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A b s t r a c t  

We discuss an approach for solving the Bilinear Matrix Inequality (BMI) based on its con- 
nections with certain problems defined over matrix cones. These problems are, among others, 
the cone generalization of the linear programming (LP) and the linear complementarity problem 
(LCP) (referred to as the Cone-LP and the Cone-LCP, respectively). Specifically, we show that 
solving a given BMI is equivalent to examining the solution set of a suitably constructed Cone-LP 
or Cone-LCP. This approach facilitates our understanding of the geometry of the BMI and opens 
up new avenues for the development of the computational procedures for its solution. © 1997 
The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 

Keywords: Bilinear matrix inequalities; Linear complementarity problem over cones; Linear programming 
over cones; Robust control 

1.  I n t r o d u c t i o n  

The Bilinear Matrix Inequality (BMI) is considered to be the central problem in the 

field of robust control. The BMI feasibility problem is as follows: Given symmetric 

matrices H i j  c R p×p ( i  = 1 . . . . .  n, j = 1 . . . .  m ) ,  does there exist x E R '~, and y C R m, 
n m 

such that ~--]~i=l ~ j = l  x i Y j H i j  is positive definite. As it was shown by Safonov et al. [ 19] 

* Corresponding author. E-mail: mesbahi @hafez.jpl.nasa.gov. 
I Research supported in part by the National Science Foundation under Grant CCR-9222734. 
- E-mail: yorgos@bode.usc.edu. 

0025-5610/97/$17.00 @ 1997 The Mathematical Programming Society, Inc. 
Published by Elsevier Science B.V. 
PH S0025-5610(96)00086-X 



248 M. Mesbahi, G.P Papavassilopoulos/Mathematical Programming 77 (1997) 247-272 

it is possible to reduce a wide array of control synthesis problems, such as the fixed- 
order H °° control, /z/kin-synthesis, decentralized control, robust gain-scheduling, and 
simultaneous stabilization to a BMI. It is also known that the Linear Matrix Inequality 
(LMI) approach to control synthesis [3] is a special case of the BMI. Since the LMI 

is equivalent to the Semi-Definite Programming Problem (SDP), the BMI can also be 
considered as a generalization of the SDE It is therefore not surprising that the solution 

to the BMI is not only of central importance in the context of robust control [20], but 
also in its connections with the SDPs and the LMIs. 

The BMI can be reformulated as a nonconvex  programming problem. More specifi- 
cally, Safonov and Papavassilopoulos [20] have shown that the BMI feasibility problem 
is equivalent to checking whether the diameter of a certain convex set is greater than 

two. Since this is equivalent to a m ax i m i z a t i on  of a convex function subjected to a set of 
convex constraints (an NP-hard problem), no efficient algorithm is believed to exist for 
a general BMI. Moreover, Toker and IDzbay have recently shown that the BMI feasibility 
is an NP-hard problem by reducing the Subset-Sum problem to it [22]. 

The computational procedures which have been suggested for solving the BMI rely 
on a global optimization approach [5]. There are at least three issues which have to be 
addressed in connection with the BMI and the global optimization methods: 

(1) What are the geometric interpretations of the BMI? 
(2) What are the specific properties of the global optimization problem which arises 

from the BMI, and whether these properties can be used to devise more efficient 
algorithms for the BMI? 

(3) Which instances of the BMI can be solved efficiently? Moreover, are there 
instances for which certain "'structural" properties can be established, for example, 

the convexity of the solution set? 
All of the above issues can be addressed by studying the BMI on its own.  Nevertheless, 

we believe that many important structural and computational issues of the BMI can be 
studied by establishing a connection between the BMI and the problems which are more 
well-understood in the optimization theory. 

We recall that the SDP, is a special instance of the linear programming problem (LP) 
over a matrix cone (Cone-LP), namely the cone of the symmetric positive semi-definite 
matrices. In fact this observation is exactly the motivation for the generalization of the 

interior point methods for the LP to solve instances of the SDP [ 1,17]. The question 
then arises as to whether the BMI could be transformed to a problem which is a l m o s t  a 

Cone-LP (we say almos t ,  since as it was mentioned previously, the BMI is a nonconvex 
optimization problem and in general, cannot possibly be transformed to a convex one). 
This approach is discussed further in Sections 3.3 and 3.4. 

We also recognize that the BMI is a generalization of the SDP with a nonconvex 
feature (in fact, it is a so-called b iconvex  programming problem). The LP, for which 
the SDP is a generalization of, has as its close "relative", the Linear Complementarity 
problem (LCP) [4]. Stated concisely, the LCP can be formulated as follows: Given 
M C R "x" and q E IR", find z C Ii~" ( i f  it exists), such that 
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z~>0, (l) 

q +  Mz >~ O, (2) 

z ' ( q + M z )  =0 ,  (3) 

where "z TM denotes the transpose of the vector z, and the ordering "~>'" for vectors 
is interpreted component-wise. In the LCP theory, there is a very fine classification of 

the complementarity problems, many of which correspond to nonconvex optimization. 
More specifically, although the general LCP is an NP-hard problem, an immense amount 

of insight has been provided by studying various matrix classes that arise in the LCP 
formulation. These "insights" are both structural (e.g., existence and uniqueness of the 

solution, convexity of the solution set, etc.), and algorithmic (e.g., Lemke's algorithm 

for the bimatrix game problems, etc.). We believe that the same approach can be 
adopted for the BMI. In fact, one might even suspect that the BMI can be transformed 
to a cone generalization of the LCP (Cone-LCP), by which, some relevant results from 

the complementarity theory can be employed to address certain structural, and possibly, 
algorithmic, issues of the BMI. We discuss this possibility in Section 3.5. Nevertheless, 
we should keep in mind that even the LCP (without the cone generalization, which 
is of our prime interest in this paper) is in general a difficult computational problem. 
However, the complementarity approach facilitates our understanding of certain structural 
issues, and at the same time, it provides an avenue for recognizing efficiently solvable 
instances, of  the BMI. In fact, as we show, the Cone-LCP that comes up in our study of 

the BMI, has a linear operator which is copositive with respect to the cone of positive 

semi-definite matrices (a term to be defined in Section 2). 
The relationship among the various problems that are considered in this paper can 

be illustrated as in Fig. 1. In this figure, the vertical arrows are used to indicate the 
"cone" generalizations of  the problems, and the horizontal arrows to indicate that the 
problem formulation on the head side of the arrow, has as its special case, the problem 
on the tail side. In Fig. 1, the question marks between the BMI and the Cone-LP, and 
the Cone-LCP, are the main issues that are considered in this paper. In particular, our 
main results indicate that solving a given BMI is equivalent to examining the solution 
set of  a suitably constructed Cone-LP or Cone-LCP. 

An intermediate step in adopting a Cone-LP and a Cone-LCP approach for solving 

the BMI, is the introduction of a problem which we shall refer to as the Extreme Form 
Problem (EFP). Formulated in the n-dimensional Euclidean space •n, and denoting the 

.9 
4 9 

Cone-LP • BMI " • Cone-LCP (NP-hard) 
(NP hard) 

LP • LCP (NP-hard) 

Fig. I. Embeddings and cone generalizations of various problems. 
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nonnegative orthant by R~_, the EFP has the following formulation: Given M : R n ~ ~n, 

find z E R" (if  it exists), such that, 

Z >/0,  (4) 

M z  > 0, (5) 

z is an extreme form of  R~. (6) 

An extreme form (or an extreme ray) of  a cone is a face of  the cone which is a 

hall:line emanating from the origin [8,18]. The above instance of  the EFP is referred 

to as the EFP~,, (M) .  The EFP, as we just defined, is not an interesting problem. In 

fact, the EFPw, (M)  has a solution if and only if M has a positive column. On the other 

hand, the EFP becomes non-trivial when 1~_ is replaced by an arbitrary cone. We have 

used the cone generalization of  the EFP as an intermediate step in the Cone-LP/LCP 

approach for solving the BMI. It can be argued that computational procedures could be 

developed for the EFP directly, without formulating it as a Cone-LP or a Cone-LCP. We 

have chosen this approach, since at the present time, the Cone-LP and the Cone-LCP 

seem to be more amenable for the application of  the interior point methods than the 

EFP. It is still an open question whether an interior point method can be adapted for 

solving the EFPs directly. 
The organization of  this paper is as follows. In the next section we present some basic 

definitions, certain matrix cones, as well as the precise formulation of  the Cone-LP, the 

Cone-LCP, and the EFP. In the same section a glossary of  notations that are used in the 
paper is provided. In Section 3, the "cone" formulations of  the BMI are presented. We 

also discuss certain computational implications of  these reductions. In the final section, 

we discuss aspects of  the problem that call for further investigations. 

2. Preliminaries 

In this section we define the Cone-LP, the Cone-LCP, and introduce the Extreme Form 

Problem (EFP) over finite dimensional cones. We also mention certain matrix classes, 
which when generalized appropriately, will make the transformation of  the BMI to the 

EFP and the Cone-LP/LCP more explicit. 

2.1. The Cone-LP, the Cone-LCP, and the EFP 

Prior to defining the Cone-LP, the Cone-LCP, and the EFP, few basic definitions are 

in order. The definitions include those of  a cone, the dual cone of  a set, and the notion 

of  positivity and copositivity of  a linear map with respect to a given cone. We shall 
restrict ourselves to the finite dimensional vector spaces in all subsequent sections. 

Let 7-t be a finite dimensional Hilbert space equipped with the inner product (-, .) : 
x ~ ~ ~ (e.g., the n-dimensional Euclidean space or the space of  n × n matrices, 

with the appropriate notion of  an inner product defined on them). A set IC C_ 7-/ is a 
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cone if for all a 1> 0, a / c  C /C. /C is a convex cone, i f /C is a cone and it is convex, 

i.e., for all a E [0, 1], a/C + (1 - a ) / c  C_ /C, or equivalently, if /C is a cone and 

E + /C  C/C.  A convex cone/C is called pointed if /C f'l ( - / C )  = {0}, and solid if it has 
a non-empty interior. An extreme form (or an extreme ray) of  a convex cone /C is a 

subset E = {ax  ] a >1 0} of /C,  such that if x = ay + (1 - a ) z ,  for 0 < a < 1, and 

y, z E/C, one can conclude that y , z  E E [8,9].  The dual cone of  a set S C_ ~ ,  denoted 
by S*, is defined to be 

S * = { y E 7 - [ I  (x,y)  ~>0, V x E S } .  

If  S is a pointed closed convex cone, then the interior of  its dual cone, int S*, is given 

by 

intS* = {y E T-l l (x, y) > 0 ,  Vx E S, x ~ 0}. 

A closed convex cone in a finite dimensional Hilbert space is pointed if and only if 

its dual is solid [ 14]. It can easily be shown that S* is always a convex set, and that 

if $1 C Sz, then S~ c S~'. In addition, S = (S*)*, if and only if S is a closed convex 

cone. For more on convexity, cones, and their duals the reader is referred to Berman 

[2] ,  Rockafellar [18] ,  and Stoer and Witzgall [21].  

In Sections 3.3 and 3.5, we shall be referring to two properties of  a linear map that 

we now define. Given a pointed closed convex cone/C _c 7-/, a linear map M : 7-I ~ 7-I 

is called E-positive if for all 0 q= X E /C, M(X)  E intE*. Furthermore, a linear map 

M : 7-[ ~ 7-/ is called/c-coposit ive if (X, M ( X ) )  >~ O, for all X E/C [2,6,11 ]. 

We are now ready to formulate the cone problems that are considered in the paper. 

The Cone-LP is formulated as follows: Given a cone/C C 7-/, a linear map M : 7-/---, 7-/, 

and the elements Q and C in 7-/, find Z E 7-/ ( if  it exists) as a solution to: 

min (C, Z) ,  (7) 

Z ~/C,  (8) 

Q + M ( Z )  E/C*. (9) 

Similarly, the Cone-LCP is formulated as follows: Given a cone/C C__ 7-/, a linear map 

M : 7-[ --* 7-/, and Q E 7/, find Z E 7-[ ( i f  it exists) such that: 

Z E JC, (10) 

Q + M ( Z )  E/C*, (11) 

( Z , Q + M ( Z ) )  =0 .  (12) 

The above instances of  the Cone-LP and the Cone-LCP shall be referred to as the 
Cone-LP Cone-LP~z( C, Q, M) and Cone-LCP~c(Q,M),  with solution sets SOLx: (C ,Q ,M)  

and Cone-LCP SOL~ c (Q, M),  respectively. When/C is the nonnegative orthant in the n-dimen- 
sional Euclidean space, the Cone-LP~(C,  Q, M) ( 7 ) - ( 9 )  and the Cone-LCPIc(Q, M) 

( 1 0 ) - ( 1 2 ) ,  are equivalent to the familiar LP and the LCP. We shall also find it con- 
venient to refer to the problem of  finding a feasible element in the Cone-LP, i.e., an 



252 M. Mesbahi, G.P. PapavassilolJoulos/Mathematical Programming 77 (1997)247-272 

element that satisfies ( 8 ) - ( 9 ) ,  as a Cone-LPx; (*, Q, M). In this case the solution set is 
denoted by SOLC°ne't'e(*, Q, M). 

A problem which serves as a bridge between the BMI and the Cone-LP/LCPs is 
what we have referred to as the Extreme Form Problem (EFP): Given a pointed closed 

convex cone 32 _C 7-/, a linear map M : 7-/---, 7-/, find X E 7-[ (if it exists), such that, 

X E 32, (13) 

M ( X )  G int32*, (14) 

X is an extreme form of/C, (15) 

where the "int32" denotes the interior of the cone 32. The above instance of the EFP is 
referred to as the EFPx; (M),  with the solution set SOL~cVP(M). As we mentioned in the 
Introduction, when 32 is the nonnegative orthant in the n-dimensional Euclidean space, 
the EFP is a trivial problem. It should be noted that SOL~cVP(M) is nonconvex; given the 
two extreme forms of 32 that solve the EFP~z(M), a strict convex combination of them 

is not an extreme form of 32. It is also important to note that the EFP requires M ( X )  to 
lie in the interior of the dual cone. This is in light of the fact that for certain important 
classes of linear maps M, including the map that is encountered in the context of the 
BMIs, M ( X )  is known to lie in, but possibly on the boundao, of, the dual cone, for all 
the extreme forms X of the cone 32. It is still not clear how to adapt the interior point 
methods for the Semi-Definite Programming [1,17], for solving the EFP (for example, 
over the cone of positive semi-definite matrices). This is the main reason why we have 

chosen to relate the EFP that arises from the BMIs, to a Cone-LP, and subsequently to 
a Cone-LCP over the cone of positive semi-definite matrices. 

The Cone-LP/LCP formulation of the BMI rests upon the introduction of two classes 
of matrices. These matrix classes are a generalization of the cone of completely positive 
matrices (B),  and its dual, the cone of copositive matrices (C) .  Both B and C are 
closely related to another matrix cone, the positive semi-definite matrices (PSD). The 
PSD has received much attention recently in the context of SDPs, the linear comple- 
mentarity problems over matrix cones, and the behavior of the interior point methods 
for solving them [ 1,13,17]. The cones B and C have been studied in various settings. 
The matrix cone B, which is the set of matrices with quadratic forms expressible as 

a sum of squares of  linear forms, has been studied in the context of block design in 
combinatorial theory [ 8]. The matrix cone C, which is the set of matrices with quadratic 
forms nonnegative over the nonnegative orthant, has been studied in the context of the 
LCP [4]. 

The interior point methods for SDPs have not been adapted for the matrix cones B and 
C (and their generalizations which are introduced in this paper). This is due to the fact 
that even checking whether a given matrix is copositive is a difficult computational task 

[ 161. However, as it is shown in Section 3.5, the Cone-LCP that arises from the BMI 
can be formulated over the cone of positive semi-definite matrices, and consequently, it 
is readily amenable to an interior point approach [ 1,17]. Moreover, it has been recently 
shown that the monotone Cone-LCP over the PSD cone can in fact be reduced to 
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an SDP, and therefore can be solved using the interior point algorithms for the SDP 

directly [ 12]. 

2.2. Nota t ion  

A ! 

A(/ 

diag(y) 

x > y  

x > ~ y  

lt,×p 
RP 

Rp×p 
S~pxp 

.p  x p  

SR(~ xl' 

s~p  x p 

A > . - B  

A > ' B  

A o B  

A ® B  

vec M 
C* 
int A 

t~ 

Transpose of the matrix A. 
The element of matrix A located in the ith row and jth column. 
The (square) diagonal matrix of the appropriate dimension, with vector y 

on its diagonal. 
The strict partial ordering: xi > Yi, i = 1 . . . . .  n. 

The partial ordering: xi >1 Yi, i = 1 . . . . .  n. 

The p × p identity matrix. 
The p-dimensional Euclidean space. 
The non-negative orthant in the p-dimensional Euclidean Space. 
The space of p × p matrices with real entries. 
Symmetric p x p matrices with real entries. 

Skew-symmetric p x p matrices with real entries. 

Symmetric p x p positive semi-definite matrices with real entries. 

Symmetric p × p positive definite matrices with real entries. 

A - B is symmetric positive definite. 
A - B is symmetric positive semi-definite. 
Trace A B  I, the inner product used for the (Hilbert) space of matrices. 
The Kronecker product of matrices A and B. 

The vector obtained by stacking up the columns of the matrix M. 
The dual of the set C. 
The interior of  the set A. 
The set of extreme forms (rays) of the cone/3. 

3. The Cone-LP and the Cone-LCP formulation of the BMI 

In this section we discuss the formulation of the BMI feasibility problem as a Cone-LP 
over a suitable generalization of the cone of completely positive matrices and subse- 
quently, as a Cone-LCP over the cone of positive semi-definite matrices. This is done 
by first reducing the BMI to an EFP, and subsequently reducing the EFP to a Cone- 
LP/LCR As it becomes evident, various embeddings of matrices in different dimensions 
are needed to make these reductions as transparent as possible. For this purpose the vec 
notation, which is used in the studying of Kronecker products, has become specially 
handy. The vec operator, applied to a matrix in N t'xP, simply stacks up the columns of 

the matrix from left to right, and forms a vector in Rt," [9,10]. 
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3.1. Few initial steps 

Consider again the BMI feasibility problem: Given Hij = H?j E $11{I' ×t, (the symmetric 
p × p matrices with real entries), does there exist xi's ( 1 <<. i <<. n) ,  and yj's ( I <~ j <~ 
m),  such that 

Z Z x,y,H... ., ,., ~- O. (16) 
i .t 

Let us rewrite (16) as: 

i .i i 

where 

= >'?/<j c SW'×".  

J 

As it becomes apparent by the subsequent developments, it is convenient to assume that 
m = p and that yj's (1 ~< j ~ m),  are nonnegative. The first assumption is made to 
avoid defining inner products between matrix classes of  different dimensions. The second 
assumption is made to facilitate the dual cone characterization in the EFP and Cone-LP 
approaches discussed in Sections 3.3 and 3.4 (we shall later drop the nonnegativity 
assumption on the vector y in Section 3.5, where the Cone-LCP is presented). These 
assumptions are warranted for the following reason. First, note that if  we define H]  = 

~ixiHii C S ~  p×p (1 ~< j ~< m),  then ~-]~ixiH~'= Z j y j H )  r. But the last sum is a linear 
inequality in H~'s. Thus, as it is customary in the Linear Programming, one can assume 
that m ~< p and that 3~i's are positive (by an appropriate augmentation).  Now we would 
only need to define Hij - 0 (1 <. i <~ n, m < j <~ p ), for the assumption m = p to be 
justified. 

R e m a r k  1. Henceforth, we shall reserve the notations ">-_" and ">-" to indicate positive 

semi-definiteness and positive definiteness for the p x p matrices, respectively. 

Recall that Gordan's  theorem of  alternative [4 ,2 l ] ,  relates the solvability of  the 
following two systems of  linear inequalities: Given A E Nmx,, the system Ax  > 0 has a 
solution if and only if the system y 'A = O, y ) O, y ~ O, has no solution. This theorem 
can be generalized for the linear inequalities over matrix cones as follows: 

Proposi t ion 2. Given the symmetric matrices A~s E SR  t'xt' ( 1 <~ i <~ n) ,  the system 

~-'~'=j xiAi >- O, has a solution if  and only if  the system 

A i o Z = O  ( l < ~ i < ~ n ) ,  Z>--0 ,  Z v ~ 0  

has no solution. 
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Many variants of Proposition 2 and the generalizations of the other theorems of 
alternatives for a finite dimensional cone, have been discussed by Berman [2], and we 

shall therefore omit the proof of this result. 
From Gordan's theorem of alternative over the cone of symmetric positive semi- 

definite matrices, one concludes that the BMI (16) does not have a solution if and only 
if, 

(Vy>~0) ( 3 Z ~ O , Z ~  0): H~!'.Z=O. (18) 

Therefore, the BMI (16) has a solution if and only if, 

(3y~>0)  ( V Z ~ 0 ,  Z ~  0): ~ ( H ~ ' , Z ) 2 > 0 .  (19) 
i 

Remark 3. We note that if (19) is satisfied, and that the variable y is found by a 
certain procedure, then the BMI (16) is reduced to a Linear Matrix Inequality (LMI), 
which can be solved efficiently by the interior point methods for the variable x. 

The statement of Remark 3 follows from the following observation: Suppose y is 
found such that for all Z __. 0, Z ~ O, ~-~.i(H;!'e Z) 2 > 0. Therefore, according to 
Proposition 2, 

Z ~ 0 ,  Z 4 : 0 ,  H~'oZ=O ( l~< i~<n) ,  

has no solution. Therefore ~-']i'=l xiH~!' ~ 0 has a solution. The last inequality is indeed 
an LMI. 

Now let, 

P P P 

Hi = [vec Hi1 0 . . .  0,() vec Hi2... O, . . . .  () 0 . . .  vec Hit,] E R t'2×1'2 (20) 

and Y = diag(y) C S~ t'×t'. Since (H~')' = H~T= ~jyjHij  (recalling that Hij's are 
symmetric matrices), 

vec(H]') ~ = Hi vec Y; (21) 

thereby, 

H~!'. Z = (vec(H~Y)')'(vec Z)  = (nivecY) '(vecZ) = (vecY)'H[(vecZ). (22) 

Combining (19) and (22) we conclude that (16) has a solution if and only if there 
exists Y _ 0, Y = diag(y), for some y >/0, such that for all Z >- 0, Z 4: 0, 

(vec Z ) ' { Z  Hi(vecY)(vecY)'H~}(vecZ) > O. (23) 
i 

Let X = (vec Y) (vec Y) ~, Y E R pxt', and, 

M(X) = Z HiXH~. (24) 
i 
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Two key observations, due to the particular form of the linear map M (24), are in order 

at this point: 
(1) According to (20), for all p x p skew-symmetric matrices Z, Hi vec Z = 0 

(i = 1 . . . . .  n). Consequently, if there exists a matrix Y E Rpxo such that (23) 

holds, then one can assume that Y is symmetric, since the skew-symmetric part of 
Y does not contribute to the left-handside of the inequality (23): Let Y = Yj +Y2, 
with Y~ and Y2 being the symmetric and skew-symmetric part of Y, respectively. 

Then for I <~ i <~ n, HivecY = Hi(vecYl + vec Y2) = HivecYi. 
(2) According to (21), for all matrices Y C Npxt,, HivecY = vecWi, for some 

Wi E SN pxt'. Therefore if X = (vec Y)(vec Y)', then M(X)  can be represented 

by 

M ( X )  = ~ ( v e c  Wi) (vec Wi)'. (25)  
i 

We shall use these observations in Section 3.5. 

Remark  4. Suppose that the vector y is not required to be nonnegative in the above 
analysis. It is clear that the above steps are still valid with the obvious modifications, 
and that the end result would read as follows: The BMI has a solution if and only if 
there exists a diagonal matrix Y, such that for all Z ~ 0, Z 4: 0, the inequality (23) 

holds. We shall use this observation later in Section 3.5. 

The inequality (23) can be interpreted as requiring M(X)  to belong to a certain 
matrix class. The matrices in this class are symmetric (given that X is symmetric) and 
have quadratic forms which are positive over the vec form of the non-zero matrices in 
SIR~ xl'. This observation justifies the introduction of certain matrix classes which we 

shall discuss next. 

3.2. Few matrix cones 

At this point let us introduce certain classes of matrices. We then delineate (23) in 

terms of these matrix classes, which in turn facilitate the transition from the BMI to the 

EFP. In what follows it is assumed that all the matrix classes are subsets of S~ p2×p2, 
and that the duals of matrix classes are taken with respect to this linear space. 

Denote by 79$~, the class of p2 x p2 symmetric positive semi-definite matrices, i.e., 
matrices for the which the quadratic form is nonnegative over the vec form of the p x p 

matrices (Rt, xp), 

PS~D = {A C SIR t'~xe'- J ( v e c Z ) ' A ( v e c Z )  ) O, Z C Rt~×t'}. (26) 

Let 7~$~D0 denote the subset of p2 x p2 symmetric matrices with quadratic forms 
nonnegative over the vec form of the symmetric p x p matrices (SRt'xP), and with the 

vec form of the skew-symmetric m a t r i c e s  (SI~ l'x/') in their null space, i,e., 
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79S79o = {A E SR p2×p2 [ ( v e c Z ) t A ( v e c Z )  >~ O, Z E SR p×p, 

A(vec W) = 0, for all W E SRt'×P}. (27) 

Clearly both 79879 (26) and 7'8790 (27) are closed convex cones. It is well known that 
the matrix class 79879 has the following properties: 

(1) For all rank t t> 1 matrices A E 79879, there are non-zero matrices Wi E ]R t'xp 
(1 ~< i ~ t),  such that, 

I 

a = Z ( v e c  Wi) (vex: Wi)' (28) 
i=1 

a n d W i • W j = 0 ( i ~ j )  [9]. 
(2) 79,979 = 79879*. Moreover, 79879 is pointed and solid [2]. 
(3) The extreme forms of 7>879 are of the form (vec W) (vec W) t, W E ]~pxp [9]. 

Before we state the next result, we make a note of the following fact. 

~_~pxp 
Proposition 5. Fora l IZESRt 'XP  a n d W E b N  , ( v e c Z ) t ( v e c W ) = Z o W = O .  

Proofi Let W = A - A t for some A E ~vxt,. Then 

Z e W = Z o A - Z o A ' = O .  [ ]  

The following proposition states that certain essential features of the 79879 cone can 
be generalized for the class of 79S790 matrices. 

Proposition 6. The matrix class 79SDo has the following properties: 
( 1 ) For all rank t >1 1 matrices A E 79S790, there are non-zero symmetric matrices 

Wi E S~ pxt' (1 <~ i <~ t),  such that, 

t 

A = ~-~(vec Wi) (vec Wi)' (29) 
i=I 

and Wi • Wj = 0 ( i ~ j ) .  Furthermore, any matrix which has such a represen- 
tation is in 79SDo. 

(2) 79S79o = 7~SD~ *. (as pointed out by one of the referees, 79SDo ~ 7>SD~ and 
PSDo is not solid.) 

(3) The extreme forms of 79813o are of the form (vec W)(vecW) t, W E SA vxv. 
In particular, the extreme forms of the 79819o matrices are among those of the 
7>SD cone. 

Proof. ( 1 ) We first establish the second statement of ( 1 ). For all matrices Z E S~ t'xp, 

(vec Z) 'A(vec  Z) = ~--~(Z • W~.) 2 ) 0 
i 

and 
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A(vec W) = ~ - ' ( v e c  Wi) (vec Wi)'(vec W) = 0 
i 

for all W E "SN t'xt', by Proposition 5. Therefore A E 79S79o. 
Define 

P : = { A  A =~-~(vecWi)(vecWi) ' ,  W E SRI'xt'}. 
i 

It will be shown that in fact P = T'$790. 

Let A = y]~i(vec Wi)(vec Wi)' E P, for some symmetric matrices Wi's. Then for all 
Z E SR p×p, 

(vec Z) 'A  (vec Z)  = (vec Z ) '  ~-~ (vec Wi) (vec Wi)/(vec Z)  
i 

= ~ ( Z  • Wi) 2 >10. 
i 

A 

Moreover, for all Z E SNFxI', 

A ( v e c Z )  = ( ~ ( v e c  Wi)(vec W i ) O ( v e c Z ) = 0  
i 

as a result of  Proposition 5. Therefore P _C 7"9S790. 
To show that 79S79o C_ P, we first show that in fact 79SD0 C_ 79S79. Let A E 7)SDo. 

Since for all W E Np×p, W can be written in the form W = Wi + W2, with Wl E SR pxp 
and W2 E SR pxt', one has 

(vec W)'A(vecW)  = (vec W~ + vec W2)~A(vec Wl + vec W2) 

= (vec Wi )/A(vec Wj ) >/0 

since A(vec W2) = 0. Therefore A E 79S~D. Suppose that A has rank t t> I. Then there 
exist non-zero matrices Ui E R t'xp (i = 1 . . . . .  t), such that, 

l 

A = ~--~(vec Ui) (vec Ui) ~ 
i = 1  

(30) 

and (vec Ui) ' (vec Uj) = U[ • UJ = 0 (i 4~ j ) .  It now suffices to show that all matrices 
Ui's in (30) should be symmetric. For this purpose, we will perform an induction on 

t / > l .  
Let A = ( v e c U ) ( v e c U )  ~, 0 -~ U E R t'×t', U = U + U ,  with U E SR pxp and 

A 

U E SN t' x p. Then, 

A(vec U) = (vec U) (vec U) ' (vec  U) = IIUll2(vec U). 

Since A (vec U) = 0 by the definition of 79SD0, we conclude that U = 0. 
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For t > 1, suppose that the proposition holds for t - 1, that is, 

259 

t - I  

A = ~-'~(vec Ui) (vec Ui) I + (vec W) (vec W) I, 
i=1 

with Ui E S~ p×t', ( l  ~< i ~< t -  I ) ,  and W E RPxP; by (27) and Proposition 5, 

this also establishes that ~it=-i 1 (vec Ui)(vec Ui) I E 79S7)o. We like to show that in fact 
W E S~  p xp. 

Proceeding in exactly the same way as we did for the case of t = 1, we form A(vec ~') ,  
where W = W + ~', W E SR pxt', and W E SR pxp. Now since (vec Ui) '(vec I~') = 0 

(1 ~< i ~< t -  1), by Proposition 5, we again conclude that II~'fl2(vec w) = 0. Therefore 
~ '  = 0, and W E S1Rt'xp. 

Hence, all matrices Ui's in (30) are symmetric. 
(2) As pointed out previously, 79,57)0 is a closed convex cone. Therefore 79,$7)0 = 

79 

(3) Suppose that there are matrices W E S]~ pxp, U and V in 79,57)0, and 0 < o~ < 1 
such that (vec W) (vec W) t = aU + ( l - or) V. It suffices to show that both U and V are 
constant multiple of (vec W) (vec W)C 

Since ctU + (I - a ) V  E 79,57)0, there are matrices Zi E SRpxp(1 ~< i ~< t),  such 
that (vec W) (vec W)' = ~it=L (vec Zi) (vec Zi)' (by Part 1 of the proposition). If  for 
some i, Zi is not a constant multiple of W, there exists X #= 0, X E 7957)0, such that 
(vec W) (vec W) t • X = 0, and (vec Zi) (vec Zi)' • X > 0 (there exists U E SR pxp such 
that U•  W = 0, but U.  Zi ~= 0; let X = (vec U)(vec U) t E 79S7)0). But this consequence 

contradicts our assumption that (vec W) (vec W) I = )-~-!=l (vec Zi) (vec Zi)'. [] 

Let C denote the class of symmetric PSD-copositive matrices, 

C = {A E SR p2xe2 ] ( vecZ ) 'A (vecZ)  >>. 0, Z ~ 0}. (31) 

A particular subset of C which be useful in our later cone formulations is the class of 
matrices in C which have the p x p skew-symmetric matrices in their null space, i.e., 

C 0 : = { A E C I A v e c W = 0 ,  W E S ~ " x P } .  (32) 

Finally, let 13 denote the class of symmetric PSD-completely positive matrices, 

B =  { A  E SR t'2xt'2 A 
l 

= ~--~(vec Zi) (vec Zi)', Zi ~- O, t >~ 1 }. 
i=1 

(33) 

Remark  7. The matrix classes C and/~ are generalizations of the symmetric copositive 
and the completely positive matrices, respectively. Note that the matrices in class C have 

quadratic forms which are nonnegative over the vec form of the symmetric positive 
semi-definite matrices. 
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It should be noted that many results in the context of  copositive matrices [4] can also 

be proven for the PSD-copositive matrices. We also observe that B _C "PSDo c_ 79SD C_ 
C, and 79SDo C_ Co G C. 

It is now observed that Eq. (23) states whether a nonlinear combination of  matrices 

H;s E ~ "2×t'~" (1 <<. i <~ n), belongs to the interior of the cone of  PSD-coposifive 

matrices C. In fact, due the particular form of the linear map M (25),  M ( X )  is required 

to be in Ct := C0 NintC. 

We now establish that the matrix classes /3 and C are in fact closed convex cones. 

In addition, we show that they are the dual of  each other, C is solid, and B is pointed. 

These results will facilitate the reduction of  the BMI to an EFP, and subsequently to a 

Cone-LP/LCP. These proofs are not significantly different from those provided by M. 

Hall for the classes of  completely positive and copositive matrices [ 8]. 

2 2 
L e m m a  8. The matrix classes 13, C, and Co are closed convex cones in SR  p xp . 
Moreover, 13" = C, C* = 13, C is solid, and t3 is pointed. 

Proof. C is a cone since if ( v e c Z ) ~ A ( v e c Z )  >t O, then for all o~ >t 0, 

(vec Z) ' (ceA)  (vec Z)  = a (vec  Z ) ' A ( v e c  Z)  /> 0. 

Therefore o~C C C. Moreover, if A, B E C, then 

(vec Z ) I ( A  + B)  (vec Z)  = ( v e c  Z) /A(vec  Z) + (vec Z) rB(vec  Z)  >/0. 

Therefore C + C C_ C and C is a convex cone. From the definition of  C (31) it is clear 

that C is closed. Similarly the class Co can be shown to be a convex cone. Moreover, if 

(A~} is a sequence of  matrices in Co and Ak --* A, then for all W E SR p×p, 

IIA(vec W) - Ak(vec W)ll ~< IIA - Akll II vec Wll 

and therefore A E Co. 
13 is a convex cone since if A = ~ i = l ( v e c Z i ) ( v e c Z i )  ~, for some t ~> 1, then tbr all 

ot >1 O, a A  = ~-~i=l( f lvecZi)( f lvecZi) ' ,  where ~ = v/d, i.e., o~13 C 13. Also from the 

definition of  13 it is clear that, for all A, B E 13, A + B C 13. Therefore/3 is a convex 

cone. 
It is now shown that 13" = C. To show that 13" C__ C we note that if A C B*, then for 

all Z >'-0, 

A • (vec Z)  (vec Z)  r = ( v e c Z ) r A ( v e c Z )  >1 0 

and therefore A C C. For the relation C c_ 13", let A C C. Then, 

A o ( v e c Z ) ( v e c Z ) ' ~ > 0  ( V Z ~ 0 )  

and thereby A • E >~ 0, for all E E 13. Hence A E 13" and consequently, C = B*. 

We now proceed to demonstrate that/3 is closed. Granted that this is proved, it would 

then follow that 13 = (B*)* = C*. 
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From Carathdodory's  Theorem [ 18], it is known that all matrices in /3 can be ex- 

pressed as a convex combination of  N := 1 + p~(p2 + 1) /2  matrices of  the form 

(vec Z ) ( v e c  Z )  ~, Z ___ 0 (not necessarily distinct), where pZ(p2 + I ) / 2  is the dimen- 
sion of  SR p2xp-'. 

Let A be the limit of  the sequence {A,},~>o, A, E B, that is, there are matrices Z/k >'- 0 
such that 

N 

Z ( v e c  Z/k)(vec Z/k) ' - A ~ 0, 
i=| 

as k - 4  oo. 

Since N is fixed, the coefficients of  the matrices Z/k should stay bounded and conse- 

quently, there is a subsequence of  these matrices that converges to a matrix Z/* & 0 
(since the cone of  positive semi-definite matrices is closed). Therefore 

N 

A = Z ( v e c Z / * ) ( v e c  * ' Z i ) .  
i=l 

Hence A E/3,  and /3  is closed. 
To show that C has a non-empty interior, we observe that Ip2×p2 E intC. Consequently 

C is solid, and /3  = C* is pointed [ 14]. [] 

Since we will later need an explicit expression for the extreme forms of  /3, the 
following lemma is of  importance. 

L e m m a  9. The extremeforms of~3 are matrices ( v e c Z ) ( v e c Z )  ~, Z _;L- 0. 

Proof.  Suppose that there are matrices W ;L-_ O, U, V C B, and 0 < a < I such that 
(vec W) (vec W) t = a U +  ( 1 - a )V .  Our goal is to show that both U and V are constant 

multiple of  (vec W) (vec W) t. Since a U + ( 1  - a ) V  E /3, there are matrices Zi ~- 0 ( I  ~< 
i ~< t) ,  such that ( vec W) ( vec W) i t = Y~'~i=l (vec Zi) (vec Zi) ~ (by the definition of  B).  I f  
for some i, Zi is not a constant multiple of  W, there exists X ~ 0, X E 798790, such that 
(vec W) (vec W) / • X = 0, and (vec Zi) (vec Zi) t • X > 0 (there exists U C S ~  p×p such 
that U o W  = 0, but U•Z i  4: 0; let X = (vec U) (vec U) t E 798790). But this consequence 
contradicts our assumption that ( vec W) ( vec W) ~ = ~--~ir=1 (vec Zi) ( vec Zi) r. Therefore 
any matrix o f  the form (vec W) (vec  W)' ,  W ~ 0, cannot be written as a strict convex 

combination of  the other elements o f /3 ,  not already on the ray {/l(vec W) (vec W) ~ I 
,,l ~> 0}, which is the desired result by the definition of  the extreme form of a cone. [] 

The discussion of  the matrix cones 79S79, 79SDo, 13, and C, which we have provided 
above, is sufficient for the reformulation of the BIVII as an EFP, the subject which we 
shall examine in the following section. 
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3.3. The EFP formulation of the BMI 

"We now use the results of the previous section to reformulate the BMI as the 
EFPn(M),  where M is defined by (24), and/3 is the cone of PSD-completely positive 
matrices. 

Recall that EFPx:(M) (13 ) - (15 ) ,  formulated in a finite dimensional inner product 
space, is the problem of finding an extreme form of the pointed closed convex cone/C, 
which gets mapped by the linear map M, to the interior of the dual cone of/C. For a 
given M, we say that the EFP~z(M) is feasible if there exists an X that satisfies (13) 

and (14). The next result is of  importance in regards to the feasibility issue. Moreover, 
it is the first result that connects the EFP (13) - (15)  to the Cone-LCP (10) - (12) .  

Proposition 10. Given the linear map M, the problem EFPxz(M) is feasible if and 
only if for ever), Q, the Cone-LCPr: (Q, M) is feasible. 

Proof. Suppose that the EFPx:(M) is feasible. Hence there exists X E ]C, such that 
M(X) E int/C*. Then for every Q one can choose ,~ > 0 large enough such that 
Q + M(aX) = Q + aM(X) E ,W. On the other hand, if the Cone-LCPr:(Q,M) 
is feasible for every Q, let Q E int(- /C*),  and therefore, the EFPxz(M) is clearly 

feasible. [] 

One can establish certain results in the context of the EFPx: (M),  for various classes 
of cones/C, and linear maps M, in the spirit of the complementarity problems. We will 
not pursue this line of investigation in the present work. Nevertheless, it should be noted 
that the EFP is a non-trivial problem when the cardinality of the set of extreme forms is 
infinite, finite but very large, or when checking whether an element is an extreme form 

of the cone/C is computationally difficult. 
The importance of the EFP~z(M) in the context of the BMI is established through 

the following result. In fact, as the next proposition states, the BMI is a special instance 
of the EFP. 

Proposition 11. Let 13 be the class of PSD-eompletely positive matrices (33), and 
the linear map M be defined by (24). Then the BMI has a solution if and only if the 
EFPe(M)  has a solution. Moleover, the solution of one yields the solution of the other. 

Proofi If the BMI has a solution X, then there exists Y = diag(y),  y >/ 0, X = 
(vec Y)(vec Y)', such that M(X) E intC, and hence, the EFPt~(M) has a solution. 

Conversely, suppose that the EFPt~(M) has a solution X. Then there exists V _ 0, 
such that X =  (vec V) (vecV) '  and M(X) E intC, i.e., for all Z ~ 0, Z 4: 0, 

0 
i 

Let V = T~Yf be such that Y is diagonal, T is nonsingular, and T ~ = T - I  . Then vec Y = 
(T ® T) vec V. 
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We observe that 

2 6 3  

(vec Z ) ' { ~  Hi(vecY)(vecY)'H~}(vecZ) 
i 

i 

= (vec V)'(T ® T)'{~~ Hi(vecZ)(vec Z)'H~}(T ® T)(vec V) 
i 

= ((T® T)(vec Z ) ) ' { ~  Hi(vec V) (vec V)'H~}(T ® T) (vec Z) 
i 

> 0 .  

The last inequality follows fi'om the fact that if vec W = (T ® T) vec Z, Z 'L-_ 0, and T 
is nonsingular, then W __. 0, since W = TZTq 

Therefore the diagonal matrix Y, is a solution to the EFP•(M). Now define the vector 
y ~ N~_ by Yi = Y,i ( l  ~< i ~< p) .  By Remark 3 in Section 3.1, it is clear that one can 

solve for x C N" in the BMI problem via a semi-definite p rogam (or an LMI). [] 

Remark  12. Suppose that the nonnegativity assumption on the vector y is dropped. 
Then, in view of Remark 4 and Proposition 6, it follows that the BMI is also equivalent 
to finding a extreme form X of the 79S79o cone (27) such that M(X) E intB* - intO, 
and in fact, M(X) E Ci := Co f-1 intC. This observation shall be used in Section 3.5. 

The implication of Proposition 1 1 is that the BMI is equivalent to checking whether 
the image of an extreme form of the matrix cone /3 under the linear map M (which 
is constructed from the original data of the BMI), is in the interior of the dual cone 
13". This equivalence thus provides a rather simple geometric interpretation of the BMI 
feasibility problem. 

An immediate consequence of the EFP formulation is the following characterization 
of the BMI instances for which a solution exists. 

Proposition 13. The BMI has a solution if the linear map M (24) is B-positive (see 
Section 2.1 for the definition of the positivi~ of a linear map). 

Proof. If  M is /3-positive, then every (non-zero) extreme form of /3 is mapped to 
the interior of 13" ~_ C. Therefore the EFPB(M), and consequently the BMI, have a 
solution. [] 

In the next two sections, we shall explore the connections between the EFP6(M) 
and the linear programming problem defined over the matrix cone/3, and subsequently, 
the linear complementarity problem over the matrix cone 7)SD. These approaches will 
suggest certain conceptual algorithms tbr solving the BMI. Nevertheless, the practical 

aspects of solving the BMI via these formulations will be elaborated on in Section 3.5. 
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3.4. The Cone-LP formulation of the BMI 

In this section we shall explore an approach for solving the BMI based on its con- 
nection with a Cone-LP over the cone of  PSD-completely positive matrices,/3. For this 

purpose we use the EFP formulation of  the BMI, as discussed in the previous section. 

In particular, in the subsequent sections, we use the terms "BMI" and "EFPB (M),"  with 

the linear map M defined by (24),  synonymously. 

Since the Cone-LP approach tbr the EFPB(M) is rather straightforward, we begin 
our discussion with the main result. Recall from Section 2.1 that SOL73°ne-LP(*, Q, M) = 
{X E /31Q + M(X)  E/3*}. We shall denote by S(a)  the set SOLC°ne'LV(*,-otl, M) 
and by B the extreme forms of  the cone/3.  

Theorem 14. The BM1 has a solution if and only if there exists a > 0, such that 
S(a) n 13 ~ 0. 

Proof. Let X E S(a)  f) 13. Since - o d  + M(X)  E /3*, it is clear that for all non-zero 

Z >--0, (vec Z)~M(X)(vec  Z)  > 0, which implies that M(X)  E int/3*. 

On the other hand, suppose that X 4 : 0  is an extreme form of the cone /3  that gets 

mapped by M to the int/3*. Then for all Z >-- 0, Z 4: 0, IlZll = I, ( vecZ)~M(X) (vecZ)  
~> a, for some ce > 0, i.e., ( v e c Z ) ' ( - a l  + M ( X ) ) ( v e c Z )  >! O. Hence, X E 
s ~ - - C o n e - L P -  ULt~ I,*, --cel, M). [] 

The interesting observation is that in fact the BMI has a solution if and only if 

Theorem 14 holds for any a > O. 

Corol lary  15. The BMI has a solution if and only if for any a > 0, S(ce) fq/3 4: 0. 

Proof.  Suppose there exist /3 > 0 and X E /3 such that - i l l  + M(X)  E /3*. Then 

for all ce > 0, a X E  S(af l ) ,  since -cefll + M(aX)  = ce(-f l l  -4- M ( X ) )  E /3*, and 
aX ~ B. [] 

The implication of  Corollary 15 is as follows: Given any o~ > 0, check whether S(ce) 

contains an extreme form of  the cone /3, which by Lemma 9, has to be of  rank one. 
This is the case if and only if the BMI has a solution. Geometrically, one can "attempt" 
to illustrate this implication as in Fig. 2. 

The following conceptual algorithm is the result of  our preceding discussion. 

A conceptual algorithm for solving the BMI 
1. Input the linear map M. 

2. Choose a > 0; for example let oe = 1. 
o ,"- . - -Cone-LP - 3. Find the minimum rank solution X E s u L  B ~ , , - c e~ ,M) .  

4. If  X E/~, stop. X E SOLEFP(M), and therefore BMI has a solution. 

5. If  X ~ /3 ,  stop. The BMI does not have a solution. 
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i~ 

Fig. 2. BMI has a solution if and only if S(a) Cl B 4~ O. 

The main component of the above algorithm is Step 3. In this step, we are required 
to find the minimum rank element of a "matrix polyhedron" defined by the constraints 
X E B, and -o~! + M ( X )  E 13". Clearly, this "matrix polyhedron" is a subset of the 

matrix cone B, and is not necessarily "polyhedral," 
Initial observations indicate that checking whether a "matrix polyhedron,' over the 

cone of positive semi-definite matrices, contains a rank one element can be done effi- 

ciently for certain classes of linear maps [ 15]. On the other hand, the above Cone-LP 
approach calls for checking for the rank one'element in a subset of the matrix cone 
B. However, it is known that checking whether a matrix belongs to the cone of copos- 
itive matrices (for which N* = C is a generalization of) is a difficult computational 
task [ 16]. Consequently, although the preceeding Cone-LP approach provides us with a 
way of understanding the geometry of the BMI, its computational realization runs into 

difficulty. 
The above considerations have led us to adopt yet another approach for solving 

the BMI. The approach relies on establishing a connection between the BMI and a 
linear complementarity problem over the ~S~D cone (26). The main advantage of the 
complementarity approach is that one can formulate the resulting problem over a matrix 

cone for which an interior point algorithm can be developed. The complementarity 
approach also provides us with a way of addressing certain structural issues. This 
approach is examined next. 

3.5. The Cone-LCP formulation of the BMI 

In this section we explore the idea of viewing the BMI as a certain linear comple- 
mentarity problem over a matrix cone (Cone-LCP). The EFP formulation of the BMI 
discussed in Section 3.3 is again the main tool for making the Cone-LCP approach 
possible. 

Our motivation for the Cone-LCP approach is twofold. First, the complementarity ap- 
proach enables one to address the two important structural issues (2) and (3) mentioned 
in Introduction. The basic idea is to use the rich theory that has been developed for the 
linear complementarity problems over the last few decades to examine the properties 
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of  the BMI. Additionally, we shall show that the Cone-LCP that arises from the BMI 

can be formulated on the T>STD cone, rather than the less (computationally) understood 

matrix cone/3.  The complementarity problem over the 79S79 cone also has the advan- 
tage of  being readily amenable to an interior point approach [ 13]. However, one has 

to note that a "general" Cone-LCP is a difficult computational problem, as is the LCP 

itself. One of  the main advantages of  the Cone-LCP formulation however, is the ability 

of  recognizing "efficiently" solvable instances. 

In this section we shall assume that the Cone-LCP of  the form Cone-LCPT, sT)(Q, M),  
with M being a T'S79-copositive (see Section 2.1 ), can be solved in a "reasonable" time. 

This assumption is guided by the fact that a usual copositive LCP is a more "tractable" 

problem than a general LCP. Whether this approach yields a practical algorithm for the 

BMI depends heavily on the development of the efficient algorithms for the copositive 
Cone-LCPs, by using the interior point or other methods. 

The starting point for the Cone-LCP approach is the observation made in Remark 12: 

the BMI has a solution if and only if the image of  an extreme form of  the matrix cone 

79S790 under the linear map M, is in the interior of  C, or in fact in Cl, defined by 

C~ := intC A C0. As the next proposition states, the cone PS79 can substitute the cone 
7"95790 in the above statement. 

Proposi t ion 16. There exists an extreme form o f  the matrix cone 79579, X, such that 

M ( X )  E intC, i f  and only i f  there exists an extreme form o f  the matrix cone 7)SDo, Y, 

such that M ( Y )  E intO. 

Proof. An extreme form of the 79S790 cone is also an extreme form of  the 79S7D cone 

(Proposition 6). Therefore it suffices to show that if X is an extreme form of  the 

79SD such that M ( X )  C intC, then there exists an extreme form of  the 7~$79o, Y, 

such that M ( Y )  C intC. But this follows from the observation made in Section 3.1: 

If  X = ( v e c W ) ( v e c W ) l , W  = WI + W2, with Wl E SR pxp and W2 E 8I~ pxp, let Y = 

( v e c W 1 ) ( v e c W 1 )  j, and note that M ( X )  = M ( Y ) ,  since for 1 ~ i <~ n, HivecW2 = 0 

(refer to (24) ) .  [] 

Let us denote by/7 = p ( p  + 1 ) / 2  the dimension of  the space of  symmetric p x p ma- 

trices. Before stating the main result of  this section we make the following observation. 

Lemma 17. Let Y be an extreme form of  the cone 79SDo. Then there exists a symmetric 

W C 79S79o, such that Y • W = 0 and rank (W)  = ~ - l. 

Proof. Let Y = (vec V)(vec  V) ~, V E SR pxt'. Then there exists a set of  linearly in- 

dependent matrices Ui's E SN pxp (i = 1 . . . . .  /~ - 1), such that Ui • V = 0. Let Zi = 

(vec Ui) (vec Ui)'. Then Zi • Y = 0, i = 1 . . . . .  p - I. Let W = ~/P__~ l Zi. Then W is 

symmetric, rank (W) = p - l, and W C 79SD0. [] 
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Consider the Cone-LCPT~s79(Q, M) and let M be defined by the equation (24): Find 
X E SI~ t'-'×t: ( i f  it exists) such that: 

X E 79S79, 

Q + M ( X )  E 79`979 * = 79`979, 

X • ( Q + M ( X ) ) = O .  

The main result of this section now follows. 

(34) 

(35) 

(36) 

Theorem 18. The BMI has a solution if and only if there exists a matrix Q E in t ( -C)  
(or Q c -Cl ), such that the Cone-LCP~sz>(Q, M) has a rank one solution. 

Proof. (Necessity) Suppose the BMI has a solution X*, that is, X* = (vecY)(vecY) ' ,  
Y E SR p×t', M(X*)  E intC, and in fact M(X*)  E Ci. By Lemma 17, there exists 

W E 79,5"790, rank W =/~ - 1, such that W • X* = 0. Without loss of generality, assume 

that IlWll = I .  

Let Q,~ = aW - M(X*) .  Note that since M ( X )  is symmetric (for X E 79S790), Q,~ 
is also symmetric. Moreover, Q , (vec  z )  = 0, for all Z E ~]~p×t,, since both M ( X )  and 
W are in the T~`9790 (see Eq. (25)) .  It suffices to show that there exists an ot > 0, such 
that Q ,  E in t ( -C)  (or Q E - C i ) .  Since M(X*)  E intC and/3 is closed, there exists 

fl > 0, such that infu~.llUll= I U • M(X*)  >~ fl > O. 
Hence, for all U E 13, II Ul[ = 1, 

U •Q~ = U • ( a W -  M(X*)  ) =oL(U . W) - U • M(X*) 

<~ aU • W- fl <~ a- fl. 

Therefore choosing ~, < /3, we see that for all U E 13, [IUI[ = I, U • Q,~ < 0. Hence 
Qa E in t ( -C)  (in fact Q,~ E --Ci ). 

Moreover, 

0 = 6~(X* • W) = X* • (Q~ + M(X*) ) .  

By construction, X* E 798D, rank X* = 1, and (Q~ + M(X*) )  E 798790 C_ 79S79. 
Cone-LCP (Sufficiency) Suppose there exists a rank one matrix X*, X* E SOL~,sv (Q ,M) ,  

with Q E in t ( -C) .  Then there exists Z* E ~p×t, such that, 

X* = (vec Z*) (vec  Z*) / E 79879. 

Since Q E in t ( -C)  and Q + M(X*)  E 79879, using the inclusion/3 c_ 79,979, one has 
the following: 

V A C I 3 ( A  4=0): A • M ( X * ) = A • ( Q + M ( X * ) - Q )  

=A • (Q + M ( X * ) )  - A • Q  > O. 

The last inequality follows from the fact that, for all A E /3(A ~ 0), A • Q < 0. 
Consequently, M(X*)  E intC. 
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In view of Proposition 16, there exists a rank one matrix, 

Y* = (vec W*) (vec W* ) '  E 79SD0, W E SR r xt, 

such that M(Y*) E intC. Therefore the BMI has a solution. 

The above proof can be modified in an obvious way to conclude that it is only 

sufficient to take Q E -Cl .  [] 

We shall refer to the special case of the linear complementarity problem over the 
positive semi-definite cone (34) - (36) ,  as the Semi-Definite Complementarity Problem 

(SDCP). An immediate consequence of the above theorem is that if a matrix Q E 
i nK-C)  cannot be found for which the corresponding SDCP has a solution, then the 
BM.I does not have a solution. 

Corollary 19. The BM1 does not have a solution if the SDCP (34)- (36)  is not solvable 

for any Q E in t ( -C)  (or in fact Q E --Ci ). 

It is noteworthy that the linear map M in the SDCP formulation, which arises in the 
context of  the BMI, is itself copositive with respect to the matrix cone PS:D. 

Proposition 20. The linear map M defined by (24) is 79S79-copositive. Consequently, 
if we define M*( X) = ~'/=1 H~XHi, and the implication 

XE79873,  X • M ( X )  = 0  :=~ M ( X ) + M * ( X ) = O  (37) 

holds, then for all Q E -Ci ,  the Cone-LCP~,sz~ ( Q, M) is solvable if it is feasible. 

Proof. Note that for all X C 7>SD, M(X)  C 79S79 due to the special structure of the 
linear map M (see Eq,(25) ). Since 79SD * = 79S~, X • M(X)  >>. 0, for all X E 7~SD. 

If  the implication (37) holds then M(X)  is indeed a 79SD-copositive plus map (which 
basically means that M is 7~SD-copositive and that the implication (37) holds). We now 
elaborate on the solvability of  the feasible copositive-plus Cone-LCP-ps79 (Q, M), for all 
Q E -Ci ,  based on the result of Gowda and Seidman [7]. According to Theorem 4.1 
of [7], if for a convex cone/C in a finite-dimensional Hilbert space the condition, 

{ X E / C  I M ( X )  EIC', (M(X),X)=O, < Q, X >= O} = {O} 

holds and M is copositive plus on /C, then the solution set of the corresponding 
Cone-LCP~c(Q,M) is non-empty. The statement of the proposition now follows by 
observing that for all Q E -C1 c_ - intC, the only X E 79,S'D c C for which Q • X = 0 
is X = 0 .  [] 

If one assumes that the copositive SDCPs can be solved efficiently, then the above 
proposition implies that the SDCP which arises from the BMI can be solved efficiently 
for each Q. Moreover, if for a particular M, implication (37) holds, then the corre- 
sponding SDCP is always solvable, if the BMI has a solution (using Proposition 10). 
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If the BMI has a solution, then knowledge of the direction of Q in the corresponding 

Cone-LCP~,sv(Q, M) is sufficient for finding the solution of the BMI. In other words, 
if this direction is known, the solution set of a single SDCP should be examined. This 
result is established by the following corollary. 

Corollary 21. The BMI has a solution if and only if  there exists a symmetric Q c 
i n t ( -C) ,  such that for any ce > O, the Cone-LCP~,sT~(teQ, M) has a rank one solution. 

Proof. Using the result of Theorem 18, the proof is similar to the one given for Corol- 
lary 15, and is therefore omitted. [] 

In general, finding the direction of the matrix Q E in t ( -C)  in Theorem 18 is not 
trivial. In the case where an additional assumption on the solution set of  the EFPB(M) 

is made, the direction can be chosen a priori. 

Corollary 22. Suppose that for all X* E SOL§FP(M), 

x*=(vecU*)(vecU*)'. U*,k_O, I lvecU*l /= l ,  

X* • M(X*)  <~ Y .  M(X*)  (38) 

for all extreme forms Y of 13 (Y ~ X*), Y = (vec V) (vec V) r, II vec  vii = 1. Then the 
matrix Q c i n t  ( - C )  in Theorem 18 can be taken to be any positive multiple of -It,2xr,2. 

Proof. First note that X* * 1 = (vec U*) ~ (vec U*) = It vec U* II 2 = 1. Similarly, for all Y 
of/3,  Y = (vec V)(vecV) t, II vec vii = 1, Y .  I = 1. Since M(X*)  c intC, there exists 
c~ > 0, such that X* • ( - a l  + M(X*) )  = 0. To guarantee that - a l  + M(X)  E C, we 
require that for all Z E 13, Z o ( - a l + M ( X )  ) >~ O. But this is implied by the assumption 
of the corollary, since if (38) holds, for all extreme forms Y v~ X, Y = (vec V)(vec V) ~, 

1[ vec Vll= 1, Y •  ( - o i l  + M ( X * ) )  ~ X* • (-o~1 + M(X*) )  = O. Using Corollary 21, 
the result of the corollary now follows. [] 

Remark  23. I f  in the above corollary one prefers to find a direction in -C i ,  then all 
the norm of vec conditions should be replaced by the trace condition, and -Ip'-xl,~ by 
- ( v e c  lpxp) (vec l/,×p) t E -C i .  The statement of the corollary would still be valid with 
these modifications. 

Corollary 22 reduces the BMI to examining the solution set of an SDCP with a 
79,SD-copositive linear map. In fact, the Q matrices that arise in this context have a very 
special form. 

The copositive SDCPs have much more structure than a general SDCP. Nevertheless, 
it remains to be shown whether this class of complementarity problems can be solved 
efficiently. The generalizations of the Lemke's algorithm for solving the copositive LCPs, 
or the interior point methods for the Semi-Definite Programming Problem (SDP), are 
possible objectives that could be pursued for this purpose. 
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Another Cone-LCP formulation of the BMI, besides the one mentioned above, is 
to incorporate the problem of finding the matrix Q in Theorem 18, in setting up the 
corresponding Cone-LCE For this purpose it is convenient to associate to the matrix 
cones 7)879, 13, and C (subsets of SRt'~'xt'"), the cones 79SD, /3, and C (subsets of 
]~t'4), which are obtained by applying the vec operator to these matrix cones, i.e., 

and 

79879 = {x E R 1'4 I x = vec A, A E 798D} 

- ~ = { x E ~ t ? l x = v e c A ,  ,4E/3},  C = { x E R  t'4 I x = v e c A ,  A E C } .  

It is easy to verify that 79S79, B, and C are closed convex cones in ll~t". 
Recall that for all A, B E S]~ p~×J':, 

A e B  >>.O ¢==~ (vecA)~(vecB)> /0 .  

Therefore, in view of the relation 79SD = T'SD*, the only matrices in 79--S--D * that are 
the vec form of a symmetric matrix, are those in PS79. 

Let H = y'~)i~=~ Hi ® Hi E ~ t'4×p4. For the linear map M defined by (24) and using the 

property of the Kronecker products, vec M(X)  = Hvec X. Combining the above ideas 
with the result of Theorem 18, one readily obtains the following corollary. 

Corollary 24. Let 

(0  o) 
~l  = --lp-~ X p4 

and, 

( vec - Q  
Z = \ vec X J ~ C x 7:'879. 

Then the BM1 has a solution if and only if  the homogeneous Cone-LCP~x~--S--~(0, M) 
has a solution of the form 

~ = ( v e c - 0 " ~  

k vec:  7' 

where -Q_ E intC, and X has rank one. 

We note that if Q E - C  and X E 79SD, then Q + M(X)  is automatically symmetric 
and therefore if vec(Q + M(X*) ) E ~-S--D*, then Q + M(X*) E 79SD. 

The above corollary reduces the BMI feasibility problem to the problem of examining 

the solution set of a certain Cone-LCP. This can be a "tractable" problem if the solution 
set is finite, or if the linear map /~ enjoys certain "additional" properties. Since there 
are various results in the complementarity theory which pertain to the cardinality of the 
solution set of a Cone-LCP [ 11 ], classification of efficiently solvable instances of the 
BMI can be based on those results as well. 
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4. Concluding remarks  

271 

In this paper, we have established various connections between the Bilinear Matrix 
Inequality (BMI) and three problems over matrix cones. The first two problems, which 

we have referred to as the Extreme Form Problem (EFP) and the linear programming 
problem over matrix cones (Cone-LP), were formulated over a generalization of the 

cone of completely positive matrices. The above two cone problems facilitate our un- 
derstanding of the geometry of the BMI. Nevertheless, the computational implications 
of these formulations tun into difficulty, since the completely positive matrices can not 
be efficiently characterized by means of an algorithm. The last cone problem which 
we have established its connection with the BMI, is the linear complementarity problem 
over the cone of positive semi-definite matrices (SDCP). The SDCP is readily amenable 
to an interior point approach. In this later case, the existence of a solution to the BMI 

is checked by examining the solution set of an SDCP. The actual solution to the BMI 
can then be constructed by solving a linear matrix inequality (LMI) which can be done 

via an interior point algorithm. 
This work can be continued in several directions. One such direction is to study 

in greater detail, the properties of the various matrix cones introduced in this paper. 
We believe that the Extreme Form Problem (EFP) and the linear complementarity 
problem over the positive semi-definite matrices (SDCP) are of independent interest, 
which warrants research efforts for understanding of their properties and constructing 
computational procedures for their solution. 
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