ON THE PARALLEL AND
VLSI IMPLEMENTATION OF
THE INTERIOR POINT ALGORITHMS

M. Mesbahi*
Jet Propulsion Laboratory
California Institute of Technology

G. P. Papavassilopoulosfand V. K. Prasanna*
University of Southern California
Department of EE-Systems

Abstract

We discuss several aspects of the parallel and the VLST implementa-
tion of the interior point algorithms for solving the linear programming
problem. Various architectures, based on the different partitioning of
the input data, are proposed and the complexity of these implemen-
tations are discussed. An economic interpretation of a partitioning
scheme is then presented which might prove useful for the further im-
provements in the efficient parallelization of the interior point methods.

Keywords: Interior Point Methods; Linear Programming; Parallel Com-
puting; VLSI

1 Introduction

We consider certain issues pertaining to the parallel and the VLSI imple-
mentation of the interior point methods (ipms) for solving the linear pro-

*Corresponding author; E-mail: mesbahi@hafez.jpl.nasa.gov; address: 4800 Oak Grove
Dr., M/S: 198-326; Pasadena, CA 91109-8099

'E-mail: yorgos@bode.usc.edu; address: 3740 McClintock Ave., Los Angeles, CA
90089-2563.

{E-mail:prasanna@halcyon.usc.edu; address: 3740 McClintock Ave., Los Angeles, CA
90089-2562.

gramming problem (LP):

min ¢’z (1.1)
subject to: Az = b, (1.2)
x>0, (1.3)

where the matrix A € R™*" is of full row rank (m < n). LP is one of the
most important problems in the optimization theory. This is mainly due to
the wide array of problems in operations research and combinatorial opti-
mization which can be formulated as an LP. Moreover, solving an LP comes
up as a “subroutine” in several algorithms proposed for solving nonlinear
programming problems. Indeed, fast LP solvers are of immense importance
in the development of fast computational procedures for many optimization
problems.

The simplex algorithm, developed by Dantzig [5] more than forty years
ago, is still a widely used algorithm for solving LPs. Two other methods
for solving LPs include the Ellipsoid algorithm due to Khachian [10] and
the interior point method, originated by the paper of Karmarkar [9]. Both
methods were developed in the search of polynomiality of the worst case
running time, a property which is absent in the case of the simplex algorithm.
The Ellipsoid method has not yielded an efficient algorithm in practice,
where as, it is now clear, that the Karmarkar’s algorithm can be made
to be very efficient in practice, especially when the problem size increases
above some thousands of variables. Motivated by the work of Karmarkar,
many interior point algorithms, most of which differ significantly from that
of Karmarkar’s, have been proposed for solving LPs and the more general
nonlinear convex programming problems [14]. We shall focus on a variant
of ipms, known as the affine scaling algorithm (ASA) and discuss various
issues pertaining to its parallel and VLSI implementation. The ASA is one
of the simplest version of the family of ipms that readily brings out the main
computational tasks involved in the more general ipms.

Related to the present note are the works of Bertossi and Bonuccelli [2],
Lustig et al. [13], and Saltzman et al. [16]. In [2] a VLSI implementation
of the simplex algorithm was presented on a O(mnlogmlog®n) chip (in
the bit model) using the mesh-of-trees architecture. In [13] and [16] the
dual affine version of the ipm was studied, where the authors concentrate
on parallelization of the cholesky factorization for solving the positive semi-
definite system of linear equation that comes up at each iteration of most
LP interior point solvers.

The organization of the paper is as follows. We shall first describe the

affine scaling algorithm (ASA). The VLSI implementation of the ASA is then
presented on the mesh-of-trees (MOT) architecture, along with the corre-
sponding complexity analysis. Implementation of the ASA is then discussed
on O(m) processors, in addition to some economic interpretation of the be-
havior of this implementation. The conclusion contains some suggestions
along which this work can be continued.

2 Algorithm and Implementation

We shall present the ASA variant of the ipms, along with various architec-
tures that can be employed for its parallel implementation. First we discuss
the case where O(mn) processors are available. The mesh-of-trees architec-
ture (MOT) [18] has been employed in this context. We also discuss the
case where O(m) processors are available. Finally we proceed to provide an
economic insight for the behavior of the proposed parallel scheme.

The algorithm (ASA) which will be implemented in this paper can be
described as follows. We shall assume that an initial point 2! > 0 is avail-
able such that Aaz! > b. For k > 1, the algorithm proceeds as below:

The Affine Scaling Algorithm (ASA)

1. Construct the diagonal matrix D from the components of z*, such
that D™'z% = e = (1,1,...,1).

2. Compute the projection PDc by solving for y in the equation:
AD*ATy = AD%c (2.1)
and letting,

PDc= Dc— DAYy (2.2)

3. Determine the number 5 such that e — $PDc has a zero component.
4. Reduce 5 by a factor a (usually taken to be 0.96) and call it s (s = a3).
5. Let z*t1 = 2% — sDPDe.

6. Let k =k + 1 and go to Step 1.

Figure 1: A 2x4 Mesh of Trees

2.1 Implementation on O(mn) Processing Elements

In this section we present an implementation of the ASA described above.
The architecture that is employed is the mesh-of-trees (MOT), which has
certain important features such as an O(logn) diameter. It has been known
that MOT is a powerful configuration for implementing various basic op-
erations like sorting, Jacobi iteration, vector-matrix multiplication, etc.,
in O(logn) time [12]. What is novel about our implementation is that it
demonstrates the suitability of the MOT architecture for the sequence of
basic operations involved in the ASA.

For the purpose of this paper we shall assume that real-valued messages
can be transferred between the processing elements. One can get around
this assumption by working with finite precision arithmetic which can be
chosen in advance for an instance of LP [9], [15]. We shall also assume,
without loss of generality, that both m and n are powers of two.

Consider an m x n MOT corresponding to the constraint matrix A €
R™*"™. A 2 x4 MOT is shown in Figure 1. For ease of referencing, we will
use the following notations. A; and A; will denote the ¢-th row and the
7-th column of the matrix A, respectively. For referencing the nodes of the
MOT we define the following sets. Let RS(j) denote the set of nodes which
are the roots at level j in column ¢. Similarly let R}(j) denote the set of
nodes which are the roots at level j in row ¢. By this notation all the leaf
nodes in row ¢ belong to R}(0) and all leaf nodes in column ¢ belong to
R$(0). The i-th row root is the only element in R} (logn) and similarly the

i-th column root is the only element in R{(logm). We note that, for all ¢,
the cardinality of the set R%(j) is n/2?, and that of R$(j) is m/2/.

Let us now present the implementation of the ASA on an m x n MOT.
Initially, =¥, its inverse d¥, and ¢; are stored in R¢(logm) (the i-th column
root). Then d; is sent down to the i-th column leaves R$(0). This will
take O(logm) time. To find the projection (AD)(AD)T and AD?c one
proceeds as follows. At the beginning of the step, we have (AD);; stored
in R(0) N R5(0). We proceed to form (AD?AT); on RI(logn/m). Since
(AD?AT);; is found by (AD); (AD)F, one can simply squares the entries
and sum the square in O(logn). For (AD?AT);;, i # j, one can sum along
the 7-th column in O(log m) time and then sum all the corresponding term in
O(log n) time. If one uses the fact that AD? AT is symmetric a more efficient
algorithm can be found (although not asymptotically better). Similarly
AD?c can be found and be stored in R (logn).

Now the product cidf-“, which is originally stored in Rf(logm) is sent
down the i-th column leaf nodes in O(logm) time. Summing along the row
roots we obtain (AD?c); at R7(logn) in O(logn) time.

We have now obtained the system of linear equations (AD?AT) = AD?c
in O(logn) time and placed them on an m X m subset of the original m x n
MOT. It can be verified that the diameter of this new subset is O(logn).
Now we proceed to solve the system AD?ATy = AD?c in O(m) + O(logn)
by using Gaussian elimination followed by back-substitution using pipelining
[12]. We also note that since AD?A7T is positive definite symmetric matrix,
no pivoting strategy is necessary for the LU decomposition. After O(m) +
O(logn) steps, y; will be stored in R} (logn).

Having found y € R™ in O(m) 4+ O(logn) time and place it such that
y; is in R7(logn), we find (AD)Ty in O(logn) steps by sending down y; to
the i-th leaf nodes in O(logn) and then sum the entries in the ¢-th column
along the i-th column tree in O(logm) time. Subsequently, after O(logn)
steps , the i-th column root R$(logm) having access to d;c; and ((AD)T);
can obtain PDec;.

The next step involves determining § such that e — §(PDc) has a zero
component. Therefore on can obtain § = min; 1/(PDc); in O(logn) time
using the fact that sorting on MOT can be done in O(logn) time. Having
found §, each column root calculates s = as, where a can be taken to be
0.96. Then each column root performs the iteration xf-“"'l = 2 — sd;(PDc);
in time O(1).

From the above discussion the total running time for each iteration of

the ASA is found to be O(m)+ O(logn) using the O(mn) PEs of the m x n

MOT. An examination of the serial algorithm, assuming that only con-
ventional algorithms are available for matrix multiplication (i.e. those re-
quiring O(n?) arithmetic operations), shows that the serial running time is
O(m?*n) + O(n?). Therefore, the efficiency is ©(1) and our implementation
is asymptotically cost-optimal.

In view of the fact that the computational efficiency of each iteration of
the ASA is determined by the efficiency of solving the equation (2.1), which
is a system of m equations in m unknowns, it seemed natural to implement
the algorithm on an m x m MOT, using block partitioning schemes. Since
the implementation is similar to that described above we do not present the
details in the present paper.

2.2 Implementation on O(m) PEs

It is not always realistic or feasible to assume having access to an O(mn)
PEs, especially when the size of the problem is very large. In this case,
one might consider a partitioning of the constraint matrix A among O(m)
PEs using row partitioning, or O(n) PEs using column partitioning. In this
section we consider this issue for the implementation of the ASA on O(m)
processors. This discussion also provides a framework for implementing
the algorithm on O(n) PEs by applying the same scheme to the dual of the
original LP, which has the transpose of the original matrix A as its constraint
matrix.

We consider the row partitioning of the constraint matrix among m
processors. Extensions to the block-row partitioning of the constraint matrix
A on the m/k processors, for some positive divisor k of m, will also be evident
from this discussion.

Consider the constraint matrix A € R™*"™, and suppose that A; is known
by the processor P;. P; also has in its memory, a copy of the current fea-
sible solution and a copy of the vector ¢. At each iteration the parallel
algorithm proceeds as follows: Having access to (AD);, P; would like to
calculate (AD2AT);. First, all processors calculate (AD2AT); which re-
quires no communication and takes O(n) computations. Next, in order to
find (ADQAT)U, t # j, the contents of row j have to be communicated to
P;. To find this inner product, one cannot really do better than sending the
vector (AD);., due to a result of Abelson [1]. To find this inner product for
all 7, we require an all-to-all broadcast of n values, which takes O(mn) on a
ring, mesh or hypercube architectures [11].

Having found (AD?AT); in O(mn) steps and stored it in P; we proceed
to find (AD?c);. This can be done locally at each P; with O(n) arithmetic

PL | [row 1 of AD) .

—_— e e —

—_— e e —

—_— e e e e D e e e e = = a

Pn ! (rownofAD)@

—_— e e —

Figure 2: Distribution of the input and y;’s

operations. At this stage, the system of m equations in m unknowns can
be solved which has been row partitioned. This system has a positive defi-
nite, symmetric coefficient matrix and therefore can be solved using LU or
cholesky factorization without requiring any pivoting strategy. This can be
done in O(n?) time by pipelining the computation and communication on
the linear array of processors. Since the linear array can be embedded in
a mesh or a hypercube, similar time bounds can also be achieved on these
architectures [11].

At the end of the previous stage of the algorithm, the distribution of data
can be depicted as in Figure 2. We now proceed to compute the projection
PDc = Dec — DAYy = De — (AD)Ty. As shown in Figure 2, this step is
equivalent to the vector-matrix multiplication problem with a columns par-
titioned among the processors (it is rather interesting that we started with
a row partitioning and ended up with column partitioning; the reverse situ-
ation also holds). Using multi-node accumulation of the n/m blocks, taking
O(n) time on the linear array, mesh or hypercube, each P; ends up with a
block of size n/m of the vector (AD)Ty. Since each P; has access to De,
PDc can be found in O(n/m) time with no inter-processor communication.
To find the minimum of (P Dc); (among the positive components only), each
P; finds the minimum in its own block (in time O((n/m)log(n/m)) using
for example merge sort) and then compares the block minimums with the
minimum of the other blocks by employing an all-to-all broadcast in O(m)
time. The complete process takes O(n) time. Having § and subsequently s,
each block of z* of size n/m is then updated. At the end of the iteration an
all-to-all broadcast of n/m blocks puts us back to where we started at the

beginning of the iteration. The total running time of the algorithm on linear
array, and subsequently on mesh and hypercube can therefore be bounded
by O(n?). Since m processors are used, this parallel implementation is also
cost-optimal.

2.3 An Economic Interpretation

The origins of LP are problems in the production planning and management
sciences [5], [7], [8]. There are various economic interpretations of the be-
havior of the simplex algorithm and terms such as “prices” and “marginal
profits” are common in the LP literature. Motivated by the ideas related
to decomposition principle of Dantzig and Wolfe [4], [6], we now discuss an
economic interpretation of the behavior of the parallel version of the ASA
on the O(m) processors discussed earlier.

Let us consider the i-th processor, P;, as the coordinator of a subdivi-
sion of a multi-divisional corporation. P; only has knowledge of one of the
corporate constraints A; (by a constraint we have in mind something like
a minimum production level to keep the overall corporation running, or the
maximum expenditure allowed on any given day). Each component z; can
be considered as the production level of the item ¢, and the corresponding
component of the vector ¢, i.e., ¢;, can be considered as the cost (in which
case we want to minimize) or profit (in which case we want to maximize)
of producing one unit of the item <. Fach of the coordinators can suggest a
production level by examining his/her own constraint. But since there are
m — 1 more constraints on the problem, which an individual coordinator
has no knowledge of, each coordinator has to take into account the other
coordinators’ constraints by “projecting” his/her decision on the set defined
by the others.

More specifically, consider an iteration of the parallel implementation of
the ASA. Starting from the current production level z*, each coordinator
initially scales the constraint set by the current production level. Then
through a tele-conference, each coordinator suggests a change of policy in the
direction of his/her own constraint vector. How this suggestion is used in the
final “corporate” decision depends on the weight y; which each coordinator
attaches to his/her suggestion. This corresponds to the equation (2.2). To
come up with the weight y;, the coordinator P; not only relies on his/her
own constraint AD; , but also on the other coordinators constraints AD; ,
A

At the end of the tele-conference between the coordinators, a mutually
agreed upon direction of change is found and each division updates the

corresponding production level. Finally, the tele-conference is terminated
when an optimal production level is reached.

3 Conclusion

We have presented various issues pertaining to the parallel and VLSI im-
plementation of the affine scaling version of the interior point methods for
solving the linear programming problem. Implementation of the algorithm
on the mesh-of-trees architecture with O(mn) processors was described. We
also discussed the problem of decomposition along the rows of the constraint
matrix and the efficiency of this implementation. An economic interpreta-
tion of the behavior of the parallel version of the interior point method was
also presented which might be useful for designing more eflicient parallel LP
solvers.

There are several directions along which this work can be continued.
One promising direction is to employ iterative methods for solving the lin-
ear system of equations (2.1) and their efficient parallel implementation on

the VLSL
Acknowledgments

The research of M. Mesbahi was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the Na-
tional Aeronautic and Space Administration. The research of G. P. Pa-
pavassilopoulos was supported in part by the National Science Foundation
under Grant CCR-9222734.

Biographies

M. Mesbahi obtained his Ph.D. from USC’s Department of EE-Systems in
July of 1996. Since then, he has been with the Jet Propulsion Laboratory,
California Institute of Technology. His research interests are system and
control theory, spacecraft dynamics, optimization theory and algorithms,
and parallel computation.

G. P. Papavassilopoulos is a Professor of Electrical Engineering in the De-
partment of EE-Systems at USC. His research interests include control the-
ory, optimization theory and algorithms, and game theory.

V. K. Prasanna (V. K. Prasanna Kumar) is a Professor of Electrical En-
gineering in the Department of EE-Systems at USC and serves as the Di-
rector of the Computer Engineering Division. His research interests include

parallel computation, computer architecture, VLSI computations, and high
performance computing for signal and image processing, and vision. Dr.
Prasanna is a Fellow of the IEEE.

References

[1]

[2]

[8]

[9]

[10]

[11]

H. Abelson, “Lower Bounds on Information Transfer in Distributed
Computations,” Journal of ACM, 27 (2), 384-392, 1980.

A. A. Bertossi, M. A. Bonuccelli, “A VLSI Implementation of the Sim-
plex Algorithm,” IEEE Transactions on Computers, C-36 (2), 1987,
241-247.

D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Computation,
(Englewood Cliffs, New Jersey: Prentice Hall, 1989).

V. Chvatal, Linear Programming, (New York: Freeeman, 1983).

G. B. Dantzig, Linear Programming and Eztensions, (Princeton, New
Jersey: Princeton University Press, 1963).

G. B. Dantzig, P. Wolfe, “Decomposition Principle for Linear Pro-
grams,” Operations Research, 8, 1960, 101-111.

J. H. Greene, K. Chatto, C. R. Hicks and C. B. Cox, “Linear Program-
ming in the Packing Industry,” Journal of Industrial Engineering, 10,
364-372, 1959.

L. V. Kantrovich, “Mathematical Methods in Organization and Plan-
ning of Production,” Management Science, 6, 366-422, 1960.

N. Karmarkar, “A New Polynomial-Time Algorithm for Linear Pro-
gramming,” Combinatorica, 4, 373-395, 1984.

L. G. Khachian, “A polynomial algorithm in Linear Programming,”
Soviet Mathematics Doklady, 20, 191-194, 1979.

V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Par-
allel Computing, (Redwood City, California: The Benjamin-Cummings
Publishing Co, Inc., 1994).

10

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes, (San Mateo, California: Kaufmann, 1992).

I. J. Lustig, R. E. Marsten, D. F. Shanno, “The Interaction of Algo-
rithms and Architectures for Interior Point Methods,” in Advances in

Optimization and Parallel Computing, P.M. Pardalos (editor), (New
York: North-Holland, 1992).

Y. Nesterov, A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convexr Programming, (Philadelphia: SIAM, 1994).

C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization, (Engle-
wood Cliffs, New Jersey: Prentice Hall, 1982).

M. J. Saltzman, R. Subramanian and R. E. Marsten, “Implementing an
Interior Point LP Algorithm on a Supercomputer,” in Impacts of Recent
Computer Advances on Operations Research, R. Sharda, B. Golden, E.
Wasil, O. Balci, W. Stewart (editors), (New York: Elsevier Science,
1989).

G. Strang, Linear Algebra and its Applications, (San Diego, California:
Harcourt Brace Jovanovich, 1988).

J. Ullman, Computational Aspects of VLSI, (Rockville, Maryland:
Computer Science Press, 1984).

11

