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" Nonclassical Control Problems and
Stackelberg Games

GEORGE P. PAPAVASSILOPOULOS, STUDENT MEMBER, I1EEE, AND JOSE B. CRUZ, JR., FELLOW, IEEE

Abstract—A nonclassical control problem, where the control depends on
state and time, and its partial derivative with respect to the state appears in
the state equation and in the cost function is analyzed. Stackelberg
dynamic games which lead to such nonclassical control problems are
considered and studied.

INTRODUCTION

H IERARCHICAL and large scale systems have re-
ceived considerable attention during the last few
years; firstly because of their importance in engineering,
economics, and other areas, and secondly because of the
increased capability of computer facilities [13], [14]. An
important characteristic of many large scale systems is the
presence of many decision makers with different and
usually conflicting goals. The existence of many decision
makers who interact through the system and have dif-
ferent goals may be an inherent property of the system
under consideration (e.g., a market situation), or may be
simply the result of modeling the system as such (e.g., a
large system decomposed to subsystems for calculation
purposes). Differential games are useful in modeling and
studying dynamic systems where more than one decision
maker is involved. Most of the questions posed in the area
of the classical control problem may be considered in a
game situation, but their resolution is generally more
difficult. In addition, many questions can be posed in a
game framework, which are meaningless or trivial in a
classical control problem framework. The superior con-
ceptual wealth of game over control problems, which
makes them potentially much more applicable, counter-
balances the additional difficulties encountered in their
solution.

A particular class of games are the so-called Stackel-
berg differential games [1]-[8]. Stackelberg games provide
a natural formalism for describing systems which operate
on many different levels with a corresponding hierarchy
of decisions. The mathematical definition of a general
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two-level Stackelberg game is as follows. Let U, V' be two
sets and J,, J, two real-valued functions

J:UXV—R, i=12. 1))
We consider the set valued mapping T
T:U—V, us>TuCV )
defined by
Tu={v|v=arginf [J,(u,5); TEV]}. (3)

Clearly Tu= if the inf in definition (3) is not achieved.
We also consider the minimization problem

inf J(u,v)
subject to: uc U, vETu,

(4)

where we use the usual convention J;(u,v)=+ o if vETu
=d.

Definition: A pair (u*,0*)EU X V is called a Stackel-
berg equilibrium pair if (4*,0*) solves (4).

The sets U and ¥V are called the leader’s and follower’s
strategy spaces, respectively. The game situation described
by the mathematical formulation above is as follows. The
follower tries to minimize his cost function J,, for a given
choice of u€ U by the leader. The leader knowing the
follower’s rationale, wishes to announce a u* such that the
follower’s reaction v* to this given u* will result to the
minimum possible J,(u*,0*). The general N-level Stackel-
berg game is defined analogously. Stackelberg differential
games were first introduced and studied in the engineering
literature in [2] and further studied in [3]-[8]. They are
mathematically formalized as follows:

2(0)=fx(0),a(8),5(1),1),  x(t)=xo
T (u,0) =g (x(1).1) + f, YL (0)75(6), 5(0).0)
i=1,2 (5

where f, g, L, are appropriately defined functions. Also,
uc U, vEV, where U, V are appropriately defined func-
tion spaces and i(f), ©(f) are the values of u and v,
respectively, at time ¢, i.e., #(f) = ul,, o(#)=v|,. The type of
strategy spaces U and V which were considered and
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treated successfully in the previous literature were the
spaces of piecewise continuous functions of time. In this
case, the problem of deriving necessary conditions for the
Stackelberg differential game with fixed time interval and
initial condition x,, falls within the area of classical con-
trol. Thus, variational techniques can be ‘used in a
straightforward manner. The case where the strategy
spaces are spaces of functions whose values at instant ¢
depend on the current state x(¢) and time ¢, i.e., #()=u|,
=u(x(t),t), o(f)=rv|,=v(x(t),?), was not treated. This
case results in a nonclassical control problem because
du/dx appears in the follower's necessary conditions.
Since the follower’s necessary conditions are seen as state
differential equations by the leader, the presence of du/dx
in them makes the leader face a nonclassical control
problem.

In the present paper, the nonclassical control problem
arising from the consideration of the above strategy
spaces is embedded in a more general class of nonclassical
control problems; see (20)—(22). The characteristics of this
general class of problems are the following: 1) each of the
components u‘, of the control m-vector u, depends on the
current time ¢ and on a given function of the current state
and time, ie., u'|,=u'(h'(x(1),1),1); 2) the state equation
and the cost functional depend on the first-order partial
derivative of u with respect to the state x. The vector
valued functions A’ may represent outputs or measure-
ments available to the ith “subcontroller,” in a decentra-
lized control seting. The only restriction to be imposed on
h' is to be twice continuously differentiable with respect
to x. This allows for a quite large class of A"’s which can
model output feedback or open-loop control laws. It can
also model mixed cases of open-loop and output feedback
control laws where during only certain intervals of time an
output is available. The appearance of the partial deriva-
tive of u with respect to x prohibits the restriction of the
admissible controls to those which are functions of time
only. It will become clear that the extension of our results
to the case where higher order partial derivatives of u with
respect to x, up to order N, appear is straightforward.
This case is of interest in hierarchical systems since it
arises, for example, in an N-level Stackelberg game where
the players use control values dependent on the current
state and time. Although the bulk of the analysis provided
in this paper concerns continuous-time problems, the cor-
responding discrete-time results can be derived in a very
similar manner.

The structure of the present paper is as follows: In
Section I a two-level Stackelberg differential game is
introduced for a fixed time interval [4y,¢] and initial
condition x(#,) = xo. The leader’s and follower’s strategies
are functions of the current state and time. This game
leads to the consideration of a nonclassical control prob-
lem which is studied in Section II. In Section III we use
the results of Section II to study further the game of
Section I, and in particular we work out a linear quadratic
Stackelberg game. In Section IV the relation of the Stack-
elberg game, introduced in Section I, to the principle of
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optimality is investigated. Finally we have a Conclusions
section and two Appendices.

Notation and Abbreviations

R™:. n-dimensional real Euclidean space with the
Euclidean metric;
I ||: denotes the Euclidean norm for vectors and the
sup norm for matrices;
’: denotes transposition for vectors and matrices.
For a function f: R"—>R™ we say that f€ C* if f has
continuous mixed partial derivatives of order k. For f:
R">R, Vf is considered an nX1 column vector and f_,
denotes the Hessian of f. For f: R"—R"™, Vfis considered
an n X m matrix (Jacobian). For f: R"X R*—>R™, where
XER", y ER*, fix,y)E R™, we denote by df/dx or f, or
V_f the Jacobian matrix of the partial derivatives of f with
“respect to x and is considered as # X m matrix.
w.r. to: with respect to;
w.l.o.g.: without loss of generality;
n.b.d.: neighborhood.

I. A STACKELBERG GAME

In this section we introduce a two-level Stackelberg
game and show how it leads us to the consideration of a
nonclassical control problem. This nonclassical control
problem falls into the general class to be considered in
Section II.

Let

U= {ulu: R"X[ty,t]]->R™, u(x,n)€R™ for
xER" and tE€[ty1], ulx,1) exists and (6)
u(x,t), u,(x,t) are continuous in x and
piecewise continuous in ¢}

V={v]v: [t,,44]>R"™, v is piecewise continu- )
ous in ¢}.

Consider the dynamic system

£(1) = f(x(0).@(1).5(1).1). x(10)=%o 1€[ 18] (8)

and the functionals

J(u,0) = g(x(1,)) + f "LOx(0).a@(0),5(1). )t (9)
Jo(u,0) = h(x(1)) + f “M(x(0).i(0).5(1) 1) (10)

where u€ U, v €V, x is the state of the system, assumed
to be a continuous function of + and piecewise in C' w.r.
tot, x: [to,4]—>R", and the functions f: R" X R™ X R™X
[tot]}>R", g,h: R"—>R, L, M: R" X R™ X R™X[t, 1>
R. are in C' w.r. to the x, u, v arguments and continuous
in ¢. The u and v are called strategies and are chosen from
U and V which are called the strategy spaces, by the two
players, the leader and the follower, respectively. With the
given definitions, for each choice of u and v, the behavior
of the dynamic system is unambiguously determined,
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assuming of course, that for the selected pair (u,v) the
solution of the differential equation (8) exists over [£y,].

Let us assume that a Stackelberg equilibrium pair
(u*,v*)€ U X V exists. For fixed u€ U, Tu is determined
by the minimization problem

minimize J,(u,v) (1)

subject to: vEV
x=fx,u(x,t),0,1), x(15)=xo, tE[to.tf]

and thus, applying the minimum principle we conclude
that for v € ¥ to be in Tu, there must exist a function p:
[te 4} R" such that

x=f(x,u,0,t) (12a)
M, +fp=0 (12b)
—p=M +uM,+(f+uf)p (12¢)

3h(x(1,)) L
—Tf—. (12d)

x(to)=xo p(t)=

We further assume that U is properly topologized. Condi-
tions (12) define a set valued mapping 7': U-V. By
using the nature of the defined U and ¥V and the fact that
(12) are necessary but not sufficient conditions it is easily
proven that

i - TuCT u,

ii) J(u,v') > (u,0) V:0'ET'u,vETu,

iit) T'u*n Tu* 2 {v*} #*3.
Notice that J,(u,v) takes one value for given u and any
v € Tu, while J,(u,v"), v’ € T'u does not necessarily do so.
We assume now the following,.

Assumption A:

Ji(u,0") 3J,(u,v) forv€T'u, vETu, uc U}

(13)

where Uf is a n.b.d. of u* in U.

For Assumption A to hold it suffices for example:
T=T on U%.! We conclude that if Assumption A holds,
then u* is a local minimum of the problem

minimize J,(u,v)
subject to: ue U, vET u

or equivalently

minimize J,(u, v)

subject to: u€ U, vEV (14)

x=f(x,u,0,1) (15a)

—p=M +uM,+(f+uf)p (15b)

M, +fp=0 (15¢)
oh

w=r pli)= 2B (g

The problem (14) is a nonclassical control problem of the

1See Appendix A.
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type to be considered in the next section, since the partial
derivative of the control ¥ w.r. to x appears in the con-
straints (15) which play the role of the system differential
equations and state control constraints, with new state
(x",p’Y’. Notice that the leader uses only x(#) and ¢ in
evaluating u(x(?),f) and not the whole state (x’,p’)’; i.e.,
the value of u at time ¢ is composed in a partial feedback
form with respect to the state (x',p")’; (recall the output
feedback in contrast to the state feedback control laws). If
one were concerned with a Stackelberg game composed of
N (2 2) hierarchical decision levels [7], [8], then the leader
would face a nonclassical control problem where the
(N — Dth partial of u with respect to x would appear.

We will assume that the state-control constraint (15¢)
can be solved for v over the whole domain of interest to

give
(16)

where S is continuous and in C! w.r. to x and p. This
assumption holds in many cases, as for example in the
linear quadratic case to be considered in the next section.
In any case, direct handling of the constraint (15¢) by
appending it, or assumption of its solvability in v, does
not seem to be the core of the matter from a game point
of view. However, the following remark is pertinent here.
Assume that we allow v €V, where

v="S(x,p,u,t)

V={v|o:R" X[t,, L}->R™, o(x,f) piecewise
continuous in ¢ and Lipschitzian in x (17)
where x € R" and ¢ E[¢,, 11

instead of v € V. The assumption of solvability of (15¢)
will again give

(18)

Since v(x,f) will be substituted in the rest of (15) with

S(x,p,u,t) from (18), the leader will be faced with exactly

the same problem as after substituting o(f) with S from

(16). Therefore, no additional difficulty arises if one

allows ¥V instead of V and assumes solvability of (15¢).
Substituting v from (16) to (15) we obtain

« .. f/ ~
= +
minimize J(u)=g(x(1)) f’ 0 L(x,p,u,t)dt

o(x,0)=S(x,p,u,1).

subject to:

s

x(to) = xg, P(tj) =

Fy(x,p,u,t)
FZI(x’P’u’t) + uxF22(x’P’u’t)

3h (x(1) )
ax

] (19)

where L, F,, F,,, F,, stand for the resulting composite
functions. Problem (19) is a nonclassical control problem
like the one treated in Section II where (x’,p’)’ is the state
of the system.

Besides the procedure described above which leads to
the consideration of the problem (19), there are other
cases in which such problems arise. For example, in a
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control problem where the state x is available, stochastic
disturbances are present, and the time interval [1,4] is
very large, synthesis of the control law as a function of x
and ¢ is preferable over a synthesis not using x (open
loop). In addition, », might be penalized in the cost
function or be subjected to bounds of the form |u,(x(),?))
<K, 1€[tg, 1], where K >0 is a constant.

II. A NONCLASSICAL PROBLEM

Consider the dynamic system described by

X(0)=f(x(0),u'(h'(x(1),1),1),
W (R (x(0),0),1), - - ,u™(h™(x(2),2),1),
u;(hl(x(t)’t)’t)" o ’u:l(hm(x(t)’t)’t)’t) (20)
x(t)=x4  1€[105]

and the functional

J(u)=g(x(2)) + f L(x(s),

u' (R (x(£),0),0),- - ,u™(h™(x(2),1).1),
ul(R'(x(2),0),0),- - - ,um™(h™(x(2),1),1),1) dt
(21)

where the functions f: R"*m+mi*tl_,Rn [: Rrtmtmat]
—R, hi: R"*'SR% i=1,---,m, g: R"—>R are continu-
ous in all arguments and in C'! with respect to the x, u, u..
The functions A'; R"*'—>R% are continuous, and in C?
w.r. to x.2 The solution x(¢f) of (20) is assumed to be
continuous and piecewise in C! w.r. to z. The time interval
(10 1/] is considered fixed w.l.o.g. (see [10, p. 27])). We want
to find a function u where

u': R"X[tp,4,]>R, i=l---,m
ul(h'(x,1),1) exists and w'(h'(x,1),t), uy(h'(x,1),) are con-
tinuous in x and piecewise continuous in ¢, for xER",
tE€[ty,t}, i=1,---,m so as to minimize J(u). We denote
by U the set of all such u’s. Therefore, the problem under
investigation is

minimize J(u)

— (22)
subject to u € U and (20).

IThe restriction h € C? w.r. to x is somewhat strong. For example, the
case h(x,0)=x if 19 <t <1y, h(x,0)=0 if t; <1<y, ie., the state is availa-
ble only during a part of the {1,1] is not included. Nonetheless, it can be
approximated arbitrarily close by a C? function, like any function which
is onlx piecewise C2. Consequently, from an engineering point of view,
hEC* w.r. to x is not a serious restriction.
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This problem is posed for a fixed time interval [#,4] and a
fixed initial condition x(¢y) = x,. Therefore, the solution
u*, if it exists, will in general be a function of #, #, x,, in
addition to being a function of h(x,?), t, but we do not
show this dependence on t,, , x, explicitly.

We use the notation

du'
f,= : , mXn matrix,
of
i du™ |
[ AL |
ou'
L= . , mX1 vector
oL
L aum-
fi= af_, n X n matrix, i=l,m
3(uy)
L= E)L. ,  nXnvector, i=1,---.m (23)
3(uy)
i ou'(y'1) i i i Y
u=—r > Y =Ub ) €RE
J
hi=(h{""’ltj'i""’h¢;;),’ i=l"",m,j=1""’qi
wi=(uj,--- ul), uli=g,xg Hessian
. OR'(x,1) wui(y't
ul= ;;‘ )- u(yi ) , nX1 vector,
: % |y = hi(x,0)
i=L---.m
“x=[“:: P ;u;"], nX m matrix.

It should be pointed out that the arguments used in
classical control theory for showing that for the fixed
initial point case, it is irrelevant for the optimal trajectory
and cost whether the control value at time ¢ is composed
by using x(¢) and ¢ or only ¢ do not apply here in
general. If u|, = u(t), t €[ty, 4], then u, =0 and this changes
the structure of problem (22). Consideration of variations
of u, is also needed and this was where the previous
researchers stopped; see [4]. This problem is successfully
treated here. We provide two different ways of doing that,
the first of which is based on an extension (Lemma 2.1) of
the so-called “fundamental lemma” in the Calculus of
Variations (see [12]).

3This holds if 1) the set of the admissible closed-loop control laws
contains the set of the admissible open-loop control laws and 2) if «*
is an optimal closed-loop control law generating an optimal trajectory
x*(2), then o*(¢) & u*(x*(2),) is an admissible open-loop control law.
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The following theorem provides necessary conditions
for a function u€ U to be a solution to the problem (22)
in a local sense; (we assume that U is properly topolo-
gized). It is assumed in this theorem that the optimum u*
has strong differentiability properties, an assumption
which will be relaxed later, in Theorem 2.1. The proof of
this theorem is based on the following lemma.

Lemma 2.1: Let M: [to,4;]>R™, N;: lip t}>R", i=
1,--+,m, y: [1p, 4] R", be continuous functions, such that

S [ N5, 0)di=0

[ M ().t +
I i=1%1o
for every continuous function @: R" X[t ]—>R™, where
e=(9"---,¢™), and ¢ is in C' wr. to y. Then
M,N,,---,N,, are identically zero on [f, 4] »
Proof of Lemma 2.1: The choice ¢, =
©,---,0,9°,0,---,0), ¢': [fe:2]>R, ¢’ continuous in ¢,
i=1,---,m, yields M=0 on [fo,4] Since M =0, the
choice @ =(0,"-,y'y,0,---,0), ¢'=y'y, where ¢y=
W58 ¥t [te]—>R", ¢ continuous in f, results in
JIN/(DY(Ddt =0, for every such ¢, and thus N,=0 on
[#e,#/] is proven in the same way as M =0 was proven. []
The conelusion of the above lemma holds even if the
restriction @'(x,8)=yfv- - yk 4N is imposed, where
ki - .k,A; are nonnegative integers, since the poly-
nomials are dense in the space of measurable functions on
[tov tf] 7

Theorem 2.1’: Let u*€ U be a solution of (22) which’

gives rise to a trajectory I';={(x*(#),)|t€E[tp, 4]}, such

that u; are in C' w.r. to x in a nb.d. of {(h'(x*(D),1),1),
tE[ty,4/]}. Then there exists a function p: [¢,#]—R" such
that

m 4
—P(O)=L+fp+ 2 2 4 Vuhi(L+fp) (24
jm=] jm
L,+fp=0 (25)
V.h'(L+fp)=0, i=l,---,m (26)
)
p(y)= -i;(cﬁ (27)

hold for t€[t,,1], where all the partial derivatives are
evaluated at

x*(0),u’ (' (x*(1),2), ), ul (R (x*(2),0),1),t.

The proof of this theorem by using variational tech-
niques and Lemma 2.1 is simple but lengthy. For the sake
of completeness, we give it in Appendix B.

We now give a different derivation of the results of
Theorem 2.1’, under weaker assumptions, which provides
an interpretation for them and at the same time an exten-
sion of the region of their validity. Let

U= {glﬁ : [ to tj]—>R", i piecewise continuous}. (28)
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Consider the problem

i) =8(x(1)))

+ f""L(x, i,V h'(x, )iy, - -,V h™(x, )i, 1) dt
o

minimize J (&, u,,- - -

subject to x=j(x,ﬁ.Vxh’(x,l)l7|,' e,

V" (x, 0, t),  x(t))=xq 1€[15Y]

wel,, weU,, i=1,---,m. (29)
Clearly, if J¥, J¥ are the infima of (22) and (29), respec-
tively, it will be J¥<J}. Also, if w=(i',---,a™),
u,,- - ,a, solve (29) and give rise to x(1), then a u=
(u', -, umy €U with

u!(h'(x(1),0),1)
: =u(1), (30)
u'"(h”'(;c(t),t), )
whi(x(1),0,0)=V h(x(),0)@(t) i=1--,m
results in J,(u)=J(i, 7, -+ +,il,) and gives rise to the same

x(t). However, such u € U does exist. For example, we set

uw'(hi(x,0,0)=a()h'(x,0)+ b(2) (31)

where
a(t)=u(1) (32)
b(ty=u'(t)—a()h'(x(1),1), i=1l,---,m. (33)

This u satisfies (30). Thus, problems (29) and (22) are
actually equivalent, in the sense that for each given (x,1y)
they have the same optimal trajectories and costs and
their optimal controls are related by (30).

The conditions of Theorem 2.1’ are now directly veri-
fied to be the necessary conditions for problem (29),
where one should use # and % in place of  and u,
respectively. More importantly, the conditions of Theo-
rem 2.1’ hold if one considers simply u*€ U, without
assuming that u” is in C' wr. to x in a nbd. of
{(R'(x*(),1),1), tE€[ty,1]}. This weakens the strong dif-
ferentiability property of u* assumed in Theorem 2.1’. The
relative independence of wu, uy‘ was exploited in proving
Theorem 2.1’, when the special form of the perturbation
o(y,1), y'¥(1) (see proof of Lemma 2.1), sufficed to con-
clude (25) and (26). This independence of ¥ and uy' was
taken a priori into consideration when problem (29) was
formulated. Clearly, even if higher order partial deriva-
tives of u w.r. to x appear in f and L, or if u, u); are
restricted to take values within certain closed sets, the
equivalence of the corresponding problems (22) and (29)
holds again (with appropriate modifications of the defini-
tions of U, U,, f, and L). We formalize the discussion
above in the following theorem.
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Theorem 2.1: Let u* € U be a solution to the problem

minimize J(u) = g(x(1,)) + f "L(xuul,-- - umb)dt (34)
o

subject to: X = f{x,u,ul,- - - ,ul,1),
x(t) = Xg tE[1es1], UEU,
(' (A" (x(1),0),0),- - - u™(R™(x(0),0),
u(h'(x(1),1), 1), umm(Rm(x(t), t),t)’) eV,
(35)
where V,C R™* ™" is closed. Then there exists

p: [ to,t]—R" such that
m & ) (36)
—p=L.+fp+ E} El 'V B/ (Li+ fp)
LEx*(0),u" (R (x*(1), 1), 1), -,
u™ (h™(x*(1),0),0),u; (R (x*(0),0),1), - -,
u™ (h™(x*(1),1),1),1)
+f(x*(0),u"" (R (x*(2).1), 1), - -,
u™ (h™(x*(2),0),0),u;" (h'(x*(1),0),1),- -,
ul (h™(x*(0),1),1),2)p(1)
<L(x*(1), 90, -+ »455 V' (M) D)y, -+
V. A" (x*(2), )G, t)
+f(x*(0). 90,455 V' (x*(1),0) gy - -
VA" (x*(1),0) g, 1):p(1)

V(g8 *+a8as - a) EVe (37)

o(0)= 3g(x*(1,))

P (38)

for t €[, 1] 0

It is remarkable that the established equivalence of the
problems (22) and (29) refers to the optimal trajectories,
costs, and control values. It does not refer to any other
properties, such as sensitivity, for example. It is thus
possible that different realizations of u'(hi(x,0),f) other
than (31) may enjoy sensitivity or other advantages. The
following proposition provides information for tackling
such problems.

Proposition 2.1:

i) If u and v are elements of U, both satisfying (30), so
does Au+(1—-N)u, VAER.

i) Let m=1, h'(x,0)=x,, and X, &, #, be scalar valued
functions of 1,t €[, 1]. Then the function

u(x,1) = e* =% (1)

+ ['71(’)")?1(1)‘7(‘)]' [xl "fl(t)]

satisfies u(x(¢), ) = u(?), u (x(t),t)=u,(1).
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iii) Let x, &, &, be as in ii). Assume that the scalar
valued functions u(x,f), v(x,t) satisfy u(x(2),t)=o(X(1),t)
=u(t) and w (X(1),1)= v (X(2),t)=1u,(t). Then so do the
functions 2uv/(u+ ), Vuv , \(u?+v%)/2 , assuming that
u and v are properly behaved.

The proof of this proposition is a matter of straightfor-
ward verification. The assumption in parts i) and 1ii) for
scalar valued quantities actually induces no loss of con-
ceptual generality since it can be abandoned at the ex-
pense of increased complexity of the corresponding ex-
pressions, of course.

The nonuniqueness of the solution u to problem (22) is
obvious in the light of (30) and Proposition 2.1. Nonethe-
less, this nonuniqueness is a nonuniqueness in the repre-
sentation of u’ as a function of 4* and ¢, while u|,, u/|, are
the same for all these representations. The nonuniqueness
of uf, uyi.l,, if any, can be characterized in terms of the
possible nonuniqueness of the a,(¢f), b(¢) [see (31)], where
one, w.l.o.g, restricts u’ to affine in A’ controls.

One very basic difference between problems (22) and
(29) is the following. It is clear that the principle of
optimality holds for both of these problems, in the sense
that the last piece of each optimal trajectory is optimal.
The existence of a closed-loop control law (i(x,?),
iy (x,1)," - - ,it,(x,t) which results in an optimal solution to
problem (29) for every initial point (x,,1,) in a subset of
R"*! is guaranteed under certain asiumptions; see [11]. A
corresponding statement does not hold for problem (22),
ie., in general, there do not exist functions u’ of A'(x,?)
and ¢ such that u=(u',---,u™) is an optimal solution to
problem (22) for every initial point (x,,?,) in a subset of
R™*!. This can be easily seen to hold by the following
argument. Let such u exist. Then

(' (A%, 0),0), - (™ (x,0),0),
wh(h'(x, 0,2, - um(h™(x, 0),8)Y

is a closed-loop control law for problem (29). This implies
that there must exist a solution (i,i,,---,#,) with u=
@i',---,u™) of the partial differential equation of dy-
namic programming associated with problem (29) which
satisfies u'(x, ) = u'(h'(x,1),t) and Qu‘(x,)/dx
=V _hi(x,0)-u(x,t), i=1,---,m, which is not in general
true.* This difference between problems (22) and (29)
emphasizes the fact that their equivalence holds in a
restricted fashion, i.e., for each initial point considered
independently and not in a global fashion, as a closed-
loop control law treats the initial points.

Two final remarks before entering the next section are
pertinent here. First, that the established equivalence of

“Imposing the condition (3&')/dx =V h*i, where @'(x,1), #(x,?) are
given in terms of (3¥(x,1))/dx, where V(x,1) is the value function for the
control problem (29), results in a condition that ¥ must satisfy in
addition to being a solution of the dynamic programming partial dif-
ferential equation. This procedure can be used to single out a class of
control problems (22) where a closed-loop control law exists.
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the problems (22) and (29) reduces all questions of ex-
istence, uniqueness, controllability, and of sufficiency con-
ditions for problem (22) to the corresponding ones for
(29). Any problem of the form (22) where terminal con-
straints and control constraints are present can be solved
and necessary and sufficient conditions can be written
down in as much as this can be done for the problem (29)
with the corresponding constraints considered in addition.
Second, Theorem 2.1 still holds if instead of the initial
condition x(75)= xg, it is given: x“(fp)=xg and x”(t,)=
xf, where x={(x%x?Y. In this case, (38) is modified to

3g(x*(1)
9(x?)

ah(x5(1,))

S07) (39)

pe(4)= and pA(15)=

where the more general cost functional
J=g(x(1)) +h(xP(15)) + f “Lix,u,)dt  (40)
iy

is considered (see [10]).

I1I. SOLUTION OF THE STACKELBERG GAME

In this section we analyze the Stackelberg game of
Section I by using the results of Section 1. In particular,
we work out a linear quadratic Stackelberg game, where
the leader is penalized for u; as well.

Let us consider the Stackelberg game of Section 1. In
this case, the #”’s for the leader (u), are

RGP )=[Txn Onn][ 5 ]|=,

and the h”s for the follower (v) are identically zero.
Different 4"’s may be used to model different information
structures in terms of x(¢), and ¢ available to the leader
and follower at time ¢. Thus, Theorem 2.1 is applicable
and can be used for writing down the leader’s necessary
conditions. From the results of the previous section, we
conclude that the solution for the leader’s u, if it exists, 1s
not unique. It is interesting to notice that (31) implies that
the leader has nothing to lose if he commits himself to an
affine in x, time-varying strategy. With such a commit-
ment, the leader does not deteriorate this cost, does not
alter the optimal trajectory, and also the follower’s opti-
mal cost is not affected. More noteworthy is that the
affine choice for the leader can be made even if f, L, M
are nonlinear and u, u! are constrained to take values in
given closed sets. In addition, v may be constrained to
take values in a given closed set in which case (l5c)
should be substituted by an appropriate inequality. In
accordance with the discussion in the previous section, we
have that in general there does not exist a strategy u(x,1)
which is optimal for every initial point (x4,1,) in a subset
of R**1,

Let A=(\},A}) denote the adjoint variable for problem
(19) with A;, A, corresponding to x and p, respectively.

Then, condition (37) results in

[ M (x,u.S(x.p.u,t),1)

+f(xu,S(x.put).pJA=0  ViE€[1p1],

41

which will generally make the leader’s problem singular
[9]. This is to be expected because the leader exerts his
influence through the time functions resulting from » and
u,, which are actually quite independent, and u, is not
penalized or subjected to any constraint in the initial
formulation (8)~(9). In other words, the leader is more
powerful than what a first inspection of the original prob-
lem indicates. One way to restrict the leader’s strength or
to avoid the singular probiem could be the inclusion of u]
in L, i.e, L= L{x,u,u},---,u™1), which would model a
self-disciplined leader, or to impose a priori bounds on u,,
for example, ||uil| <K, Vi€[1,,1], which could be inter-
preted as a constitutional restriction on a real life leader.

It could be suggested to the follower to penalize u! in
his criterion while u, is not penalized in the leader’s
criterion. This would lead to the appearance of /, in (19)
(assuming u;_ exists). Thus, in addition to (41), a similar
condition due to u!, appears which reinforces the singular
character of the problem. If the leader now restricts
himself to affine strategies in x, then u] =0 and the
resulting optimum is as before. Actually, the leader can
restrict himself to a quadratic strategy in x (without
affecting his global optimum cost and trajectory) having

thus three influences on the system, namely u, u,, u,,,

" from which only u is penalized in the leader’s criterion.
. Therefore, the leader will do better. For the follower, it is
‘not obvious if he will do better or not.

Let us work out a linear quadratic Stackelberg game.
The leader is penalized for u; as well, by including it in L.
We consider the dynamic system

X=Ax+ Bu+ By,  x(t)=x, 1€[t1] (42)

and the cost functionals

Ji(u,v)= %[x;KUxf+ fl"'(x’Q,x +u' R, u
L

xXT17Xx

+oR e+ S u’R-u‘)dt} (43)

i=1

Jy(u,0)=1 [x}Kzfxf

+ J( (x O,x+ ' Ryu+ U'an)d!} (44)
fo

where the matrices 4, B,, Q,, R;. R, are continuous func-
tions of time and Q, R,, R, >0, R;;>0 are symmetric.
R,,>0 is nonsingular V1 &[¢, t;]. which guarantees (16).
The follower’s necessary conditions are [recall (15}]
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=—Ry'Bjp (45)
X=Ax+Bu—B,R;,'B'p (46)
p=—Qx—uRpu—Ap—ubBip (47)
x(£5) = x,, P(tf) = Kyx;. (48)
Therefore, the leader’s problem is [recall (14), (19)]°
it 1 ’ yl ., ’
minimize J(u)= i[folfxf+f (x Q,x+u' Ry u
fy
+p'ByRy;'RpRy; 'Byp + 2 “wR,“x) d’] (49)
i=1
subject to:
. x=Ax—B,R;'B;p+ Bu (50)
p=—Qx—A'p—uBp—uRyu (51)
x(to) = xo, P(’f) = Kypx;. (52)

The necessary conditions for the leader in accordance
with Theorem 2.1 are (50), (51), (52) and

R“u + B;Al - Rélu;A2=0 (53)

[ Ryl D+ D Rum | +Ay(Ryu+ Bip) =0 (54)
A== x— A\ + QA (55)

X2 =—B,R;'R\;R; 'Bip+ ByRy; 'BA
+ A\, + Byu A, (56)
Al =Kyx,, A1) =0. (57)

For simplification we assume further that
R=vI, yv,=vy>0, i=1,---,m,

R,=1, R,=1I (58)

and (53), (54) are easily solved for u and u, to yield

A 2 -1 A 2
LIl RlezlJ [ mﬁn 2 g g

(59)

U =— %Az[p'B, +u'R;, ] (60)
which can be substituted into (50), (51), (55), (56) to yield
a nonlinear system of differential equations, with un-
known x, p, A;, A, and boundary conditions (52) and (57).
If y—+ o0, then (59) and (60) yield ¥, —0 and u— — B{A,,
and thus the solution tends to the open-loop solution, i.e.,
u=u(t), v=0(t), as the resulting form of (50), (51), (55),
(56) indicates y— + o0 [2], [3].

5We assume that Assumption A holds. See also Appendix A.
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IV. RELATION TO THE PRINCIPLE OF QPTIMALITY

It has been shown in [4] through a counterexample that
the principle of optimality does not hold for Stackelberg
games. To make this statement more precise, let us
assume that the Stackelberg problem of Section I has been
solved in [, 4] and x* is the optimal trajectory. While the
process is at (x*(1),7), where ¢, <t<t, we stop and solve
the same Stackelberg game on [¢,#] with initial condition
x(f)=x*(). Let ¥* be the optimal trajectory for the
second problem. Then x* does not have to coincide with
the restriction of x* on [¢,4]. The explanation is the
following. The leader is faced with the control problem
(19) which has boundary conditions x(#)= x, and p(t)=
(@h(x(t)))/dx, given at t, and #. Let (x*p*) be the
optimal trajectory of this problem. If the leader is asked to
solve the same control problem on [, 1} with boundary
conditions x(f)= x*(t) and p(t;)=(0h(x(t;)))/dx, there is
no necessity for p(¢)= p*(t)' Even more, if A, A, are the
adjoint variables of the leader’s control problem on {¢,]
and A}, A, are the adjoint variables of the leader’s control
problem on [, 4], corresponding to x and p, respectively,
it will be A (tj) = (0g(x*(1)))/3x, Ay (tp) =0, )\,(tf) =
(0g(x*(1)))/ 9x, A(6)=0. If the principle of optimality
were holding, it should be- Az(t) A,(f)=0, which is not
true. Actually, )\2(1) 0, Vte[to, 4] is a necessary condi-
tion for the principle of optimality to hold. The condition
A (0)=0, V1E[ty,4] can be used for deriving more explicit
conditions in terms of the data of the problem for the
principle of optimality to hold.

Let us consider the linear quadratic game of Section III.
As it was shown in the previous paragraph, A,(#)=0,
Vi€[ty 4] is a necessary condition for the principle of
optimality to hold. With A, =0, (56) yields

= B,Ry;'R 3Ry 'Byp+ ByR5; 'BoN =0

from which, by assuming rank B,=m,, we obtain equiv-

alently
12R22 lep + B A =0.
Also, (54) yields
ul =0, (61)

We conclude that under the assumption rank B,=m,,
(50)-(57) simplify to give

i=],"‘,ml.

X=Ax+ Bu+ Byv (62)

X1 =—Qx—A'\ (63)
Ryu+BA =0, R,0+BA =0 (64)
x(to)=xq, }‘l(tf)=K1fxf (65)
P=—Qx—Ap (66)
v=—Ry;'B;p (67)

()= Kypx;. (68)
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Equations (62)-(65) show that the leader’s problem can be
considered as a team problem under the “constraint” (61),
with optimal solution, say («*,v*) and (66)—(68) show that
the same v* must be the follower’s optimal reaction to the
leader’s choice u*. Actually, (61) is not at all a constraint,
since with A,=0, (51), (where u/ appears) is not really
considered by the leader. So, the leader operating under
(50) and wanting to minimize (43) may as well choose
u! =0, since he is penalized for u/, while u/ does not
appear in (50).

The same analysis and conclusions carry over to the
more general game of Section I [see (6)-(10) and (16)]
since the condition A;=0 on [¢,4] comes from the de-
mand that the transversality conditions hold V¢ €[z, 1]
and is not affected by the fact that in (9) u is not
penalized. Notice that if the leader’s cost functional (9) is
substituted by

Jl(u,v)=g(x(tf))+f’f{ L(x,u,0,t)+ § u;"R,.u;'}dt

i=]

R >0, i=1---,m, (69)

then (61) holds again.

~ The idea behind the condition A,=0 on [#y,4] is that the
leader is not really constrained by the follower’s adjoint
equation and therefore the leader’s problem, being inde-
pendent of the follower’s problem, becomes a team con-
trol problem.

In conclusion, a necessary condition for the principle of
optimality to hold for the Stackelberg games of Section I
(and II), is that the leader’s problem is actually a team
control problem. But for a control problem with fixed
initial conditions, the principle of optimality does hold.
We thus have the “if and only if” statement: the principle
of optimality holds for the problems of Section I (and III)
(see (6)-(10), (16) and (42)—(44), respectively) if and only
if the leader’s problem is a team control problem for both
the leader and follower.

V. CONCLUSIONS

In the present paper, a nonclassical control problem
motivated by Stackelberg games was introduced and
analyzed. Problems of this type arise in the study of
hierarchical systems and take into account several infor-
mation patterns that might be available to the controllers.
Two different approaches were presented. The first uses
variational techniques, while the second reduces the non-
classical problem to a classical one. The nonexistence of
closed-loop control laws for this problem was shown. The
nonuniqueness of the solution of this problem was consid-
ered and explained. The results obtained for this non-
classical control problem were used to study a Stackelberg
differential game where the players have current state
information only ((x(?),#)). Necessary conditions that the
optimal strategies must satisfy were derived. The inappli-
cability of dynamic programming to Stackelberg dynamic
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games was explained and discussed. The singular char-
acter of the leader’s problem was proven and the non-
uniqueness of his strategies was proven and characterized.
In particular, it was shown that commitment of the leader
to an affine time-varying strategy does not induce any
change to the optimal costs and trajectory. A linear
quadratic Stackelberg game was also worked out as a
specific application.

We end by outlining certain generalizations of the work
presented here. We consider, first, the discrete-time ver-
sions. Consider the dynamic system

%o 1 =f( %' (h' (x4, k), ), - - - u™(h™(x,, k), k),
ul(h'(x k), k), - - (h™(x,, k), k), k)
X, given k=0,--- , N-1

and the cost

N-1 :
J(u)=g(xy)+ kzo L(xku'(h'(xk,k),k),~ ..,

u”(h™(x,, k), k),
ul(h'(xp, k)k), - - - um(h™(x,, k), k).

The proof of the corresponding Theorem 2.1 is straight-
forward. An immediate consequence is that the restriction

Cul(hi(x k) k) =AR (x, k) + B, i=1,---,m
where 4/, B, are matrices, does not induce any loss of
generality as far as the optimal cost and trajectory are
concerned, [compare to (31)]. Clearly Proposition 2.1
carries over, too.

A discrete-time version of the Stackelberg game of

‘Section I can be defined (see [8]), and analyzed similarly

to Section III. Several information patterns can be ex-
ploited by employing different 4”’s (see [8]). The restric-
tiont of the leader to affine strategies can also be imposed
in the discrete case. The linear quadratic discrete analog
of problem (42)—(44) can also be worked out in a similar
way.

The case where higher order partial derivatives of u w.r.
to x appear in (20) and (21) can be treated, and all the
analysis of Section II carries over. One should assume
higher order differentiability of the functions involved.
Lemma 2.1 can easily be extended to the case where
higher order of partials of ¢ w.r. to y appear, making the
proof of the corresponding Theory 2.1’ possible. We can
also restrict ¥’ to a polynomial form in terms of the A’’s.
The analog of Theorem 2.1 can be easily stated and
proven and Proposition 2.1 also carries over.

Finally, an N-level Stackelberg game where on each
i-level (i=1,--,N) n; followers operate (uj,- - - ,u;), play
Nash (or Pareto) among them, and «/|,=u/(h/(x,1),1)
j=L---,n,i=1,--- N, with given hj' and fixed xg, £, 7
can be easily treated by using the analysis for the non-
classical control problem supplied here.



APPENDIX A

In this Appendix we give certain conditions under
which Assumption A (Section I) holds.

Lemma A.I: Let U, be a subset of U [see (6)], defined
as

U= {ue Ulu(x,t)=C(tf)x+ D(t), where the
m, X n matrix C(t) and the m, X1 vector
D(¢) are piecewise continuous functions of
time over [#o, 4]}

(A-1)
Then it holds:
inf [Jy(u,0); u€ U, v € Tu]
>inf[J,(u,0); u€E U, vE Tu]
> inf [J,(u,0); ue U, vET u] I
=inf[J,(»,0); uE U, vET u). (A-2)

Proof: The inequalities follow from the facts U,C U,
TuC T'u Yu€ U. The last equality is obvious in the light
of (31) and the proof of Theorem 2.1. O

An immediate conclusion of Lemma A.1 is that if

inf[J,(u,v); uE U, v E Tu]
' =inf [J(u,0); uE U, vE T’u] (A-3)

holds, then Assumption A holds (with U} = U). For (A-3)
to hold, it suffices that the first-order necessary conditions
for the follower’s problem are also sufficient, for each
fixed u € U,. More specifically, for fixed C(¢), D(¢) as in
definition (A-1), we consider the problem

minimize A(x(z,))+ f"'M(x, C()x+ D(t),v,t)dt

subject to: vEV
(A-4)

%= f(x,C()x+ D(1),0,0), x(tg)=xg, tE[to15]

and seek conditions under which the first-order necessary
conditions for an optimal v* for problem (A-4) [see
(15b)—(15d)] are also sufficient. Such conditions can be
found in [15, ch. 5-2]. We formalize this discussion in the
following proposition.

Proposition A.1: If for each u € U,, the first-order nec-
essary conditions (15b)—(15d) for problem (A-4) are also
sufficient, then Assumption A holds.

The discussion in the present Appendix generalizes
clearly to the case where each u’ depends on h'(x,!)
instead of x and to the case where different U/s are
considered; see for example Proposition 2.1ii).

As an example where Proposition A.l can be applied,
we consider the linear quadratic game of Section III
Then, [15, Theorem 5, p. 341] in conjunction with Proposi-
tion A.1 yields that if Q, >0, Ry, >0, R,; >0, Kx >0, then
Assumption A holds.
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APPENDIX B

Proof of Theorem 2.1’: Let g=0 w.lo.g. (see [10]). Con-
sider a function p€ U, ¢=(¢',---,9™) which has the
same continuity and differentiability properties as u*.
Such a ¢ will be called admissible. Using the known
theorems on the dependence of solutions of differential
equations on parameters, we conclude that for eER, ¢
sufficiently small, u*+ep gives rise to a trajectory
((x(c 0,0|tE[t, 4]}, x(0,£)=x*(?), and that x(e,?) is in
C'! w.r. to €. Direct calculation yields

4 (2x(et)

(o)= | £ v e,

X (o i velo 0x(et
+ 3 (o entay ] 20

i=1
ax(e, t) l

+fip+ Efv hig)., =0. (B-1)

i=1 =1y

We set

()= ax(e t)

A=F s
+3

i=1

B()=/,
By ()=fVh',

(B-2)

=0

WV R+ 2 Vxxh}[}p(B -3)

(B-4)
(B-5)

i=l--.m

where A, B,, Bj are evaluated at ¢, x*, u*, 4} and, thus,
for €=0, (B-1) can be written as

m
i=Az+ B+ 2 Bjp),

i=1

2(1)=0.  (B-6)

For fixed ¢ we consider
J(©)=J(u+ep).

Since J(e) is in C' w.r. to € and u* is a local optimum, it
must hold that

ae| _
e e-o—O.
Direct calculation yields
dJ (€) = f’f[ [Lx +(u, +ep )L,
o
- ; , ax(e,t
+ Zl(u;x+€q);x)L,.] %

+Le+ X LV, kg

i=]

(B-7)

Ja

Setting
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M(t)=L,+u,L, Applying Lemma 2.1 to (B-16), we obtain
m K .
+> Vxh"zt)fy.Vxh"+ 21 uj’Vxxhj‘]L,. (B-8) p'(1)B(1)+4,(7)=0, on [to,tf] (B-17)
i=1 j= ) )
p'(1)By(7) +A4(7)=0, on | t,t|.  (B-18)
A(D)=L, . (B-9) ? ? [t04]
A(8)= LV k', i=1l,---,m (B-10) Using (B-4), (B-5) and (B-9), (B-10) in (B-17), (B-18), we

have equivalently (25) and (26). Differentiation of (B-15)

with T, A, 4; evaluated at x*, u*, uz, we conclude from ,n4 yse of (B-3) and (B-8) give the equivalent to (B-15)
(B-7)—(B-10) that

S,
[{

0

m 4
(B'll) p Lx+fxp 2 2 l{[ XX j( 4 pr)

i=1j=1
» p(4)=0.
Therefore, (B-11) must hold for every admissibie ¢.
Let ®(1,7) be the transition matrix of A(¢f). Let The assumption g=0, is removed in the known way,
also @(¢) denote the vector (@'(A'(x*(9),?),1),---, resultingin (27). 0
@™ (h™(x*(1),0),t)) and §'(¢) the vector (dp‘(h'(x*(1),),0))
/dx. Then from (B-6) we obtain

Tz+A 9+ 2 A"2¢y".]dt=0.
i=]
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