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A parallel method for globally minimizing a linear program
with an additional reverse convex constraint is proposed which
combines the outer approximation technique and the cutting
plane method. Basicallyp (≤n) processors are used for a prob-
lem with n variables and a globally optimal solution is found
effectively in a finite number of steps. Computational results are
presented for test problems with a number of variables up to 80
and 63 linear constraints (plus nonnegativity constraints). These
results were obtained on a distributed-memory MIMD paral-
lel computer, DELTA, by running both serial and parallel al-
gorithms with double precision. Also, based on 40 randomly
generated problems of the same size, with 16 variables and 32
linear constraints (plus x ≥ 0), the numerical results from dif-
ferent number processors are reported, including the serial algo-
rithm’s. © 1997 Academic Press
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1. INTRODUCTION

With rapidly advancing computer technology, particularly
in the area of parallel machines, and the current advances in
parallel algorithms (see, for example, [1, 2, 19, 20, 23, 24,
32]), solving nonconvex optimization problems for global op-
tima using parallel algorithms seems to be considered com-
putationally tractable. However, due to the variety of noncon-
vex problems and the absence of complete characterizations
of global optimal solutions of nonconvex problems (e.g., there
is no local criterion for deciding whether a local solution is
global), it is necessary to devise parallel algorithms suited to
particular classes of nonconvex problems. So far, although a
large number of methods have been proposed, only a few of
the presented algorithms have been programmed and tested.
The aim of this paper is to introduce and study a parallel al-
gorithm for a class of nonconvex problems and demonstrate
its efficiency through extensive testing in a parallel machine
(DELTA).

1Supported in part by the NSF under Grant CCR-9222734.

In the literature on nonconvex optimization problems, re-
verse convex programs, a problem closely related to concave
minimization (cf. [4, 5, 11–14, 18, 25, 27, 29, 33]), has at-
tracted the attention of a number of authors [6–9, 21, 22,
31] since Rosen [22] first studied it. The problem of linear
programs with an additional reverse convex constraint is an
interesting problem in reverse convex programs. Essentially,
the feasible regions (i.e., intersection of a polyhedron and the
complementary set of a convex set) for this class of optimiza-
tion problems are nonconvex and often disconnected, and such
feasible set results in the computational difficulty.

In recent studies for linear programs with one additional
reverse convex constraint, Hillestad [7] developed a finite pro-
cedure for locating a global minimum. Hillestad and Jacob-
sen [8] gave characterizations of optimal solutions and pro-
vided a finite algorithm based on these optimality properties.
Subsequently, Thuong and Tuy [28] proposed an algorithm
involving a sequence of linear programming steps and con-
cave programming steps. To increase efficiency, an outer ap-
proximation method in [13, p. 490] was used for the above
concave programs. In addition, Pham Dinh and El Bernoussi
[21] improved both the results and the algorithms described by
Hillestad and Jacobsen [8], Thuong and Tuy [28]. For the pro-
cedure of Tuy cuts [29], Gurlitz and Jacobsen [6] showed that
it ensures convergence for two-dimensional problems but not
for higher-dimensional problems. They also modified the edge
search procedure presented by Hillestad [7]. However, these
are known to be rather time-consuming, or no computational
experiments have been performed. Since the computational ef-
fort required strongly depends on the size of the problem and
its type (e.g., linear objective function, linear constraints, or
a reverse convex constraint), it is necessary to create an effi-
cient algorithm to lower the computational load. A promising
approach is to design a parallel algorithm for the above prob-
lems.

In this paper, we develop two new algorithms—serial
and parallel algorithms—to solve linear programs with an
additional reverse convex constraint. Basically, the serial
algorithm can be regarded as a modification of algorithm 1
(first version) in Pham Dinh and El Bernoussi [21]. However,
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the serial algorithm presented here may be more efficient in
many problems since it is based on the following: Theorem 4,
cutting plane methods, and the outer approximation scheme
with a simpler polyhedronS0

k (see Section 4). Generally
speaking, the serial algorithm presented here has to solve both
linear programs and concave minimization subproblems by
the methods mentioned in [13, p. 490; 28]. The algorithm
in [13, p. 490] seems to be more efficient than that in
[28] because the latter requires more work to solve the
concave programming subproblem, due to its lack of the outer
approximation technique. In fact, for the outer approximation
method, a solution of the concave minimization problem can
frequently be found before revealing all the extreme points of
the feasible set. The algorithm in [13, p. 490] constructs a
decreasing sequence ofSk, i.e., Sk ⊂ Sk−1 ⊂ · · · ⊂ S0 ⊃ D
(D is a bounded polyhedron; see Section 2), whereSk =
Sk−1∪{x ∈ n: h(x) ≤ 0} or Sk = Sk−1∪{x ∈ n: cx ≤ cxk}
(h(x) denotes a linear constraint ofD, xk ∈ D, andc is a cost
vector). However, such a construction of theSk may require
us to do a rather expensive computation. For example, when
|V(Sk)|, the number of vertices inSk, is very large (this often
occurs if n is large), the complexity of the computation of
V(Sk+1) may increase considerably, in particular for forming
Sk+1 = Sk ∪ {x ∈ n: cx ≤ cxk}. Also, the storage of the
vertices is a big problem. In this proposed serial algorithm, the
reconstruction of a polyhedronS0

k (see Section 3) is proceeded
as soon as a feasible point has been detected in step 2 of Phase
II. With this construction ofS0

k , the amount of work required
to calculate the newly generated vertices may be lower than
that in [13, p. 490]; and the maximum memory to store the
vertices can also be reduced. Although a simple construction
of S0

k is used, the computation of generating new vertices
is still the most expensive portion in the serial algorithm.
To remedy this problem, a parallel algorithm was developed
based on the serial algorithm. In Section 6, the computational
results constitute a very important part of the present work
since they employ a parallel machine (DELTA) to demonstrate
that the parallel algorithm is accurate and efficient for the
tested problems. For example, the parallel algorithm for 1, 16
processors and the serial algorithm have average computation
times of 25.48, 3.47, and 75.16 s for 40 randomly created
problems of the same size (32 constraints and 16 unknowns).
Also, the different size tested problems with a number of
variables up to 80 and 63 linear constraints can be solved
in a good reasonable time.

The organization of this paper is as follows. In Section 2, the
basic properties of optimal solutions for linear programs with
an additional reverse convex constraint are stated. Section 3 is
devoted to descriptions of the algorithms. Section 4 discusses
the details of the implementation of our algorithms. In Section
5, two examples are presented to illustrate both serial and
parallel algorithms. Finally, in Section 6, a numerical report
including both serial and parallel algorithms running on the
parallel machine DELTA is given.

2. PROBLEM STATEMENT AND BASIC PROPERTIES

This section introduces the main results corresponding to
the characterization of optimal solutions of the linear program
with an additional reverse convex constraint problem. Consider
the problem

(LRCP) Minimize {cx: x ∈ D ∩ G}

where D = {x ∈ n: Ax ≤ b, x ≥ 0}, A an m× n matrix,
b ∈ m, andG = {x ∈ n: g(x) ≥ 0}, g a finite convex func-
tion defined throughout n. We useAi to denote thei th row
of A. Assume thatD is bounded, andD ∩ G 6= ∅. For any
nonempty polyhedral setD ⊂ n, we denoted byV(D) the
set of vertices ofD, E(D) the set of edges ofD, and∂G the
boundary ofG for any nonempty setG ⊂ n. Notice that, in
general, a concave minimization problem

(CP) Minimize{ f (x): s.t. x ∈ D}

where f (x) is a continuous concave function onn and D is
as in (LRCP), can be rewritten as a (LRCP) by introducing an
additional variablet ,

Minimize {t : x ∈ D, γ1 ≤ t ≤ γ2, g(x, t)

= t − f (x) ≥ 0}, (1)

whereγ1, γ2 are some constants in.

THEOREM 1 [8]. Let D be a bounded polyhedron, and de-
note the convex hull of D∩G byconv(D∩G). Then we have:

i. conv(D ∩ G) is a bounded polyhedron andconv(D ∩
G) = conv(E(D) ∩ G).

ii. An optimal solution for(LRCP)lies in the set E(D) ∩G.

THEOREM 2 [8]. Let D be a bounded polyhedron, y∈
D ∩ G, and D(y) = {x ∈ D: cx ≤ cy}. If for every
z ∈ V(D(y)) we have

i. g(z) < 0 or
ii. g(z) = 0 and cz= cy,

then y is an optimal solution for(LRCP).

DEFINITION 1 [13, 21]. The reverse convex constraint
G = {x ∈ n, g(x) ≥ 0} is called essential in the problem
(LRCP) if we have

min {cx: x ∈ D} < min{cx: x ∈ D ∩ G}.

COROLLARY 1 (see, e.g., [13]). If the constraint G= {x ∈
n: g(x) ≥ 0} is essential in(LRCP) and D∩ G 6= ∅ then

there is an optimal solution for(LRCP) lying on E(D) ∩ ∂G.
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Proof. Let x be an optimal solution to (LRCP). Accord-
ing to Theorem 1,x is a vertex of conv(E(D) ∩ G) =
conv(E(D) \ int Gc) where intGc is the interior set ofGc,
the complementary set ofG. If x /∈ ∂G then g(x) > 0 andx
must be a global solution to min{cx: x ∈ D}. But G is essen-
tial in (LRCP). This implies thatg(x) = 0, i.e.,x ∈ ∂G.

Note that if the constraintG is not essential, then (LRCP)
will be equivalent to the trivial linear programming problem,
min {cx: x ∈ D}. T. Pham Dinh and S. El Bernoussi [21]
pointed out that ifG is essential in (LRCP), then the sufficient
condition in Theorem 2 is also necessary.

THEOREM 3 [21]. Let D be a bounded polyhedron and let
x∗ ∈ D be such that g(x∗) = 0. Let D(x∗) = {x ∈ D: cx ≤
cx∗}. If the constraint G is essential in(LRCP), then the nec-
essary and sufficient condition for x∗ to be an optimal solution
of (LRCP) is that for eachv ∈ V(D(x∗)) we have:

i. g(v) < 0 or
ii. g(v) = 0 andcv = cx∗.

THEOREM 4. Assume that D∩ G 6= ∅ and G is essential
in (LRCP). Let v ∈ D and D(v) = {x ∈ D: cx ≤ cv}. For a
point v∗ ∈ D(v) ∩ G to be an optimal solution to the problem
(LRCP), a sufficient condition is

max{g(x): x ∈ D(v)} = 0 and

cv∗ = min {cx: g(x) = 0, x ∈ D(v)}.

Proof. If max {g(x): x ∈ D(v)} = 0 and cv∗ =
min {cx: g(x) = 0, x ∈ D(v)}, then g(x) ≤ 0 for eachx
in D(v) andcx ≥ cv∗ for eachx in D(v) ∩ G. Hence,v∗ is
an optimal solution to (LRCP).

Remark. Let v∗ be optimal; then thesufficient conditionin
Theorem 4 is alsonecessaryif we havev = v∗.

Note that max{g(x): x ∈ D(v)} is equivalent to
min {−g(x): x ∈ D(v)}, which is a concave minimization
over D(v). Hence, only the vertices ofD(v) are considered.

COROLLARY 2. Assume that D∩ G 6= ∅ and G is essen-
tial. Let v ∈ D and D(v) = {x ∈ D: cx ≤ cv}. For a point
v∗ ∈ V(D(v)) ∩ G, if

max{g(x): x ∈ V(D(v))} = 0 and

cv = min {cx: g(x) = 0, x ∈ V(D(v))},

thenv∗ is an optimal solution to problem(LRCP).

DEFINITION 2 [30]. Problem (LRCP) is said to be stable if

min {cx: x ∈ D, g(x) ≥ ε} ↓
min {cx: x ∈ D, g(x) ≥ 0} asε ↓ 0.

If problem (LRCP) is stable, then one hascv∗ = cv in
Theorem 4 and it can be rewritten as following.

THEOREM 5 [30]. Let D∩G 6= ∅ and let G be essential. If
the problem(LRCP) is stable, then a pointv∗ ∈ D ∩ G is an
optimal solution to problem(LRCP) if and only if

max{g(x): x ∈ D(v∗)} = 0.

3. ALGORITHM DESCRIPTION

In this section, we present serial and parallel algorithms for
(LRCP). Both algorithms are based on Theorems 1 and 4 and
Corollary 1 and primarily make use of the outer approximation
scheme and the cutting plane method.

3.1. Serial Algorithm

Initialization

Step 0. Let x0 solve min{cx: x ∈ D} and letv0 ∈ V(D)∩
G. Setk = 0.

Step 1. If g(x0) ≥ 0, stop; x0 is optimal to (LRCP).
Otherwise starting fromx0, pivot via the simplex algorithm for
solving the linear programming max{(v0− x0)x: x ∈ D} until
a pair of verticesv1 andv2 are obtained such thatg(v1) < 0
andg(v2) ≥ 0.

Step 2. Solve the line search problem

Minimize α

subject to g(v1+ α(v2− v1)) ≥ 0

0< α ≤ 1

and setz0 = v1+ α(v2− v1), whereα is an optimal value of
the line search problem.

Step 3. Find a polyhedronS0
0 containing a vertexx0 such

that D(z0) = {x ∈ D: cx ≤ cz0} ⊂ S0
0 ⊂ {x ∈ n: cx ≤ cz0},

delete the redundant constraints according toV(S0
0), and go

to Phase II.

Phase I

Step 1. Starting fromxk, pivot via the simplex algorithm
for solving the linear programming min{cx: x ∈ D(zk−1)}
until a pair of verticesv1 and v2 are obtained such that
g(v1) ≥ 0 andg(v2) < 0.

Step 2. Find 0≤ α < 1 such thatg(v1+ α(v2− v1)) = 0
and setzk = v1 + α(v2 − v1), i.e., zk is the intersection of
[v1, v2] with the surfaceg(zk) = 0.

Step 3. Find a polyhedronS0
k of vertex x0 such that

D(zk) = {x ∈ D: cx ≤ czk} ⊂ S0
k ⊂ {x ∈ n: cx ≤ czk}

(such a polyhedron will be discussed later) and delete the
redundant constraints according toV(S0

k).

Phase II

Let i = 0.
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FIG. 1. An example for unstable problem.

Step 1. Set = {v: g(v) = 0, for v ∈ V(Si
k)}. If

max{g(v): v ∈ V(Si
k)} = 0 and ⊂ D(zk), then stop:

v∗ ∈ argMin{cx: g(x) = 0, x ∈ } is a global solution for
(LRCP). Otherwise, go to Step 2.

Step 2.

(a) If there is av ∈ argMin{cv: v ∈ V(Si
k), g(v) ≥ 0} such

that v ∈ D, then setxk+1 = v, k = k + 1, and go to Phase I.
Otherwise, go to (b).

If there existsv ∈ argMax{g(v): v ∈ V(Si
k), g(v) ≥ 0} such

thatv /∈ D, then find a constraintpj x−qj ≤ 0 of D which is
the most violated byv and setSi+1

k = {x ∈ Si
k: pj x−qj ≤ 0}.

Compute the vertex setVi+1
k of Si+1

k (from knowledge ofVi
k ),

and leti = i + 1, go to Step 1.

Remarks.

• For the search of anyv0 ∈ V(D) ∩G in Step 0, see the
methods described in Horst and Tuy [13] or Pham Dinh and El
Bernoussi [21]. If no suchv0 exists, then there is no feasible
solution.

• If x0 is a degenerate vertex ofD, then select another
vertex x′0 such thatx0 is nondegenerate andg(x′0) < 0. If no
such vertex exists, apply the procedures discussed in Section 4.

• Step 1 of Phase II is based on Theorem 4. For an unstable
problem such as that in Fig. 1, Theorem 4 will be more
efficient than Theorems 2 and 3.

• For a stable problem, step 1 of Phase II can be replaced
by: If max{g(v): v ∈ V(Si

k)} = 0, then stop: v∗ ∈
argMin{cx: g(x) = 0, x ∈ V(Si

k)∩D(zk)} is a global solution
for (LRCP). Otherwise, go to Step 2.

3.2. Parallel Algorithm

Initialization

Step 0. Let x0 solve min{cx: x ∈ D} andv0 ∈ V(D)∩G.
Setk = 0.

Step 1. If g(x0) ≥ 0, stop; x0 is an optimal solution.
Otherwise, execute the following in parallel: for processor
i , find x0i , a neighboring vertices ofx0 (if x0 is a degenerate
vertex, choose another vertexx0 where g(x0) < 0). Let
d0i = v0− x0i .

If g(x0i ) < 0 then starting fromx0i , pivot via solving
max{d0i x: x ∈ D} until a pair of verticesvi 1 andvi 2 obtained
such thatg(vi 1) < 0 andg(vi 2) ≥ 0.

Otherwise, setvi 1 = x0 andvi 2 = x0i .
Solve the line search problem with the serial algorithm and

setz0
i = vi 1+ α(vi 2− vi 1).

Step 2. Choosez0 = min {cz0
i , i = 1, . . . , n} and do Step

3 of the initialization of the serial algorithm.

Phase I

Step 1. For pointxk and itsn neighboring verticesxki , i =
1, 2, . . . , n, processori will do if g(xk) ≥ 0

• if g(xki ) < 0 then setvi 1 = xk and vi 2 = xki .
Otherwise, starting fromxki , pivot via solving min{cx: x ∈
D(zk−1)} until a pair of verticesvi 1 andvi 2 obtained such that
g(vi 1) ≥ 0 andg(vi 2) < 0. Find zk

i the intersection point of
[vi 1, vi 2] with the surfaceg(zk

i ) = 0.

Else

• if g(xki ) ≥ 0 then setvi 1 = xk and vi 2 = xki .
Otherwise, setdi = v0 − xki , starting fromxki , pivot via
solving max{di x: x ∈ D(zk−1)} until a pair of verticesvi 1

andvi 2 obtained such thatg(vi 1) < 0 andg(vi 2) ≥ 0. Findzk
i

the intersection point of [vi 1, vi 2] with the surfaceg(zk
i ) = 0.

Step 2. Find a polyhedronS0
k of vertex x0 such that

D(zk) = {x ∈ D: cx ≤ czk} ⊂ S0
k ⊂ {x ∈ n: cx ≤ czk} and

delete the redundant constraints according toV(S0
k), where

czk = min {czk
i : i = 1, 2, . . . , n}

Phase II

Let j = 0.

Step 1. Set = {v: g(v) = 0, for v ∈ V(Si
k)}. If

max{g(v): v ∈ V(Si
k)} = 0 and ⊂ D(zk), then stop:

v∗ ∈ argMin{cx: g(x) = 0, x ∈ } is globally optimal for
(LRCP). Otherwise, go to Step 2.

Step 2.

(a) If there is a feasible vertexv ∈ argMin{cv: v ∈ V(Sj
k ),

g(v) ≥ 0} such thatv ∈ D, then setxk+1 = v, k = k+ 1, and
go to Phase I. Otherwise go to (b).

(b) If there existsv ∈ argMax{g(v): v ∈ V(Sj
k ), g(v) ≥ 0}

such thatv /∈ D, then find a constraintpr x − qr ≤ 0 of

D which is the most violated byv and setSj+1
k = {x ∈

Sj
k : pr x−qr ≤ 0}. Compute the vertex setV j+1

k of Sj+1
k (from

knowledge ofV j
k ), and let j = j + 1, go to Step 1.

Remarks.

• The line search in Step 1 of Initialization and Phase
I can be performed [n/p] times, wherep is the number of
processors and [n/p] is the smallest integer which is greater
thann/p.
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• The (b) of Step 2 can be performed by a parallel
computation. For example, letV+(Sj

k ) = {v ∈ V(Sj
k ): pr v−

qr > 0}, where pr v − qr = 0 is a cutting plane. Denote by
|V+(Sj

k )| the number of the vertices ofV+(Sj
k ). For a cutting

plane pr v − qr = 0, |V+(Sj
k )| = M, and p = the number of

processors, the calculation of the vertex setV(Sj+1
k ) of Sj+1

k
can be finished in [M/p] times ([M/p] is the smallest integer
which is greater thanM/p).

• (3) Similarly, the function values ofg(v), v ∈ V(Sj
k ),

are computed in the same way as above.

LEMMA 1. For Step1 of Phase I, if both serial and paral-
lel algorithms start from the same pointx (i.e., xk = xk), then
czk(parallel) ≤ czk(serial), i.e., D(zk) ⊂ D(zk).

Proof.

(1) If x is a nondegenerate point, then we can find exactly
its n adjacent vertices. Starting from these points, the edge
search paths via the simplex algorithm will include the path
in the serial algorithm. It impliesczk ≤ czk.

(2) If x is a degenerate point, then we choosen neigh-
boring vertices (n edge searching paths) including the path
starting fromx.

From (1) and (2), we know thatczk ≤ czk.

LEMMA 2. {czk} in the serial algorithm is a decreasing and
finite sequence.

See Hillestad and Jacobsen [8].

THEOREM6. The serial and parallel algorithms find an op-
timal solution for problem(LRCP) in a finite number of steps.

Proof.

i. From Corollary 1, we know that there is an optimal
solution for (LRCP) lying onE(D). Now E(D) is finite since
the number of constraints onD is finite.

ii. At Step 3 of Phase I, both the polyhedronS0
k containing

the global solution of (LRCP) and the number of linear
constraints ofD(zk), which is finite, imply that the number of
cutting planes related toS0

k is finite.

Hence these two algorithms will converge to an optimal
solution in a finite number of steps.

4. DISCUSSION OF IMPLEMENTATION

In the algorithms presented in Section 3, the outer approxi-
mation method was applied to solve the problem (LRCP), and
there are two important procedures—edge searching and cut-
ting plane procedures. Obviously, this approximation approach
will be the most expensive computation in solving problem
(LRCP) and its efficiency depends heavily on both construction
of the polyhedronSj

k and calculation of the vertex setV(Sj
k ).

In other words, efficiency will increase if a suitable contain-

ing polyhedron is constructed. According to the techniques of
outer approximation and of cutting plane the best choice ofS0

k
should be that it must be simple, be close enough toD(zk),

and have a small number of vertices. Therefore, we would like
to create the polyhedronS0

k mentioned in Step 3 of Phase I
by using the same polyhedral cone (fixed constraints binding
at x0 or x0). This is simpler than the construction described in
Pham Dinh and El Bernoussi [21] since the latter has to find
the n adjacent vertices and a linear variety generated by these
n points, then solve a linear program.

Denote byJ(v) the index set of all constraints that are active
at v (v = x0 or x0), i.e.,

J(v) = {i ∈ I : pi v − qi = 0}, (2)

where I ⊂ is a finite index set.

i. If v is a nondegenerate vertex ofD, thenJ(v) contains
the indices of exactlyn linearly independent constraintspi x−
qi = 0, i ∈ J(v). Let the set of inequalities

pi x − qi ≤ 0, i ∈ J(v) (3)

define a polyhedral cone vertexed atv. Therefore, the polyhe-
dron (simplex)S0

k is defined as follows:

S0
k ={x ∈ n: pi x − qi ≤ 0, i ∈ J(v)}
∩ {x ∈ n: cx ≤ czk or czk}

V(S0
k ) ={v, v1, . . . , vn}, (4)

wherev1, . . . , vn can be obtained by the methods described
in Pham Dinh and El Bernoussi [21]. Here the procedure of
Horstet al. [26] was employed to generate them. AlthoughS0

k
is a simplex in most case, it could be unbounded. In an un-
bounded case, it may proceed in the following three ways:

• Try anotherv such thatS0
k is bounded if there is a

nondegeneratev ∈ V(D) andg(v) < 0.
• Apply the methods mentioned in Pham Dinh and El

Bernoussi [21] to construct a bounded approximation ofS0
k .

• Use an approximate cost vectorcε instead ofc. Since
S0

k is unbounded, the number of vertices generated by the
cutting hyperplanecx− czk = 0 will be less thann. Replace
sj = 0 by sj = ε (ε > 0) for some j in the procedure of
Horst et al. [26] and do a pivot operation such thatn vertices
v′1, . . . , v′n are generated. Hence one may have an approximate
cutting planecεx+β = 0 which passes through thesen points.

ii. If v is a degenerate vertex ofD, then |J(v)| > n, i.e.,
there are more thann linear constraints binding atv and

V(S0
k) = {v, vi ; i = 1, 2, . . . , q} whereq > n. (5)

In this case, one may apply the algorithm for finding all ver-
tices of a given polytope (cf. [3, 15, 16]) or proceed with
the methods mentioned in Pham Dinh and El Bernoussi [21].
Note that the algorithm of Matthess [15] needs to maintain a
list structure; storage may thus be a problem for a largen.
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Delete the redundant constraints by Horstet al.’s theorem
[26] after each construction ofS0

k . For the determination of
the vertex setV(Sj

k ) in the cutting plane procedures, the
algorithms introduced above are sufficient. In addition, recall
that global minimization of concave function (i.e., global
maximization of convex function) always obtain its optimal
solution at some vertex. Hence, to save storage memory
and accelerate (b) of Step 2 in Phase II, only vertices with
nonnegative convex function values need to be stored.

Let S0
k be a bounded polytope defined by the linear

inequalities

S0
k = {x ∈ n: pi x − qi ≤ 0, i ∈ I }. (6)

Let h(x) = pj x − qj = 0, let j ∈ I be a cutting hyper-
plane, and letVg+(S

0
k ) = {v: g(v) ≥ 0, v ∈ V(S0

k)}. Let
V+g+(S

0
k ) = {v ∈ V+g : h(v) > 0}. According to (b) of Step 2

in Phase II, a necessary condition for any constrainth(x) of
polyhedronS0

k to be a cutting plane isV+g+(S
0
k) 6= ∅.

DEFINITION 3. A cutting plane h(x) is valid for the
polyhedronS0

k if V+g+(S
0
k ) 6= ∅. Otherwise, it is invalid.

Since only the vertex setVg+(S
0
k) of V(S0

k), rather than
V(S0

k), is useful for computation, a constraint which cannot
be a cutting plane can be eliminated by the following lemma.

LEMMA 3. Let Vg+(S
j
k ) = {v: g(v) ≥ 0, v ∈ V(S0

k)}. Then
a constraint h(x) of S0

k is invalid for S0
k if and only if

h(v) < 0, ∀v ∈ Vg+(S
0
k). (7)

5. EXAMPLES

To illustrate the algorithms presented in Section 3, two
examples are given here. In these two examples, a comparison
of serial and parallel algorithms will be reported.

EXAMPLE 1.
Minimize:

−2x1+ 3x2

subject to:
−3x1+ x2 ≤ 0, −4x1− x2 ≤ −7,

3x1+ 2x2 ≤ 23, 5x1− 4x2 ≤ 20,

2x1+ 3x2 ≤ 22, −6x1− 9x2 ≤ −18,

−3x1+ x2 ≤ 10, x1, x2 ≥ 0.

g(x) = x2
1 + x2

2 − 8x1− 4x2 + 13.75≥ 0

SERIAL ALGORITHM.
Initialization. x0 = (4, 0) was obtained by solving the

linear program min{cx: x ∈ D}. Let v0 = (2, 6).
k = 0. Starting from x0, Step 1 findsv1 = (5, 4),

v2 = (2, 6) and Step 2 solvesz0 = (4.2723, 4.4851). Step
3 constructs a simplexS0

0 = {x ∈ 2: 5x1 − 4x2 ≤ 20, x2 ≥
0, −2x1 + 3x2 ≤ 4.9107} with vertices (4, 0), (−2.4554, 0),
(11.3776, 9.2220) and deletes a redundant constraint−3x1 +
x2 ≤ 10. Go to Phase II.

In Phase II, since max{g(v): v ∈ V(S0
0)} > 0 and nov

satisfies (a) of Step 2, setS1
0 = {x ∈ S0

0: 3x1 + 2x2 ≤ 23}.
Thus, go to Step 1 of Phase II and obtain the same result
as above. FormS2

0 = {x ∈ S1
0: −4x1 − x2 ≤ −7} and find

x1 = (1.1492, 2.4031) ∈ D in (a) of Step 1. Go to Phase I.
k = 1. In Phase I, Step 1 findsv1 = (1.5, 1), and

v2 = (3, 0), Step 2 solvesz1 = (1.8108, 0.7928), and Step 3
determines the simplexS0

1 = {x ∈ 2: 5x1 − 4x2 ≤
20, x2 ≥ 0, −2x1 + 3x2 ≤ −1.2431} with vertices
(4, 0), (0.6215, 0), (7.8611, 4.8264) and deletes a
redundant constraint −3x1 + x2 ≤ 0. Similarly,
executing the procedure of Phase II, we haveV(S2

1) ={(4, 0), (5.4989, 3.2516), (6, 2.5), (1.8108, 0.7928), (3, 0)}.
Finally, Step 1 verifies thatv∗ = z1 = (1.8108, 0.7928) is an
optimal solution because max{g(v): v ∈ V(S2

1)} = 0 and
only g(z1) = 0.

PARALLEL ALGORITHM.
Initialization. In Step 0 we also findx0 = (4, 0) and let

v0 = (2, 6).
k = 0. Step 1 findsx0 = (4, 0), x01 = (6, 2.5), x02 =

(3, 0), v11 = (5, 4), v12 = (2, 6), v21 = (3, 0), v22 =
(1.5, 1), and z0

1 = (4.2723, 4.4851), z0
2 = (1.8108, 0.7929).

Hence cz0 = cz0
2 = min {cz0

1, cz0
2}. Step 3 constructs a

simplex S0
0 in the same way asS0

1 in the serial algorithm.
Phase II. After the same steps as the serial algorithm’s, an

optimal solutionv∗ = z0 = (1.8108, 0.7929) was discovered.
Figure 2 illustrates the geometric history of Example 1. In

this example, the constraint−3x1+ x2 ≤ 10 is redundant.

EXAMPLE 2. Consider an example withm = 10 and
n = 6. Cost vector: c = (−4.88166, −6.06580, −7.92004,
7.87233, −9.74772, −9.99590). Polyhedron: D = {x ∈

n: Ax ≤ b, x ≥ 0}, wherebT = (8.47832, 2.48636, 1.86858,
−1.10545, 1.96469, 3.02506, 0.57517,−1.04776, 1.67729,
1.64407). Reverse convex constraint:g(x) = 2.10(x1 −
1.50)2+5.24(x2−3)2+1.20x2

3+x2
4+1.86(x6−1)2−45≥ 0.

A =



1.64990 1.78425 1.87958 0.13965 1.09823 1.92671
0.60304 −0.73647 0.11778 −0.40180 0.96786 0.83954
0.29427 −0.22619 0.34955 0.81258 −0.98052 0.46708
−0.37775 −0.75322 0.56079 −0.89150 0.59161 −0.87597
−0.58633 −0.52370 0.24838 0.51515 0.17007 0.32349
−0.01924 0.70454 −0.74845 0.88219 0.90519 −0.43513
−0.82323 0.02622 0.60894 0.52842 −0.81546 0.58568
−0.50914 0.85069 −0.49088 −0.26491 −0.40963 −0.65797

0.88640 −0.28695 −0.81680 0.01408 0.69593 0.49501
−0.64534 −0.19249 0.84724 −0.37147 0.71062 −0.55198


.
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FIG. 2. Geometrical history of Example 1.

Choosex0 = x0 = (0, 1.27570, 0.35670, 0, 1.98949, 1.73704)
with g(x0) = −23.53236 andv0 = v0 = (1.10066, 0, 2.08640,
3.28416, 1.93021, 0.08425) withg(v0) = 20.06409.

In the serial algorithm, there are 258 vertices generated by
cuts and six constructed simplices havingzk (k = 0, 1, . . . , 5)
as follows:

z0 = (0.80574, 0.62003, 1.96709,
2.79354, 1.78034, 0), cz0 = −18.63633

z1 = (0, 0.24375, 0.15993, 0,
0.48804, 1.48438), cz1 = −22.34023

z2 = (0, 0.24350, 0, 0, 0.65845,
1.49730), cz2 = −22.86218

z3 = (2.24338, 0.16203, 1.16530,
0, 0.23386, 1.05920), cz3 = −34.03075

z4 = (0, 0.29620, 0.41783, 0,
1.03270, 1.97224), cz4 = −34.88672

z5 = (1.19419, 0.17982, 1.36695,
0, 0.32943, 1.68998), cz5 = −37.85075.

After verification, we have a global optimal solution:z5 with
optimal value−37.85075. For the parallel algorithm with dif-
ferent numbers of processors, the results are listed in Table I.
Note that only 24 new vertices and two simplices are gener-
ated before the optimal solution is found.

6. NUMERICAL RESULTS AND ANALYSIS

In this section, computational results are reported for solving
problems (LRCP) by both the serial algorithm (SA) and the
parallel algorithm (PA) described in Section 3 running on
the DELTA supercomputer. The test problems are randomly
generated so that the feasible region was nonempty and
bounded.

6.1. DELTA and Test Problems

The Touchstone DELTA (cf. [17]) supercomputer is a
message-passing multicomputer consisting of an ensemble of
individual and autonomous nodes that communicate across
a two-dimensional mesh interconnection network. It has 513
computational i860 nodes, each with 16 Mbytes of memory,
and each node has a peak speed of 60 double-precision Mflops,
80 single-precision Mflops at 40 MHz. A concurrent file
system (CFS) is attached to the nodes with a total of 95 Gbytes
of formatted disk space. The operating system is Intel’s Node
Executive for the mesh (NX/M).

To share the information during the parallel computation, a
node will be assigned as host node to collect the information

TABLE I
Iterative Results of Example 2 for PA with Processors 1, 2, 4, 6

Processors zk(k = 0, 1, 2, 3) czk

Generated
vertices

1 (3.20144, 0.41629, 1.28031,
0.33713, 0, 0)

(1.19419, 0.17982, 1.36695,
0, 0.32943, 1.68998)

−25.63958

−37.85075

114

2 (3.20144, 0.41629, 1.28031,
0.33713, 0, 0)

(2.24338, 0.16203, 1.16530,
0, 0.23386, 1.05920)

(1.19419, 0.17982, 1.36695,
0, 0.32943, 1.68998)

−25.63958

−34.03075

−37.85075

126

4 (0, 0.42927, 1.200501,
1.92978, 2.40445, 1.32133)
(1.19419, 0.17982, 1.36695,

0, 0.32943, 1.68998)

−33.56580

−37.85075

24

6 (0, 0.42927, 1.200501,
1.92978, 2.40445, 1.32133)
(1.19419, 0.17982, 1.36695,

0, 0.32943, 1.68998)

−33.56580

−37.85075

24
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from each node and pass the messages to the others. The
problems used to test the algorithms are randomly generated
in the following way. The polyhedronD = {x ∈ n: Ax ≤
b, x ≥ 0} in a problem (LRCP), each elementai j of A
(i = 1, . . . , m; j = 1, . . . , n) and bi (i = 1, . . . , m), is
obtained by (cf. Horst and Thoai [12])

ai j =2θa − 1 (8)

and

bi =
n∑

j=1

ai j + 2θb, (9)

whereθa, θb are random numbers generated by the function
RAND (a uniform distribution on [0, 1]) in MATLAB. Sim-
ilarly, one can havecj ( j = 1, . . . , n), a coefficient of the
linear cost function, in [−10, 10] byci = 10(2θc − 1), where
θc is also created by RAND.

Clearly,D is nonempty and bounded if we shift the elements
of the first row of A by a1 j = a1 j + 1 such that all of its
elements are positive.

For the reverse convex constraints, the following functions
will be employed in the test problems,

(I) g(x) = xT Px+ rx − t,

(II) g(u) = uT Qu+ ru − t,

whereP is a positive semidefiniten×n matrix, Q is a diagonal
positive semidefiniten× n matrix, r ∈ n, t ∈ , and a vec-
tor u consists of eitherx2

i (at least one) orxi (i = 1, . . . , n).

(III) g(x) =
∣∣∣∣x1+ 1

2
x2 + 2

3
x3+ · · · + n− 1

n
xn

∣∣∣∣3/2− t

(IV) g(x) = √1+ x1+ 2x2+ · · · + nxn − t

Finally, solve min{cx: x ∈ D} and letx0 ∈ V(D) be its solu-
tion. Find av0 ∈ V(D); then move the center of the convex
functions near thex0 so thatg(x0) < 0 andg(v0) ≥ 0.

6.2. Computational Results

Both serial and parallel algorithms were coded in standard
Fortran 77. All numerical tests were performed on the parallel
computer DELTA with double precision. In running the
parallel algorithm for a test problem withn variables,p (≤n)
nodes are used as a partition by specifying the numbers
of rows and columns. Let PA(p) be the execution time for
the parallel algorithm onp processors. Since PA(1) is not
always less than SA, the speedup here is thereby defined
as min(SA, PA(1))/PA(p). Tables II and III contain the
computational results of the SA and PA described previously

TABLE II
Computational Results for Serial and Parallel Algorithms (I)

No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp

1 Serial
Parallel 1

2
3
4
6
9

27 9 (II) 151
154
154
16
16
16
16

1395
1395
1395
252
252
135
135

2
2
2
2
2
2
2

0.371
0.712
0.445
0.234
0.219
0.184
0.180

0.83
1.59
1.69
2.02
2.06

2 Serial
Parallel

1
2
3
5
6
9

63 9 (I) 92
403
79
79
79
79
79

10,125
24,939

4896
4896
4896
4896
4896

4
4
2
2
2
2
2

2.496
7.131
1.698
1.308
0.749
0.924
0.740

1.47
1.91
3.33
2.70
3.37

3 Serial
Parallel 1

2
3
4
6

10

40 10 (I) 91
60
60
60
60
60
60

8410
4030
3880
4030
3880
3880
3880

8
4
4
4
4
4
4

1.816
1.175
0.856
0.794
0.670
0.638
0.513

1.37
1.48
1.75
1.84
2.29

4 Serial
Parallel 1

2
3
4
6

12

36 12 (III) 688
53
53
53
53
53
53

10,092
756
756
756
756
756
756

4
3
3
3
3
3
3

3.257
1.048
0.675
0.571
0.512
0.471
0.435

1.55
1.84
2.05
2.23
2.41
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TABLE II— Continued

No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp

5 Serial
Parallel 1

2
3
4
8

12
16

30 16 (I) 5144
7521
7521
5144
691
691
691
691

91,872
94,336
89,360
41,488
22,416
26,096
26,096
26,096

8
4
3
4
3
3
3
3

28.498
29.367
15.773
5.756
2.108
1.559
1.323
1.161

1.81
4.95

13.52
18.28
21.54
24.55

6 Serial
Parallel 1

3
4
9

12
16
22

42 22 (II) 12,654
9708
8973
8929
8929
8055
8055
8055

688,512
248,468
184,558
232,848
232,848
202,488
202,488
202,488

10
5
4
5
5
5
5
5

369.737
126.503
36.117
40.390
20.928
15.850
12.976
13.184

3.50
3.13
6.04
7.98
9.75
9.60

7 Serial
Parallel 1

2
4
9

16
20
25
32

32 32 (I) 6168
3960
7395
7395
1943
2149
1988
1988
1988

166,624
28,096
51,296
51,168
18,464
42,336
52,416
58,496
52,416

12
4
4
4
4
7
3
4
3

122.941
27.077
23.115
13.734
4.002
6.215
4.372
5.673
3.584

1.17
1.97
6.77
4.36
6.19
4.77
7.56

8 Serial
Parallel 1

4
8
9

16
25
32

32 32 (I) 2241
5603
5603
5603
1587
1587
503
503

54,944
44,192
42,784
44,192
12,288
12,288

5344
5344

10
4
2
4
4
4
3
3

40.393
36.231
10.511
6.906
2.869
2.314
1.358
1.309

3.45
5.25

12.63
15.66
26.68
27.68

TABLE III
Computational Results for Serial and Parallel Algorithms (II)

No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp

9 Serial
Parallel 1

2
3
4
8
9

16
25
36

30 36 (I) 7121
666
666
666
666
100
225
100
100
100

93,564
16,668

8424
8424

10,368
9072

14,508
11,016

9072
9072

15
6
4
4
5
3
5
4
3
3

73.226
16.745
6.242
4.327
4.011
1.867
2.678
1.757
1.410
1.358

2.68
3.87
4.17
8.97
6.25
9.53

11.88
12.33

10 Serial
Parallel 1

2
4
9

16
25
35
42

32 42 (I) 1265
4387
807

1265
305
305
305
305
305

52,248
47,376
22,302
15,792
24,696
24,696
24,696
18,522
18,522

7
5
4
2
5
5
5
4
4

49.568
56.763
14.502
5.807
5.248
4.204
3.942
3.143
3.057

3.42
8.54
9.45

11.79
12.57
15.77
16.21
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TABLE III— Continued

No. Algorithm N m n RCC Vmax Vtol Rec Time (sec) SpeedUp

11 Serial
Parallel 1

2
4
8

16
25
36
45

30 45 (I) 2593
2982

46
1031
1031
453
46
46
46

49,275
35,550

8640
34,290
33,660
22,590

7965
7965
7965

5
3
4
3
3
3
2
2
2

52.367
43.639
7.297

11.408
6.135
3.131
1.256
1.002
1.207

5.98
3.83
7.11

13.94
34.74
43.55
36.15

12 Serial
Parallel 1

2
4
9

16
20
25
36
49

49 49 (IV) 9936
48
48
48
48
48
48
48
48
48

114,905
2646
2646
2646
2646
2646
2646
2646
2646
2646

2
2
2
2
2
2
2
2
2
2

157.194
10.718
6.008
3.430
2.204
1.701
1.487
1.805
2.078
1.543

1.78
3.12
4.86
6.30
7.21
5.94
5.16
6.95

13 Serial
Parallel 1

3
4
9

16
25
36
49
55

27 55 (III) 9715
6129
5923
5923
5923

87
87
87
87
87

25,575
13,475
12,760
12,760
12,760

550
550
550
550
550

7
3
3
3
3
2
2
2
2
2

54.679
35.793
13.111
10.412
7.102
1.386
1.260
1.133
1.594
1.479

2.73
3.44
5.04

25.82
28.41
31.59
22.45
24.20

14 Serial
Parallel 1

2
4
8

16
30
36
49
64

20 64 (I) 7095
5011
2254
2254
2254
2254
1304
1304
1304
1304

67,264
25,536
16,384
15,744
15,744
15,744

7360
13,824
13,376
13,376

15
7
6
5
5
5
3
5
4
4

145.011
70.949
22.937
11.944
7.912
6.079
3.622
5.096
5.807
5.571

3.09
5.94
8.97

11.67
19.59
13.92
12.22
12.74

15 Serial
Parallel 1

2
5

10
16
20
25
30
35
40
49
64
80

30 80 (IV) 2067
1765
3721
2079
1697
1697
1697
1616
2112

68
68
72
72
72

87,440
72,080
43,840
78,880
77,920
72,240
72,240
84,800
56,400

320
320
320
320
320

9
6
5
6
5
6
6
7
6
3
3
3
3
3

223.437
207.123
68.055
44.880
23.174
17.982
15.863
18.300
14.057
2.743
2.657
2.808
3.313
3.802

3.04
4.62
8.94

11.52
13.06
11.32
14.73
75.51
77.95
73.76
62.52
54.48

on test problems of different sizes. Note that the choice ofv0

or v0 may affect the time of calculation. However, so far, we
have no general methods to choose it. In this paper, the point
∈ V(D) ∩ G in both SA and PA was the same (i.e.,v0 = v0)
for each tested problem. In order to demonstrate the efficiency

of PA, we run 40 test problems randomly constituted with the
same size(m= 32, n = 16). Also, a quadratic reverse convex
constraint was considered for each problem. All numerical
results are shown in Tables IV and V. Figure 3 shows the
speedup (minimum, average, maximum) for 40 test problems
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TABLE IV
Results for 40 Tested Problems withm = 32, n = 16 (I)

Time(s)

Parallel (no. of processors)

No. Serial 1 2 3 4 9 16

1 20.481 9.853 5.500 5.134 4.216 2.197 1.826

2 2.238 1.775 1.454 0.799 1.006 0.363 0.417

3 78.932 40.368 17.089 12.177 4.229 2.597 1.958

4 15.155 7.208 2.391 3.220 2.988 1.757 1.056

5 23.248 1.939 1.364 1.166 0.990 0.943 0.805

6 2.931 3.706 2.205 1.577 1.242 0.244 0.201

7 106.328 82.587 27.962 23.750 16.497 20.771 8.894

8 35.369 1.511 0.946 0.762 0.588 0.530 0.522

9 29.709 33.203 8.847 10.277 5.384 4.982 4.037

10 15.239 9.330 5.077 3.806 3.059 2.054 1.608

11 3.293 1.242 1.020 0.704 0.572 0.576 0.605

12 53.568 28.821 15.365 11.006 8.641 2.963 2.349

13 17.022 4.842 2.497 1.745 1.402 0.773 0.755

14 33.843 7.927 4.962 2.985 3.523 1.195 1.079

15 33.060 19.448 13.823 7.565 5.104 2.466 1.650

16 5.356 2.844 1.256 0.895 1.015 0.571 0.536

17 7.526 1.301 0.839 0.565 0.460 0.365 0.367

18 35.761 7.807 4.313 3.687 2.734 0.875 0.521

19 16.129 8.377 2.445 1.633 1.315 0.379 0.405

20 58.590 9.756 4.396 3.218 2.593 0.778 0.588

21 444.697 21.016 14.579 7.785 8.687 3.976 2.946

22 585.474 100.211 56.529 106.228 47.860 25.322 24.219

23 644.556 238.583 130.017 96.096 82.259 52.525 40.964

24 39.629 45.967 19.831 14.592 10.401 6.282 5.978

25 24.315 9.519 5.345 3.776 2.709 1.891 1.248

26 11.687 2.874 1.629 1.319 1.034 0.648 0.603

27 18.878 14.459 7.705 1.200 4.907 0.651 0.558

28 99.030 29.773 15.699 13.024 8.747 6.015 3.497

29 2.263 3.012 0.527 0.350 0.271 0.182 0.204

30 40.990 4.800 2.862 2.246 1.797 1.012 0.707

31 31.163 18.103 8.304 8.312 5.569 3.822 2.831

32 10.655 3.668 1.245 0.906 0.779 0.572 0.648

33 27.489 2.892 1.817 1.153 1.132 0.676 0.735

34 33.292 3.198 1.855 1.423 1.151 0.804 0.826

35 43.266 33.983 18.651 13.890 11.368 7.982 6.705

36 43.704 30.517 18.943 4.297 9.144 3.750 2.206

37 202.924 132.465 90.057 15.368 59.096 12.227 8.464

38 37.961 23.100 11.336 8.564 6.875 1.175 1.094

39 26.450 6.789 3.914 2.900 2.287 1.726 1.338

40 44.337 10.374 6.718 4.462 4.078 3.003 2.812

of the same size(m= 32, n = 16). The average computation
times of PA for 1, 16 processors and SA are 25.479, 3.469,
and 75.163 s, respectively. Tables II, III, IV, and V illustrate
that the PA introduced here is very efficient for the solution
of the tested problems.

In our computational experiment, the computational load of
SA and PA depends on the type of (LRCP) problem, deter-
mined by its cost function, its linear constraints, and a reverse
convex constraint. A different cost function will produce a dif-

TABLE V
Results for 40 Tested Problems withm = 32, n = 16 (II)

Total number of generated vertices

Parallel (no. of processors)

No. Serial 1 2 3 4 9 16

1 82,944 35,968 35,968 46,080 48,480 41,184 41,360

2 7728 4288 5472 4288 5792 1072 1072

3 296,128 144,704 111,280 110,064 50,960 50,960 50,960

4 44,368 19,168 10,368 21,296 24,144 19,616 10,368

5 75,680 3072 3072 3072 3072 2944 2944

6 8848 8848 8848 8848 8848 64 64

7 372,752 280,736 181,616 192,640 181,616 228,880 228,880

8 113,392 2496 2528 2528 2528 2528 2528

9 101,360 103,264 47,568 81,488 47,568 75,376 75,376

10 56,768 30,432 30,432 30,432 30,432 30,432 30,432

11 9616 2176 2544 2064 2176 2672 2624

12 161,600 87,152 87,152 87,152 88,640 46,320 46,320

13 50,736 10,432 10,208 10,208 10,208 10,000 10,272

14 101,456 21,616 26,320 21,616 34,336 16,976 21,616

15 133,648 73,344 96,704 73,344 62,048 49,600 39,280

16 15,888 5440 3408 3408 5392 2352 2720

17 23,248 1456 1456 1456 1456 848 848

18 92,432 24,976 24,432 28,608 25,376 6720 4336

19 44,656 23,616 5664 5664 5664 928 928

20 150,624 28,272 23,136 22,080 23,136 6944 6144

21 1,000,112 72,048 96,592 67,616 98,816 67,616 63,968

22 1,285,776 278,080 278,080 638,128 304,288 355,088 445,616

23 1,707,776 682,592 653,616 653,616 684,880 758,768 752,672

24 119,808 130,752 98,064 98,064 98,064 86,544 117,328

25 88,704 36,656 36,928 36,656 31,200 31,200 29,488

26 40,464 7824 7824 7824 5568 5568 7632

27 61,552 43,280 42,656 48,816 7984 7984 7984

28 302,288 91,120 89,456 89,456 109,168 82,944 109,168

29 7360 7360 720 720 304 304 304

30 114,608 11,696 12,192 12,480 10,016 9216 12,496

31 108,480 67,312 56,368 79,472 67,760 74,736 74,752

32 41,328 10,432 4592 3840 4592 3840 3840

33 83,504 7840 8272 6224 8272 4784 4784

34 96,416 8560 8560 8480 8560 6688 6688

35 111,120 88,336 88,336 88,336 88,513 96,688 101,440

36 135,472 92,112 105,616 35,168 89,408 72,192 56,064

37 580,560 433,952 473,168 144,464 495,360 257,648 228,816

38 105,408 66,928 55,328 55,328 55,968 14,608 17,040

39 76,928 17,568 18,416 18,416 18,416 19,920 19,920

40 102,384 21,360 25,648 23,104 26,272 28,896 33,616

ferent sequence of{S0
k}, more linear constraints may cause

more cuts, and the reverse convex constraint is related to the
locations ofzk (or zk). In general, for the same tested problem,
the set{zk} in SA is not necessary to contain the set{zk} in
PA and|zk| is frequently greater than|zk|, where|zk| (|zk|) is
the number of{zk} ({zk}) (see Examples 1, 2, or Rec in Tables
II, III). Also, it may vary for the set{zk} in PA for different
numbers of processors (Tables II, III). Compared with SA, PA
will frequently decrease the number of cuts during the compu-
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FIG. 3. Speedup for 40 problems withm= 32, n = 16 on the DELTA.

tation resulting in a lower number of newly generated vertices,
even for PA with single processor. In addition, the vertices
created by cuts can be computed in parallel for PA. Thus,
PA is much more efficient than SA. Moreover, observing the
variation of the set{zk} in PA, speedups greater than the
number of processors can be expected in some test problems
(Tables II, III, IV, V). Notice that with the same total number
of generated vertices, PA with single processor is slower than
SA because the former has to find then adjacent vertices and
do pivoting and edge searching for each adjacent vertex (cf. 1
in Table II and 6, 29 in Tables IV, V). However, Tables II, III,
IV, V show that the number of new vertices produced by cuts
for PA with single processor is frequently much lower than
that created in SA. Therefore, it is expected that the efficiency
of SA can be much improved in most test problems if SA
takes additional time to execute the edge searching procedure
as PA.

The notations employed in Tables II, III are as follows:

N:
m:
n:
RCC:

Rec:

Vmax:
Vtotal:

number of processors
number of constraints inAx ≤ b
number of variables
type of Reverse Convex Constraint described in

Section 6.1
number of polyhedraS0

k constructed,
k = 0, 1, 2, . . .

maximal number of vertices stored
total number of vertices generated by cuts

(not includingV(S0
k ), k = 0, 1, 2, . . .).

The parallel algorithm introduced in this paper is a syn-
chronous parallel procedure since the subsequent step will not
be executed until completing the computation of the previ-
ous step. For example, in Phase I, if one wants to do Step
2, one has to finish Step 1 and obtainzk, the minimum of
zk

i , i = 1, . . . , n. Here, various numbers of processorsp (≤n)

are used to solve the (LRCP) problem for parallel algorithm.
From the computational results, we know that a high efficiency
may be achieved if a suitable number of processors are cho-
sen. In fact, in some problems, using more processors may not
be realistic because many processors may be idle during the
computation and more processors cause more communication
overhead. Finally, since the memory required to store the list
of vertex increases rapidly withn, the size of problem is re-
stricted. Although CFS (Concurrent File System) can be used
for the larger size of problem, it requires an inordinately long
time to complete read/write processes.

7. CONCLUSION

In this paper, a new parallel algorithm has been proposed to
solve the problem (LRCP) that can be efficiently implemented
on a massive parallel computer DELTA. We have tested two
sets of randomly generated test problems. For the first set, we
emphasized problems of different sizes; for the other set, we
concentrated on problems of the same size (m= 32, n = 16).

In the algorithm presented here, the calculation of produc-
ing new vertices is the most expensive part. However, this
computation is distributed over all processors and saves a con-
siderable amount of time although it requires the communi-
cation. By comparing it with the serial algorithm, we have
achieved computational results (Tables II, III, IV, V) that show
the parallel algorithm for different numbers of processors is
more efficient, with even a superlinear speedup for some tested
problems. As mentioned in the preceding section, greater than
linear speedup is caused by different choices in the search
process, but there is no method to predict them. The numeri-
cal experiments show that the PA for 1-processor case seems to
have better performance than the SA in most tested problems.
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