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We consider the problem of approximating the maximum of the sum of m Lipschitz
continuous functions. The values of each function are assumed to reside at a different
memory element. A single processing element is designated to approximate the value
of the maximum of the sum of these functions by adopting a certain protocol. Under
certain assumptions on the class of permissible protocols, we obtain the minimum
number of real-valued messages that has to be transferred between the processing
element and the memory elements in order to find the desired approximation of this
maximum. In particular, we exploit the optimality of the nonadaptive protocols for
the Lipschitzian optimization problem, studied in the context of information-based
complexity, to prove our main result.  © 2000 Academic Press
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1. INTRODUCTION

Five people are each given a number between 1 and 100. A questioner
comes along and wants to figure out the sum of these five numbers by
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asking each person questions of the type: “Is your number greater than or
equal to x?,” for some integer x. In return, the questioner expects to receive
a “yes” or a “no” response from the participant. The questioner has been
told by an informer that the sum of the numbers held by the participants
does not exceed 100. Suppose that the questioner asks the first person
whether the number held by him or her is greater than or equal to 75 and
receives in return a “yes” answer. Knowing that the total sum is not greater
than or equal to 100, it would not be wise for the questioner to ask the
second person “Is your number greater than or equal to 75?” since the reply
is definitely a “no.” In fact, the questioner can use the previous responses
to formulate the question for the next person in some intelligent manner.
In a sense, the questioner can adapt the next question by incorporating the
answers for the previous questions in its formulation.

It is also conceivable that the questioner first figures out the exact
number that each person has, without considering other people’s numbers,
and then sums them up. In this case, the total number of questions that the
questioner has to ask would just be five times the number of questions
needed to figure out one person’s number. In fact one might suspect that
the questioner cannot really do better than this, in terms of the minimizing
the total number of questions asked, at least in the worst case.

In this paper we consider a similar problem. There are m function storage
devices, or memory elements, storing the values of the functions fi, ..., f,,,
and each function is known to be in the class of Lipschitz continuous func-
tions with modulus k; the class of such functions will be denoted by F,.
There is a processing element which is designated to approximate the value
of z:=max, >, f;(x) by asking each memory element about the value of
the function residing in that memory element, at a given point. We are
interested to know, under the above restrictions, the minimum number of
questions that the processing element has to ask the memory elements, in
order to be able to approximate the value of z within an accuracy 0 <g <1,
for all possible f; € Fi(j=1, .., m). Although in this case, the processing
element cannot find z by figuring out the maximum of each function f;
(j=1,..,m) separately, our result indicates that in terms of the total
number of questions needed to be asked from the memory elements, the
processing element cannot do any better than this, at least in the worst
case. The minimum number of questions needed to approximate the maxi-
mum of the sum of functions in F, as described above, shall be referred to
as the communication complexity of the k-Lipschitzian optimization for the
coordinated model of computation.

The problem of determining the communication complexity is important
in several settings. First, is the area of parallel and distributed computation
(Bertsekas and Tsitsiklis, 1989; Hwang, 1994). In this setting, one can
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consider the processors as having partial information regarding the computa-
tional task at a given time, and hence they communicate among themselves
in order to solve the problem in a distributed manner. It is believed that
the amount of communication needed to complete the computation in the
distributed manner is one of the main factors that determine the efficiency
of the parallelism employed (Gentleman, 1978; Saad 1986). The com-
munication requirements become very important in the context of very
large integrated circuits (VLSI) (Aho et al.,, 1983; Ullman, 1984). In parti-
cular, it is known that the number of bits that is needed to be exchanged
between the different parts of the chip is related to the product of the area
of the chip and the computation time (Ullman, 1984).

The issue of communication complexity is also of relevance in the setting
of distributed data acquisition and control. In this case, one can consider
the processing element as the controller which has access to the state of the
environment through two or more sensors. The sensors, due to their limited
computational power can only send functionals of the state of the environment
upon receiving a correspondence from the controller. If the communication
among the controller and the sensors is costly (for example due to the conges-
tion of the network), the issue of communication complexity becomes
important.

In this paper, we will show that for the Lipschitzian optimization problem,
the methodology developed in the context of information-based complexity
can be extended to the coordinated model of computation. This will be done
mainly by utilizing the results pertaining to the optimality of the nonadaptive
protocols for the case where there is a single pair of processing and memory
elements.

The organization of the paper is as follows. We first provide a very brief
survey of the works that have been done in the area of communication
complexity. In Section 2, we provide the minimum amount of notation and
preliminaries which enables us to state, more formally, the problem and the
main result discussed in the paper. Section 3 is devoted to the proof of the
main result.

1.1. Related Works

The study of communication complexity was initiated by Abelson (1980)
where functions of the form f2 R™xR*— R, fe C? (the class of twice
continuously differentiable functions) were studied. In this setting, x € R”
and yeR" are known by different processors, and each processor can
transmit functions of their data which are also assumed to be in C? The
communication complexity is defined to be the minimum number of messages
that has to be exchanged between the processors in order to exactly evaluate
f(x, y). It should be noted that functions considered by Abelson (1980) have a
very special structure; namely, it is assumed that there exists a communication
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protocol which can be employed by the processors in order to obtain the
exact value of f(x, y). The work that has been done in the spirit of Abelson
(1980) includes that of Luo and Tsitsiklis (1991).

Another stream of work on the communication complexity was initiated
by the work of Yao (1979). This line of work is concerned with obtaining
the communication complexity of evaluating a Boolean function f{(x, y),
where /2 Xx Y — {0,1}, and X and Y are finite sets. It is assumed that
xe X and y e Y are known by two different processors. The communication
complexity is then defined to be the minimum number of bits that has to
be exchanged between the processors in order to exactly evaluate f(x, y),
for all possible values of xe X and ye Y. In this setting, X and Y have a
simple structure and the communication complexity, in essence, is an
indication of the behavior of f on the lattice X' x Y. We refer the reader to
the survey of Orlitsky and El Gamal (1988) for a summary of this approach
and many possible extensions.

More closely related to the approach of the present paper is the work done
in the area of information-based complexity (Traub et al., 1988; Nemirovsky
and Yudin, 1983), and in particular the work of Sukharev (1992). This line
of work is concerned with the efficiency of algorithms for problems defined
on the infinite-dimensional spaces, such as the function integration problem,
approximation, and optimization. In this context, the processing element can
obtain the values of the function (a member of an infinite-dimensional space)
through an oracle. In general, for these problems only approximate solutions
can be obtained. Therefore there is a presence of the parameter ¢ in all the
complexity results. It turns out that in many situations, the cost of the oracle
calls dominates the cost of the entire algorithm. One is thus led to consider
the communication complexity, i.e., the minimum number of oracle calls
needed by the algorithm in order to be able to approximate the solution
(the minimizer, the value of the integral, etc.) within an error ¢. The work
of Sukharev (1992) is concerned with the same issue, but his approach
relies more heavily on the minimax models and various notions of adaptive
algorithms. In fact in the introduction of Sukharev (1992) it is stated that
the main feature of the work is that “the process of computation has been
regarded as a controlled process and the algorithm as a control strategy.”
Consequently, the optimal algorithms are obtained by employing methods
of operations research, game theory, and system analysis.

2. PRELIMINARIES AND THE MAIN RESULT

In this section, we provide certain notions which enable us to state the
problem considered in the paper more formally. We then state the main
result.
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FIG. 1. The coordinated model of computation.

We consider a model of computation, referred to as the coordinated
model of computation, where a single processing element (PE) is connected
to m memory elements (MEs) via m dedicated channels. This model is
shown in Fig. 1.

Each memory element ME; has access to the value of the Lipschitz con-
tinuous function f; (j=1, ..., m), with Lipschitz modulus k, at an arbitrary
point of its domain. Let us denote by F) the class of Lipschitz continuous
functions with constant k, defined on the p-dimensional unit cube [0, 1]”.
The value of f; at the point x will be denoted by x(f;), j=1, .., m. The PE
is allowed to specify x to each ME in an arbitrary manner and receive in
return the value x(f;) with infinite precision. The operation of specifying x
by the PE and receiving the value x(f;) from the ME; is counted as one
communication operation. The objective of the PE is to approximate

m

z:= max Zf, (2.1)

xe[0.177

within an accuracy 0 <e< 1. Let us denote the total information gathered
by the PE after n such information gathering operations by I"; ie., I"
contains the values of different f;’s at various points of the domain [0, 1]"
The PE then applies a functional § to I" and comes up with an estimate
of z (2.1). We shall refer to f as the terminal operation. The process of
gathering the information I”, and applying the terminal operation f, will be
referred to as the communication protocol.

Under the aforementioned restrictions on the communication protocol,
let us define the communication complexity of the k-Lipschitzian optimiza-
tion for the coordinated model of computation (with m memory elements)
as

A,(e, k) :={min n: | f(I") — z| <&, Vf € F}. (2.2)
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The communication complexity 4,,(¢, k) is the minimum number of
question—answer sessions that the PE needs to conduct in order to come up
with an 0 <e <1 approximation of maxpy ;3 2.7~ f;. The PE comes up
with this approximation by applying f to the information gathered during
the n operations of the form x( fj) Moreover, the approximation should be
valid for all possible f; e F, (j=1, .., m).

The main result of the paper can now be stated as follows.

THEOREM 1. For the k-Lipschitzian optimization and for 0 <e <1,
A&, k)=m A,(e, mk). (2.3)

In the rest of the paper, we shall present the proof of Theorem 1. First
however, we need some more preliminaries.

2.1. More Preliminaries

Consider the PE-ME’s configuration shown in Fig. 1. We assume that
f;: 10,117 >R, f; € F;, and that ME; has access to the values of f; at any
point xe [0, 1]#, which will be denoted by x(f;) (j=1,..,m). As it is
customary in (elementary) functional analysis, we think of x both as a
point in [0, 1]? and as a functional on F;, where

={/1 00,117 >R, | f(x) = f(»] <k |x—p[, ¥x, ye [0, 117},
(2.4)

and ||-|| denotes the infinity (supremum) norm. Each of the m channels
shown in Fig. 1, between the PE and the MEs, can carry a real number,
x(f;), in response to the x submitted by the PE to the ME,. The point
submitted to the ME; at time i will be denoted by x;( ;).

Let I"= (X1, wr X, X1(fi))s s Xu(fi ), Where {ky, .k, S{1, ., mp"
The PE can stop the information gathering process at time n and apply the
terminal operation /5 to I”, in order to approximate z (2.1). The basic ques-
tion considered in the present work is the minimal value of n, as a function
of 0<e<1, such that for all possible choices of f;eF, (j=1,..,m),
|BUM —z| <e.

In order for the PE to come up with the point x; to be submitted to some
ME at time i, it employs the previously gathered information by using some
strategy. Let us denote by ¥, the strategy employed by the PE at time i to come
up with the new point x; that is to be submitted to some ME.

The (n+1) tuple & := (%, .., %,, f) will be called an nth degree (deter-
ministic) protocol for approximating z (2.1). The protocol &" can in fact be
described by the following sequence of mappings and functionals,
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X=x1F, - R; x;€[0,1]2,
%,:[0,1]17xR—[0,1]7  (which yields x,);  x,: Fp —> R,

n—1

n—l'
— —" ~ —/
X,0[0,1]P% -+« x[0,1]?xRKRx --- xR—>[0,1]” (which yields x,,);

anFk—>ﬂ{,
_ —" ~ ——/
L:[0,1]7%x -« X[0, 1]PXRx -+ xR->NR.

Note that in general, the PE uses all the previous points chosen, and all
the corresponding function values at those points, to come up with the new
point.

If the new point to be submitted to the ME; is independent of the previous
questions, for all j=1, .., m and for all time instances i > 1, then we call the
protocol (strongly) nonadaptive. In this case, ¥; = x; F, > R, for all i > 1.

For the nonadaptive protocols, since the point x; submitted to the ME;
solely depends on Fy, it follows that the same point should also be chosen
for all j (j=1, .., m) and that the number of points specified for all MEs
should be equal. Without loss of generality, for the nonadaptive case, we
shall assume that the points are submitted to the MEs by the PE in the
round-robin manner; i.e., the MEs are indexed from 1 through m, and the
points are submitted to the MEs starting from ME, through ME,,, and
then back to ME,, and so on. For the nonadaptive protocols, let / denote
the number of points specified to each one of the MEs; n =ml. The judicious
choice of the terminal operation in the nonadaptive case would be

m

B(I")= max Y Xiemy (L) (2.5)

k=0,..1-1 /7

For our purpose, the role played by the nonadaptive protocols is of
central importance; the results pertaining to the nonadaptive protocols are
easily extendible from m =1 to the case where m > 1, as will be shown in
the next section.

Let A" and A” denote the class of nth degree adaptive and nonadaptive
protocols, respectively. Then for a specific set of f1, ..., f,, € F, residing at
ME; (j=1,..,m), the error associated with using the protocol &" to
approximate z (2.1) is defined to be

e(a”, k, fiy o frn) i=1z—pUI™)|. (2.6)
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The least guaranteed error for the class of nth degree adaptive protocols for
the k-Lipschitzian optimization will then be

E2%aptve(p ) := inf sup ek, f1y s fon) (2.7)

GNe A fi, s frneFy

and for the nonadaptive case it will be

Erovadaptive(y oy — inf  sup  e(3% K, fis s fon): (2.8)

ate A" fi, .., f,€Fy

Although E232ptive(p, ) < Enonadaptive(y ) by definition (since A" < A™), we
shall nevertheless use the following notation:

E,.(n, k) :=min{ ERoradartive(py [ padaptive(p fo)}, (2.9)
Clearly the only interesting scenario would be when
E,(n, k) = Enonadaptive(y fo),
which is the case if and only if ERoradaptive(p f) = padaptive(y f)

We now define similar definitions for the communication complexity of
the k-Lipschitzian optimization. In particular, let us define the following:

A';xndaptive(g’ k) = min{n: E':IndaptiVe(n, k) < g}’ (210)
A;onadaptive(e’ k) = min{n: E?nonadaptive(n’ k) < 8}, (21 ])

and,
A (e, k) :=min{n: E,(n, k) <e}. (212)

Our approach for proving Theorem 1 is along the proofs of the following
two propositions.

PROPOSITION 2.
A;onadaptive(g’ k) ZWIAI(S, mk) (213)
PROPOSITION 3.

A;onadaptive(g, k)y=4,,(¢ k). (2.14)
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Theorem 1 will then follow by combining the statements of Propositions
2 and 3.

3. THE PROOF OF THE MAIN RESULT

In this section, we present the proofs of Propositions 2 and 3. The state-
ment of Theorem 1 then follows immediately from the results of these two
propositions.

Proposition 2 deals with the problem of extending the result pertaining
to the communication complexity for m =1 to the case of m>1. When
m=1, the coordinated model of computation shown in Fig. 1 reduces to
the oracle-type machine considered in the context of information-based
complexity.

The following result of Sukharev (1992) plays a central role in our
analysis. We remind the reader that we are dealing only with the Lipschitzian
optimization problem.

THEOREM 4 (Sukharev (1992, Theorem 1.2, p. 125)). For all k>0,

. k
nonadaptive _ —
E7emtP(n, k) = E\(n, k)—m~
An obvious implication of Theorem 4 is that for all m > 1, and for fixed
k>0,

Eneradartive(y mpc) = E\(n, mk) = mE;(n, k).

As a corollary to Theorem 4 we also obtain

COROLLARY 5. For all k>0,

k

p
e )= ek =| (5|
&

We now present the proof of Proposition 2.

Proof (Proposition 2). As it was pointed out in Introduction, for the
nonadaptive protocols we shall fix the operation f, as defined in (2.5). In
this case, the points submitted to each ME; (j=1, .., m) by the PE depend
solely on the functional class F).

If we use the optimal nonadaptive protocol for the single ME case on all
the m MEs and use the terminal operation (2.5), we obtain a nonadaptive
protocol for the m ME case and thus,
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Ezonadaptive(n’ k) — E:lnonadaptive(ml’ k)
< Exllonadaptive( l, m k)

dapti
— mExllona aptlve(l, k),

since this protocol is now exactly an /th degree protocol for the single ME
case as applied to a function in F,,. Consequently,

. vo [ € i
A;onadapuve( g, k) < mA rllonadaptlve <’ k> =m Allmonadaptlve( e, mk)
m

Consider now a situation where the functions residing in the m MEs are
all identical and, moreover, where the PE is aware of this fact when sub-
mitting the questions to the MEs. The best achievable error bound in this
case would be E1eradaptive(] mj) indicating that this scenario is exactly the
same as the one where the PE is communicating with one ME, with the
knowledge that the function residing in that ME is a member of F,, ,.
Thereby,

inf sup e(@" k, fis . fp) = Inf sup e(&’, mk, f)
atedA" fi=fo=---=f,€F; gleal feF,,
— Etllonadaptive( l, m k)

< Exrzonadaptive(n’ k),
which translates to
mEllmonadaptive( 1’ k) < Ezonadaptive(n’ k)

Thus,
m Arllonadaptive <8’ k> =m Allionadaptive(g’ mk) < A;onadaptive(g’ k) I
m

Using Corollary 5, we also conclude that
Aronadaptive g joy — i A (e, mk).

We now present the proof of Proposition 3. Proposition 3 states that for
the k-Lipschitzian optimization on the coordinated model of computation,
the PE cannot do any better than using an optimal nonadaptive protocol
(in terms of reducing the amount of communication needed in the worst
case).
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Proof (Proposition 3). It suffices to show that for all n > 1,
E;onadaptive(n’ k) :E;Lndaptive(n, k)

The proof is essentially a straightforward generalization of the proof of
Sukharev for the single memory case. We present the proof in three steps.
First, some notations are introduced.

Consider a nonadaptive protocol with the fixed terminal operation defined
as in (2.5). Then the protocol is merely specified by the points x; submitted
to each PE. In particular, define x" :=(x,, ..., x,,) and write

Epmdetie(py k) =inf  sup  e(x", Ky f1 s fin)s

X" fis e Srn€Fy

where e(x", k, fi, .., f,») 1S the error of the approximation when the terminal
operation is fixed (similarly we shall use the notation e(X”, k, f, ..., f,.) for
the adaptive case).

Define the set

F(X", frs e J) = {15 s L) 15:(f7) = x,(f7); i= j mod m}

and

fla" fm)_ z e(xnﬂk’frlﬂ""f;n)'

(S5 s Si)) €F (X", f15 s Sy)

The three steps of the proof are as follows:

1. There exist functions f; (j<,j<m) such that ex(x", fi, .., f,,) >
ez (X", f1s e frn), for all f; € F.

2. Provided that (1) holds, ex(x", fi, .., f,,) has a generalized saddle
point, that is,

inf sup eﬂ(xna fl) e fm) - Sup infef"(xna f'la () fm)
X" fls e I Sis oo Sy X"

3. Provided that (2) holds, the statement of the Proposition is then
proved.

We provide the proof for each part.
1. Fix x" and let /=n/m. For f} € F; (1< j<m) define,

T (S, e § vt

5 s ]—1
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where f, =max(f, 0). Note that for each j,fjeFk, since if ge F,,, then
max(gs 0) Ekaa and # gEFk. NOW,

x(f)=0, 1<i<n, i=jmodm.
Thereby,
X" Ky [y s fr) = €(X" Ky Frs s fr) <€ (X", 0, ..., 0),
and consequently,
e (X", 1, fr) Sex(x",0, ..., 0)

for all ;e F, (1<j<m).

2. In general one has,

sup infez(x", f1, ..., frp) <Inf sup ex(X", f1, ccr fin)-
Fis o f %" X iy s fon

To show that the inequality also holds in the reverse direction, we observe
that,

sup  infez (X" fiy o fo) =i0f e (X" frs s fon)

S o Sy X" x"
= inf sup ef(-xna fl 5 eees fm)
X s s T

3. We now show that in view of (1) and (2) above,
E;onadaptive(n’ k) gE:‘:aPtive(}’l, k)
By the definition of e (x", f1, ..., f..), one has

Eroradaptive(py oy =inf  sup e z(X", f1, o frn)-
X" S1s s S

For any 0 >0, there exists fj‘.; (1 <j<m) such that

infe;(x", % f2)=Inf sup ez(X", fi, . frn) =0
X x" fl""’fm

= inf sup e(xn’ k, fl 5 evey fm) - 53
X" fls s
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which implies that for all x”,
er (X" f4, ., f2)=inf sup e(X", k, f1,r frn) —O
X Sy s fon

For any fixed adaptive protocol &" = (X", f), let xj be the realization of the
strategy X" for the particular functions f]‘.’ (1<j<n). Then,

sup €'(X% k, f1, . frn) = €2(X5, f, vy ffn)
1o T

=inf sup ex(x", f1, . frn) —O.
X S fon

Since &” = (%", f) and 0 >0 were arbitrary,

inf sup e(@" k, fi, .., f,,)=Inf sup e(x", k, fi, ... [n)
" Sl s S X" fls s Sn

Hence,
E;onadaptive(n, k) < E;!;:iaptive(n, k) I

Having proved Propositions 2 and 3, we now compare the equations
(2.13) and (2.14) and obtain,

Am(ga k) =m Al(gs Mk)a

which is the statement of Theorem 1.

As a corollary of Theorem 1, we also obtain an expression for the com-
munication complexity of the k-Lipschitzian optimization for the coordinated
model of computation.

COROLLARY 6. For 0<e<l,

ntebr=m] ()] a5

Proof. Since E,(n, k)=k/2| n'’? | by Theorem 4, A,(e, k) =T (k/2¢)".
The statement of the corollary now follows using Theorem 1. |i
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4. CONCLUSION

We have addressed the problem of determining the communication com-
plexity of Lipschitzian optimization for the coordinated model of computa-
tion. The main concept that has been exploited in this direction is the optimality
of a nonadaptive protocol among the class of all permissible protocols. This
result can be viewed as a generalization of the result of Sukharev for the
oracle-type machines considered traditionally in the context of information-
based complexity.

There are several directions along which this work can be continued. For
example, it would be of interest to consider the communication complexity
for more general distributed configurations, such as the case where more
than one processing element is present.
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