : . . : at xp or x9). This is simpler than the construction described in
\?ve;l?c?]eisflglrseh;grl?rﬁﬁ]/g;nes (IM/plis the smallest integer Pham Dinh and El Bernoussi [21] since the latter has to find

. (3) Similarly, the function values o(v), v < V(Si)’ the n adjacent vertices and a linear variety generated by these

are computed in the same wav as above n points, then solve a linear program.
P y ' Denote byJ (v) the index set of all constraints that are active

_ 0y i
LEMMA 1. For Stepl of Phase |, if both serial and paral- atv (v="xo orx7), i.e,

lel algorithms start from the same poiRt(i.e., % = xX), then

cZ(parallel) < cz(serial), i.e., D(Z) c D(z). Jw)={iel:pv—-q =0}, ()
Proof. wherel C N is a finite index set.
(1) If Xis a nondegenerate point, then we can find exactlyi. If v is a nondegenerate vertex Bf thenJ(v) contains

its n adjacent vertices. Starting from these points, the edgee indices of exactly linearly independent constrainpsx —
search paths via the simplex algorithm will include the padj) = 0,i € J(v). Let the set of inequalities
in the serial algorithm. It impliesZ < cz.

(2) If X is a degenerate point, then we choas@eigh- pix—qg <0, iedJ) 3
boring vertices it edge searching paths) including the path
starting fromx. define a polyhedral cone vertexedwatTherefore, the polyhe-

dron (simplex)SS is defined as follows:

F 1) and (2), we know thatz . _
rom (1) and (2), we know < Cz% §={xeR”:pix—qi§0, i € IW)

N {x € R": cx < cz or cZ}
V() ={v, v1, ..., vn}, (4)

. . , wherewvs, ..., vy can be obtained by the methods described
. THEOREM 6. The serial and pqrallel_glgorlthms find an op-, pham pinh and El Bernoussi [21]. Here the procedure of
timal solution for problen{(LRCP)in a finite number of steps. Horstet al. [26] was employed to generate them. Altho@
Proof. is a simplex in most case, it could be unbounded. In an un-
_ ) . bounded case, it may proceed in the following three ways:
i. From Corollary 1, we know that there is an optimal « Try anotherv such thatSS is bounded if there is a
solution for (LRCP) lying onE(D). Now E(D) is finite since nondegenerate € V(D) andg(v) < O.
the number of constraints dd is finite. . « Apply the methods mentioned in Pham Dinh and El
ii. At Step 3 of Phase I, both the polyhedr&f containing  germoyss; [21] to construct a bounded approximatiorghf
the global solution of (LRCP) and the number of linear , (jse an approximate cost veciorinstead ofc. Since
con_straints oD (Z¥), which .is f_in.ite, imply that the number OfSS is unbounded, the number of vertices generated by the
cutting planes related t§) is finite. cutting hyperplanex — cz, = 0 will be less tham. Replace
Ssj = 0 bysj =€ (¢ > 0) for somej in the procedure of
Hence these two algorithms will converge to an optimaforstet al. [26] and do a pivot operation such thavertices

LEMMA 2. {cz} inthe serial algorithm is a decreasing and
finite sequence.

See Hillestad and Jacobsen [8].

solution in a finite number of stepsH v}, ..., v, are generated. Hence one may have an approximate
cutting planec.x+ g = 0 which passes through thesgoints.

there are more than linear constraints binding at and

In the algorithms presented in Section 3, the outer approxi-
mation method was applied to solve the problem (LRCP), and V(Sf) ={v,v:;i=12 ..., whereq>n. (5)
there are two important procedures—edge searching and cut-
ting plane procedures. Obviously, this approximation approaghthis case, one may apply the algorithm for finding all ver-
will be the most expensive computation in solving problenices of a given polytope (cf. [3, 15, 16]) or proceed with
(LRCP) and its efficiency depends heavily on both constructiohe methods mentioned in Pham Dinh and EI Bernoussi [21].
of the ponhedrorﬁi and calculation of the vertex skﬂ(ﬁi). Note that the algorithm of Matthess [15] needs to maintain a
In other words, efficiency will increase if a suitable contairlist structure; storage may thus be a problem for a large
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Delete the redundant constraints by Hoestal's theorem SERIAL ALGORITHM.
[26] after each construction dﬁ‘j For the determination of Initialization. Xy = (4, 0) was obtained by solving the
the vertex setV(S)) in the cutting plane procedures, thdinear program mirfcx: x € D}. Letvo = (2, 6).
algorithms introduced above are sufficient. In addition, recallk = 0. Starting fromxp, Step 1 findsv; = (5, 4),
that global minimization of concave function (i.e., globabz = (2. 6) and Step 2 solvegy = (4.2723 4.485). Step
maximization of convex function) always obtain its optimaP constructs a simpleg) = {xe R25 Sxp —4xz < 20, xp >
solution at some vertex. Hence, to save storage memd&ky—2X1 +3xz < 4.9107 with vertices (4, 0), £2.4554, 0),
and accelerate (b) of Step 2 in Phase II, only vertices wifh1-3776, 9.2220) and deletes a redundant constre@xy +
nonnegative convex function values need to be stored. ~ X2 = 10. Go to Phase II. B

Let  be a bounded polytope defined by the linear !N Phase I, since mabg(lv): v e V() > 0 and nov
inequalities satisfies (a) of Step 2, s&) = {x ¢ ﬁ: 3x1_ + 2Xo < 23}.

Thus, go to Step 1 of Phase Il and obtain the same result
S =(xeRmpx-0g <0 iel) (6) as above. Forn® = {x € S —4x1 — x2 < —7} and find

Let h(x) = pjx —q; = O, let j € | be a cutting hyper- X1 = (1.1492 2.403]) € D in (a) of Step 1. Go to Phase I.
plane, and |et\/g+(88) — (v:gw) = 0,v € V(SS)}. Let k = 1. In Phase I, Step 1 finds; = (1.5, 1), and
VE(S) = {v € V4 h(v) > 0}. According to (b) of Step 2 v2 = (3, 0), Step 2 solveg, = (1.8108 0'27_92&’ and Step 3
in’ Phase I, a necessary condition for any constrhimt) of determines the simpleX) = {x € R% 5a — 4 <

. ot 20, X, > 0, —2x1 + 3 < -—1.2431 with vertices
polyhedronS{; to be a cutting plane i¥;’. () # 2. 4, 0), (06215, 0), (7.8611, 4.8264) and deletes a

DEFINITION 3. A cutting planeh(x) is valid for the redundant constraint -3x, + X, < 0. Similarly,
polyhedronS? if Vgt($) # ). Otherwise, it is invalid. executing the procedure of Phase Il, we haveS?) —
Since only the vertex se¥y+(S) of V(SD), rather than {(4, 0), (5.4989 3.2516), (6, 2.5), (1.8108 0.7928, (3, 0)}.
V(SD), is useful for computation, a constraint which canndtinally, Step 1 verifies that* = z; = (1.8108 0.7928 is an
be a cutting plane can be eliminated by the following lemmaptimal solution because még(v): v € V(S?)} = 0 and

LEMMA 3. Let V(S = {v: g(v) > 0, v € V(D)}. Then only g(z1) = 0.

a constraint ix) of § is invalid for § if and only if PARALLEL ALGORITHM. _
Initialization. In Step 0 we also fink” = (4, 0) and let

h(v) <0, Y € Vg (D). M yo= (2 6).
k = 0. Step 1 findsx® = (4, 0), x°1 = (6, 2.5), x%2 =
5. EXAMPLES (3,0, vt = (5, 4), v12 = (2, 6), v¥1 = (3, 0), v¥2 =

, ) , ) (1.5, 1), and zg = (4.2723 4.485)), zg = (1.8108 0.7929.
To illustrate the algorithms presented in Section 3, MWQance ¢ — czg _ min{cz‘i’ ng} Step 3 constructs a
examples are given here. I_n these_two examples, a comparigﬂ,ﬂplex$ in the ‘same way ag’@ in the serial algorithm.
of serial and parallel algorithms will be reported. Phase Il. After the same steps as the serial algorithm’s, an

EXAMPLE 1. optimal solutionv* = 2% = (1.8108 0.7929 was discovered.
Minimize: Figure 2 illustrates the geometric history of Example 1. In
—2X1+3%2 this example, the constrairt3x; + x2 < 10 is redundant.
subject to: ExaMPLE 2. Consider an example witm = 10 and
=31 +X2 =0, —4x1—Xx2=<-7, n = 6. Cost vector: ¢ = (-4.88166,-6.06580, -7.92004,
3X1 + 2% <23, 5x1 —4xo < 20, 7.87233, -9.74772, -9.99590). Polyhedron:D = {x €
x4 3 < 22, —Bxy — Oxp < _18, R™: Ax <b, x > 0}, whereb" = (8.47832, 2.48636, 1.86858,
- - —1.10545, 1.96469, 3.02506, 0.5751+%1.04776, 1.67729,
—3x1+x2 <10, X1, X2 = 0. 1.64407). Reverse convex constraing(x) = 2.10(x; —
g(x) = X2 4+ x2 — 8x; — 4xp +1375> 0 1.50)2 +5.24(xp — 3)% + 1.20x3 + X2 + 1.86(xg — 1) — 45 > 0.

164990 178425 187958 013965 109823 192671
0.60304 —0.73647 011778 —0.40180 096786 083954
0.29427 —0.22619 034955 081258 —-0.98052 046708
—-0.37775 —0.75322 056079 —-0.89150 059161 -0.87597
—0.58633 —0.52370 024838 051515 017007 032349
—0.01924 070454 —-0.74845 088219 090519 -0.43513
—0.82323 002622 060894 052842 —0.81546 058568
—0.50914 085069 —0.49088 —0.26491 —-0.40963 —-0.65797
0.88640 —0.28695 —0.81680 001408 069593 049501
—0.64534 —0.19249 084724 -0.37147 071062 —-0.55198
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Choosexo = x° = (0, 1.27570, 0.35670, 0, 1.98949, 1.73704)
with g(xo) = —23.53236 andg = v° = (1.10066, 0, 2.08640,
3.28416, 1.93021, 0.08425) witj(vg) = 20.06409.

FIG. 2. Geometrical history of Example 1.

6.1. DELTA and Test Problems

The Touchstone DELTA (cf. [17]) supercomputer is a
message-passing multicomputer consisting of an ensemble of

In the serial algorithm, there are 258 vertices generated B¥jiidqual and autonomous nodes that communicate across

cuts and six constructed simplices havipgdk =0, 1, ..., 5)

as follows:

7o = (0.80574 0.62003 1.96709
2.79354 1.78034 0),

z1 = (0, 0.24375 0.15993 0,
0.48804 1.48438,

2z, = (0, 0.2435Q O, 0, 0.65845
1.49730,

z3 = (2.24338 0.16203 1.1653Q
0, 0.23386 1.05920,

z4 = (0, 0.2962Q 0.41783 O,
1.0327Q 1.97224,

z5 = (1.19419 0.17982 1.36695
0, 0.32943 1.68998,

After verification, we have a global optimal solutiom; with
optimal value—37.85075. For the parallel algorithm with dif- 2
ferent numbers of processors, the results are listed in Table I.
Note that only 24 new vertices and two simplices are gener-
ated before the optimal solution is found.

6. NUMERICAL RESULTS AND ANALYSIS

In this section, computational results are reported for solving
problems (LRCP) by both the serial algorithm (SA) and the
parallel algorithm (PA) described in Section 3 running on
the DELTA supercomputer. The test problems are randomly
generated so that the feasible region was nonempty and

bounded.

czo = —18.63633

cz1 = —22.34023

a two-dimensional mesh interconnection network. It has 513

computational i860 nodes, each with 16 Mbytes of memory,
and each node has a peak speed of 60 double-precision Mflops,
80 single-precision Mflops at 40 MHz. A concurrent file

system (CFS) is attached to the nodes with a total of 95 Gbytes

of formatted disk space. The operating system is Intel’'s Node

Executive for the mesh (NX/M).

To share the information during the parallel computation, a
node will be assigned as host node to collect the information

Cz, = —22.86218

0, 0.32943, 1.68998)

TABLE |
cz3 = —34.03075 Iterative Results of Example 2 for PA with Processors 1, 2, 4, 6
Generated
Cz4 = —34.88672 Processors k=01, 2 3) cZ vertices
1 (3.20144, 0.41629, 1.28031,  -25.63958 114
0.33713, 0, 0)
€z5 = —37.85075. (1.19419, 0.17982, 1.36695,  -37.85075
0, 0.32943, 1.68998)
(3.20144, 0.41629, 1.28031, -25.63958 126
0.33713, 0, 0)
(2.24338, 0.16203, 1.16530,  -34.03075
0, 0.23386, 1.05920)
(1.19419, 0.17982, 1.36695,  —37.85075
0, 0.32943, 1.68998)
4 (0, 0.42927, 1.200501, -33.56580 24
1.92978, 2.40445, 1.32133)
(1.19419, 0.17982, 1.36695,  —37.85075
0, 0.32943, 1.68998)
6 (0, 0.42927, 1.200501, -33.56580 24
1.92978, 2.40445, 1.32133)
(1.19419, 0.17982, 1.36695, -37.85075
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from each node and pass the messages to the others. WhereP is a positive semidefinite x n matrix, Q is a diagonal
problems used to test the algorithms are randomly generapesitive semidefiniten x n matrix,r € R", t € R, and a vec-

in the following way. The polyhedro® = {x € R": Ax < tor u consists of eitheki2 (atleastone) ox; (i =1, ..., n).

b, x > 0} in a problem (LRCP), each elemeanfj of A

(=2 ....mj=21..,nandb{ =1,...,m),is 1 2 n_1 [32

obtained by (cf. Horst and Thoai [12]) am  gx) =[x+ > Xo + 3 X3+ + W Xn —t
gjj =205 — 1 (8)

and

n
b = Z aij + 20p, 9) Finally, solve minicx: x € D} and letxg € V(D) be its solu-
j=1

tion. Find avg € V(D); then move the center of the convex

functions near theg so thatg(xg) < 0 andg(vg) > O.
whereb,, 6, are random numbers generated by the function

RAND (a uniform distribution on [0, 1]) in MATLAB. Sim- 6.2. Computational Results

ilarly, one can havej (j = 1, ..., n), a coefficient of the

linear cost function, in+10, 10] byc; = 10(20. — 1), where Both serial and parallel algorithms were coded in standard
6. is also created by RAND. Fortran 77. All numerical tests were performed on the parallel

Clearly, D is nonempty and bounded if we shift the elemenisomputer DELTA with double precision. In running the
of the first row of A by a;j = a;j + 1 such that all of its parallel algorithm for a test problem with variables,p (<n)

elements are positive. nodes are used as a partition by specifying the numbers
For the reverse convex constraints, the following functionsf rows and columns. Let PA) be the execution time for
will be employed in the test problems, the parallel algorithm onp processors. Since PA(1) is not
T always less than SA, the speedup here is thereby defined
() 90 =x Px+rx—t, as min(SA, PA(1))/PA(p). Tables Il and Ill contain the
(M guw=u"Qu+ru—t, computational results of the SA and PA described previously
TABLE I
Computational Results for Serial and Parallel Algorithms (1)
No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp
1 Serial 27 9 (1 151 1395 2 0.371
Parallel 1 154 1395 2 0.712
2 154 1395 2 0.445 0.83
3 16 252 2 0.234 1.59
4 16 252 2 0.219 1.69
6 16 135 2 0.184 2.02
9 16 135 2 0.180 2.06
2 Serial 1 63 9 () 92 10,125 4 2.496
Parallel 2 403 24,939 4 7.131
3 79 4896 2 1.698 1.47
5 79 4896 2 1.308 1.91
6 79 4896 2 0.749 3.33
9 79 4896 2 0.924 2.70
79 4896 2 0.740 3.37
3 Serial 40 10 0) 91 8410 8 1.816
Parallel 1 60 4030 4 1.175
2 60 3880 4 0.856 1.37
3 60 4030 4 0.794 1.48
4 60 3880 4 0.670 1.75
6 60 3880 4 0.638 1.84
10 60 3880 4 0.513 2.29
4 Serial 36 12 (D) 688 10,092 4 3.257
Parallel 1 53 756 3 1.048
2 53 756 3 0.675 1.55
3 53 756 3 0.571 1.84
4 53 756 3 0.512 2.05
6 53 756 3 0.471 2.23
12 53 756 3 0.435 2.41
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No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp
5 Serial 30 16 (0} 5144 91,872 8 28.498
Parallel 1 7521 94,336 4 29.367
2 7521 89,360 3 15.773 1.81
3 5144 41,488 4 5.756 4.95
4 691 22,416 3 2.108 13.52
8 691 26,096 3 1.559 18.28
12 691 26,096 3 1.323 21.54
16 691 26,096 3 1.161 24.55
6 Serial 42 22 1 12,654 688,512 10 369.737
Parallel 1 9708 248,468 5 126.503
3 8973 184,558 4 36.117 3.50
4 8929 232,848 5 40.390 3.13
9 8929 232,848 5 20.928 6.04
12 8055 202,488 5 15.850 7.98
16 8055 202,488 5 12.976 9.75
22 8055 202,488 5 13.184 9.60
7 Serial 32 32 (0} 6168 166,624 12 122.941
Parallel 1 3960 28,096 4 27.077
2 7395 51,296 4 23.115 1.17
4 7395 51,168 4 13.734 1.97
9 1943 18,464 4 4.002 6.77
16 2149 42,336 7 6.215 4.36
20 1988 52,416 3 4.372 6.19
25 1988 58,496 4 5.673 4.77
32 1988 52,416 3 3.584 7.56
8 Serial 32 32 () 2241 54,944 10 40.393
Parallel 1 5603 44,192 4 36.231
4 5603 42,784 2 10.511 3.45
8 5603 44,192 4 6.906 5.25
9 1587 12,288 4 2.869 12.63
16 1587 12,288 4 2.314 15.66
25 503 5344 3 1.358 26.68
32 503 5344 3 1.309 27.68
TABLE Il
Computational Results for Serial and Parallel Algorithms (I1)
No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp
9 Serial 30 36 () 7121 93,564 15 73.226
Parallel 1 666 16,668 6 16.745
2 666 8424 4 6.242 2.68
3 666 8424 4 4.327 3.87
4 666 10,368 5 4.011 4.17
8 100 9072 3 1.867 8.97
9 225 14,508 5 2.678 6.25
16 100 11,016 4 1.757 9.53
25 100 9072 3 1.410 11.88
36 100 9072 3 1.358 12.33
10 Serial 32 42 () 1265 52,248 7 49.568
Parallel 1 4387 47,376 5 56.763
2 807 22,302 4 14.502 3.42
4 1265 15,792 2 5.807 8.54
9 305 24,696 5 5.248 9.45
16 305 24,696 5 4.204 11.79
25 305 24,696 5 3.942 12.57
35 305 18,522 4 3.143 15.77
42 305 18,522 4 3.057 16.21
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TABLE lll— Continued
No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp

11 Serial 30 45 0] 2593 49,275 5 52.367
Parallel 1 2982 35,550 3 43.639

2 46 8640 4 7.297 5.98

4 1031 34,290 3 11.408 3.83

8 1031 33,660 3 6.135 7.11

16 453 22,590 3 3.131 13.94

25 46 7965 2 1.256 34.74

36 46 7965 2 1.002 43.55

45 46 7965 2 1.207 36.15
12 Serial 49 49 (Iv) 9936 114,905 2 157.194
Parallel 1 48 2646 2 10.718

2 48 2646 2 6.008 1.78

4 48 2646 2 3.430 3.12

9 48 2646 2 2.204 4.86

16 48 2646 2 1.701 6.30

20 48 2646 2 1.487 7.21

25 48 2646 2 1.805 5.94

36 48 2646 2 2.078 5.16

49 48 2646 2 1.543 6.95
13 Serial 27 55 (D) 9715 25,575 7 54.679
Parallel 1 6129 13,475 3 35.793

3 5923 12,760 3 13.111 2.73

4 5923 12,760 3 10.412 3.44

9 5923 12,760 3 7.102 5.04

16 87 550 2 1.386 25.82

25 87 550 2 1.260 28.41

36 87 550 2 1.133 31.59

49 87 550 2 1.594 22.45

55 87 550 2 1.479 24.20
14 Serial 20 64 0] 7095 67,264 15 145.011
Parallel 1 5011 25,536 7 70.949

2 2254 16,384 6 22.937 3.09

4 2254 15,744 5 11.944 5.94

8 2254 15,744 5 7.912 8.97

16 2254 15,744 5 6.079 11.67

30 1304 7360 3 3.622 19.59

36 1304 13,824 5 5.096 13.92

49 1304 13,376 4 5.807 12.22

64 1304 13,376 4 5571 12.74
15 Serial 30 80 (V) 2067 87,440 9 223.437
Parallel 1 1765 72,080 6 207.123

2 3721 43,840 5 68.055 3.04

5 2079 78,880 6 44.880 4.62

10 1697 77,920 5 23.174 8.94

16 1697 72,240 6 17.982 11.52

20 1697 72,240 6 15.863 13.06

25 1616 84,800 7 18.300 11.32

30 2112 56,400 6 14.057 14.73

35 68 320 3 2.743 75.51

40 68 320 3 2.657 77.95

49 72 320 3 2.808 73.76

64 72 320 3 3.313 62.52

80 72 320 3 3.802 54.48

on test problems of different sizes. Note that the choice®f of PA, we run 40 test problems randomly constituted with the
or vg may affect the time of calculation. However, so far, weame sizém = 32, n = 16). Also, a quadratic reverse convex

have no general methods to choose it. In this paper, the painhstraint was considered for each problem. All numerical
€ V(D) N G in both SA and PA was the same (i.eg,= v°) results are shown in Tables IV and V. Figure 3 shows the
for each tested problem. In order to demonstrate the efficierggyeedup (minimum, average, maximum) for 40 test problems
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TABLE IV TABLE V
Results for 40 Tested Problems withm = 32, n = 16 (I) Results for 40 Tested Problems withm = 32,n = 16 (Il)
Time(s) Total number of generated vertices
Parallel (no. of processors) Parallel (no. of processors)

No. Serial 1 2 3 4 9 16 No. Serial 1 2 3 4 9 16

1 20.481 9.853 5.500 5.134 4.216 2197 18261 82,944 35,968 35,968 46,080 48,480 41,184 41,360

2 2.238 1.775 1.454 0.799 1.006 0.363 0.417 2 7728 4288 5472 4288 5792 1072 1072

3 78.932 40.368 17.089 12.177 4.229 2597 19583 296,128 144,704 111,280 110,064 50,960 50,960 50,960

4 15.155 7.208 2.391 3.220 2.988 1.757 1.056 4 44,368 19,168 10,368 21,296 24,144 19,616 10,368

5 23.248 1.939 1.364 1.166 0.990 0.943 0.805 5 75,680 3072 3072 3072 3072 2944 2944

6 2.931 3.706 2.205 1577 1.242 0.244 0.201 6 8848 8848 8848 8848 8848 64 64

7 106.328 82.587 27.962 23.750 16.497 20.771 8.8947 372,752 280,736 181,616 192,640 181,616 228,880 228,880

8 35.369 1.511 0.946 0.762 0.588 0.530 05228 113,392 2496 2528 2528 2528 2528 2528

9 29.709 33.203 8.847 10.277 5.384 4982 4.0379 101,360 103,264 47,568 81,488 47,568 75,376 75,376
10 15.239 9.330 5.077 3.806 3.059 2.054 1.60810 56,768 30,432 30,432 30,432 30,432 30,432 30,432
11 3.293 1.242 1.020 0.704 0.572 0.576 0.60511 9616 2176 2544 2064 2176 2672 2624
12 53.568 28.821 15.365 11.006 8.641 2963 2.34dl2 161,600 87,152 87,152 87,152 88,640 46,320 46,320
13 17.022 4.842 2.497 1.745 1.402 0.773 0.75513 50,736 10,432 10,208 10,208 10,208 10,000 10,272
14 33.843 7.927 4.962 2985 3.523 1.195 1.07914 101,456 21,616 26,320 21,616 34,336 16,976 21,616
15 33.060 19.448 13.823 7.565 5.104 2466 1.650l5 133,648 73,344 96,704 73,344 62,048 49,600 39,280
16 5.356 2.844 1.256 0.895 1.015 0.571 0.53616 15,888 5440 3408 3408 5392 2352 2720
17 7.526 1.301 0.839 0.565 0.460 0.365 0.36717 23,248 1456 1456 1456 1456 848 848
18 35.761 7.807 4.313 3.687 2.734 0.875 0.52118 92,432 24,976 24,432 28,608 25,376 6720 4336
19 16.129 8.377 2.445 1.633 1.315 0.379  0.40519 44,656 23,616 5664 5664 5664 928 928
20 58.590 9.756 4.396 3.218 2.593 0.778 058820 150,624 28,272 23,136 22,080 23,136 6944 6144
21 444,697 21.016 14.579 7.785 8.687 3.976 2941 1,000,112 72,048 96,592 67,616 98,816 67,616 63,968
22 585.474 100.211 56.529 106.228 47.860 25.322 24.2182 1,285,776 278,080 278,080 638,128 304,288 355,088 445,616
23 644.556 238.583 130.017 96.096 82.259 52.525 40.96343 1,707,776 682,592 653,616 653,616 684,880 758,768 752,672
24 39.629 45.967 19.831 14.592 10.401 6.282 597824 119,808 130,752 98,064 98,064 98,064 86,544 117,328
25 24.315 9.519 5.345 3.776 2.709 1.891 1.24825 88,704 36,656 36,928 36,656 31,200 31,200 29,488
26 11.687 2.874 1.629 1.319 1.034 0.648 0.60326 40,464 7824 7824 7824 5568 5568 7632
27 18.878 14.459 7.705 1.200 4.907 0.651 0.5587 61,552 43,280 42,656 48,816 7984 7984 7984
28 99.030 29.773 15.699 13.024 8.747 6.015 3.4928 302,288 91,120 89,456 89,456 109,168 82,944 109,168
29 2.263 3.012 0.527 0.350 0.271 0.182 0.20429 7360 7360 720 720 304 304 304
30 40.990 4.800 2.862 2.246 1.797 1.012 0.70730 114,608 11,696 12,192 12,480 10,016 9216 12,496
31 31.163 18.103 8.304 8.312 5.569 3.822 2.83131 108,480 67,312 56,368 79,472 67,760 74,736 74,752
32 10.655 3.668 1.245 0.906 0.779 0.572 0.64832 41,328 10,432 4592 3840 4592 3840 3840
33 27.489 2.892 1.817 1.153 1.132 0.676  0.73533 83,504 7840 8272 6224 8272 4784 4784
34 33.292 3.198 1.855 1.423 1.151 0.804 0.82634 96,416 8560 8560 8480 8560 6688 6688
35 43.266 33.983 18.651 13.890 11.368 7982 6.7085 111,120 88,336 88,336 88,336 88,513 96,688 101,440
36 43.704 30.517 18.943 4.297 9.144 3.750 2.20836 135,472 92,112 105,616 35,168 89,408 72,192 56,064
37 202.924 132.465 90.057 15.368 59.096 12.227 8.4687 580,560 433,952 473,168 144,464 495,360 257,648 228,816
38 37.961 23.100 11.336 8.564 6.875 1.175 1.0948 105,408 66,928 55,328 55,328 55,968 14,608 17,040
39 26.450 6.789 3.914 2.900 2.287 1.726  1.33839 76,928 17,568 18,416 18,416 18,416 19,920 19,920
40 44.337 10.374 6.718 4.462 4.078 3.003 2.8140 102,384 21,360 25,648 23,104 26,272 28,896 33,616

of the same sizém = 32, n = 16). The average computationferent sequence ofS}, more linear constraints may cause
times of PA for 1, 16 processors and SA are 25.479, 3.4690re cuts, and the reverse convex constraint is related to the

and 75.163 s, respectively. Tables II, lll, IV, and V illustratdocations ofzy (or ZX). In general, for the same tested problem,
that the PA introduced here is very efficient for the solutiothe set{z} in SA is not necessary to contain the $2t) in
of the tested problems. PA and|z| is frequently greater thayz¥|, where|z| (|Z¥|) is

In our computational experiment, the computational load dfie number ofz} ({Z¥}) (see Examples 1, 2, or Rec in Tables
SA and PA depends on the type of (LRCP) problem, detdl; Il). Also, it may vary for the set{z} in PA for different
mined by its cost function, its linear constraints, and a reversambers of processors (Tables II, Ill). Compared with SA, PA
convex constraint. A different cost function will produce a difwill frequently decrease the number of cuts during the compu-
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30 , ' are used to solve the (LRCP) problem for parallel algorithm.

From the computational results, we know that a high efficiency
may be achieved if a suitable number of processors are cho-
sen. In fact, in some problems, using more processors may not
be realistic because many processors may be idle during the
computation and more processors cause more communication
overhead. Finally, since the memory required to store the list
of vertex increases rapidly with, the size of problem is re-
stricted. Although CFS (Concurrent File System) can be used
* for the larger size of problem, it requires an inordinately long
time to complete read/write processes.

251 b

7. CONCLUSION

o
T
L

In this paper, a new parallel algorithm has been proposed to
solve the problem (LRCP) that can be efficiently implemented
on a massive parallel computer DELTA. We have tested two
sets of randomly generated test problems. For the first set, we
emphasized problems of different sizes; for the other set, we
concentrated on problems of the same sine<(32, n = 16).
tation reSUlting in a lower number of neWIy generated Vel’tices, In the a|gorithm presented here, the calculation of produc-
even for PA with single processor. In addition, the verticgig new vertices is the most expensive part. However, this
created by cuts can be computed in parallel for PA. Thusgmputation is distributed over all processors and saves a con-
PA is much more efficient than SA. Moreover, observing th§iderable amount of time although it requires the communi-
variation of the set{z} in PA, speedups greater than theation. By comparing it with the serial algorithm, we have
number of processors can be expected in some test problemlieved computational results (Tables 11, 111, IV, V) that show
(Tables II, 11, IV, V). Notice that with the same total numberthe parallel algorithm for different numbers of processors is
of generated vertices, PA with single processor is slower thatore efficient, with even a superlinear speedup for some tested
SA because the former has to find thadjacent vertices and problems. As mentioned in the preceding section, greater than
do pivoting and edge searching for each adjacent vertex (cflidear speedup is caused by different choices in the search
in Table Il and 6, 29 in Tables 1V, V). However, Tables Il, lll,process, but there is no method to predict them. The numeri-
IV, V show that the number of new vertices produced by cutsl experiments show that the PA for 1-processor case seems to
for PA with single processor is frequently much lower thahave better performance than the SA in most tested problems.
that created in SA. Therefore, it is expected that the efficiency
of SA can be much improved in most test problems if SA
takes additional time to execute the edge searching procedure

L L L

12

0 1 L 1 L 1
0 2 4 6 8 10

No. of Processors

FIG. 3. Speedup for 40 problems witimn = 32, n = 16 on the DELTA.
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