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Technical Notes and Correspondence

On the Rank Minimization Problem Over a Positive
Semidefinite Linear Matrix Inequality

M. Mesbahi and G. P. Papavassilopoulos

Abstract—We consider the problem of minimizing the rank of a
positive semidefinite matrix, subject to the constraint that an affine
transformation of it is also positive semidefinite. Our method for solving
this problem employs ideas from the ordered linear complementarity
theory and the notion of the least element in a vector lattice. This problem
is of importance in many contexts, for example in feedback synthesis
problems; such an example is also provided.

Index Terms—Feedback synthesis, least element theory, linear matrix
inequalities, rank minimization problem.

I. INTRODUCTION

The analogies between the cone of positive semidefinite matrices
and the positive orthant in the Euclidean space have been the
focus of many interesting investigations in matrix theory over the
years. Recently, these analogies have been quite useful in devising
efficient algorithms for the eigenvalue optimization problems, and
more generally, for the semidefinite programming (SDP) and the
linear matrix inequality (LMI) problems [1], [3]. These analogies can
in fact be made more explicit by associating to a positive semidefinite
matrix its vector of eigenvalues, arranged in a nondecreasing order.
Through this association, many properties and questions about a
positive semidefinite matrix can be “translated,” almostmechanically,
in terms of the attributes of the corresponding nonnegative vector
of eigenvalues. For example, the rank of a matrix can be viewed in
terms of the cardinality of the support set of the vector of eigenvalues
(counting multiplicities), the latter being the set of indexes for which
the vector has a nonzero component.

In this paper, we explore the possibility of using the analogy
between the rank of a positive semidefinite matrix and the cardinality
of the support set of the associated vector of eigenvalues to solve an
important problem which has found many applications in system and
control theory. The problem is that of minimizing the rank of a matrix,
subject to the constraint that the matrix and an affine transformation
of it are positive semidefinite. This problem will be referred to as the
MIN-RANK problem and is stated as follows:

min rankX (1)

subject to:Q+M(X) � 0 (2)

X � 0: (3)

In (1)–(3), M is a symmetry preserving linear map on the space
of symmetric matrices,Q is a symmetric matrix (of appropriate
dimensions), and the ordering “�” is to be interpreted in the sense
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of Löwner, i.e.,A � B if and only if A�B is positive semidefinite;
similarly, A � B indicates thatA � B is positive-definite.

The MIN-RANK problem has various applications in control and
system theory. For example, the bilinear matrix inequality problem
(BMI) can be shown to be closely related to the MIN-RANK
problem [8], [11]. The BMI, on the other hand, has been shown
by Safonov et al. [10] to be a unifying formulation for a wide array
of control synthesis problems, including the fixed-orderH1 control,
�=km-synthesis, decentralized control, robust gain-scheduling, and
simultaneous stabilization. Similarly in [5], El Ghaoui and Gahinet
have shown that the important problems of static output feedback
stabilization, dynamic reduced-order output-feedback stabilization,
reduced-orderH1 synthesis, and�-synthesis with constant scaling
can be formulated as a rank minimization under an LMI constraint,
clearly an instance of the MIN-RANK problem.

Coming back to the MIN-RANK problem and using our “dictio-
nary,” the associated problem in the Euclidean space would be the
problem of minimizing the cardinality of the support set of a vector,
subject to the constraint that the vector and an affine transformation
of it have nonnegative components, i.e.,

min jsupport xj (4)

subject to: q +Hx � 0 (5)

x � 0 (6)

whereH is ann�n matrix, q is ann� 1 vector, andjsupport xj
denotes the cardinality of the support set of the vectorx (counting
multiplicities). Problem (4)–(6) shall be referred to as the MIN-SUPP
problem. Let� denote the feasible set of the MIN-SUPP problem,
i.e.,

� := fx � 0 : q +Hx � 0g: (7)

One way of solving this problem is to start checking for the existence
of a particular support configuration in�. For example, to see whether
a vector with cardinality one exists in�, one can examine the
positivity of a column ofH. Similarly, to check whether a vector with
a support cardinalityk exists in�, the consistency of the following
system of linear inequalities can be examined:

xi hi + � � �+ xi hi � �q (8)

xi > 0 (j = 1; � � � ; k) (9)

wherehl is thelth column of the matrixH and(i1; � � � ; ik) is some
k combination of then indexes, corresponding to then columns of
H. Hence, checking for the existence of a solution with a support
cardinality k amounts to solving at mostn!=(k!(n � k)!) systems
of linear inequalities. Therefore, the MIN-SUPP problem can in
principle be solved via2n linear programs. Evidently, this approach
for solving the MIN-SUPP problem is not quite acceptable. However,
it should be noted that checking for the existence of a solution with
a particular support cardinality can be done efficiently. For example,
the easiest case is to examine the existence of a vector in� with a
support cardinality one, which amounts to simply checking for the
existence of a positive column inH.

A special case of the MIN-SUPP problem which can be solved
efficiently is the case where the matrixH in (5) is aZ matrix. A
square matrix is aZ matrix when all of its off-diagonal elements are
nonpositive. WhenH is a Z matrix, the set� (7) has an element
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whose every component is less than or equal to the corresponding
component of every other element in�. This so-calledleastelement
of � has to have the minimum support in�, since if it does not,
then it has a positive component which majorizes the corresponding
zero component of some other vector in� that contradicts its least
element property. To summarize, a setT � Rn has a least elementx
whenx 2 T , and for allu 2 T; x � u (the inequality is interpreted
componentwise). Moreover, ifx is the least element of a subset of
the positive orthant, it has the minimum support cardinality in that
subset as well. Consequently, whenH is aZ matrix, one can replace
the task of minimizing the cardinality of the support set of the vector
satisfying (5), (6) by finding the least element of�.

The notion of the least element is not restricted to polyhedral sets
like � � Rn. In fact, to study sets with the least element property,
one merely has to have aHilbert lattice, i.e., a Hilbert spaceH,
a pointed convex cone which induces an ordering “�” on H, and
an infimum operation, “inf,” with respect to the ordering�: given
x; y 2 H; z := inffx; yg is such thatz � x; z � y, and for all
w � x andw � y; w � z. This in effect means thatinffx; yg is the
greatest lower bound of the setfx; yg with respect to the ordering
�. It can be seen easily that for vectorsx and y in Rn, with the
componentwise ordering, if we letzi = minfxi; yig(i = 1; � � � ; n),
then z = inffx; yg. The least element theory in the case of vector
inequalities relies on the important observation that whenH is aZ
matrix, the set� is closed with respect to theinf operation, i.e., if
x; y 2 �, theninffx; yg 2 �. In this case the set� is called ameet
semilattice, since the operation inf is exactly the operation of taking
the meet of two vectors [4]. Having a meet semilattice structure for
�, and noting that� is bounded from below (by the vector 0) and it
is closed, one can actually find the least element of� efficiently via
a linear program. Thereby, whenH is aZ matrix in the MIN-SUPP
problem (4)–(6), the minimum support element can be found by a
linear program.

There are certain issues that arise pertaining to our comparison
between the MIN-RANK and the MIN-SUPP problems. To what
extent can the result regarding the MIN-SUPP problem with aZ

matrix be generalized for the MIN-RANK problem? What is the
analogue of theZ matrix, the least element, and the meet semilattice
property for problems defined over the space of symmetric matrices?
Can one solve certain classes of the MIN-RANK problem via an SDP
(a linear program over the cone of positive semidefinite matrices)?

In this paper, we try to generalize certain aspects of the theory
of Z matrices to address the problem pertaining to the minimum
rank element of the set defined by (2), (3). The outline of the
paper is as follows. In Section II, we provide some definitions and
properties which allow us to motivate, and subsequently introduce,
the generalization of the meet semilattice and theZ matrices (Section
II-A). In Section II-B, we use these generalizations to show that a
special class of MIN-RANK problems can be solved by a convex
program. Finally, a control example is provided, and a few remarks
then conclude the paper.

A few words on the notation are necessary.T 0 and�(T ) denote
the transpose and an eigenvalue of the matrixT , respectively. The
space ofn � n real matrices is denoted byRn�n, its symmetric
subset bySRn�n, its positive semidefinite subset bySRn�n

+ , and
its identity matrix byIn. Finally, the inner product of two square
matricesA andB in SRn�n is denoted byA � B, which is equal
to the trace of the productAB.

II. THE MIN-RANK PROBLEM

Consider again the MIN-RANK problem (1)–(3) with the Löwner
ordering “�.” Two very useful properties of the L¨owner ordering are
as follows [6].

1) Given symmetricn � n matricesA and B, for any n � n

matrix T

A � B ) T
0

AT � T
0

BT:

2) If A � B, then�i(A) � �i(B) (i = 1; � � � ; n), where the
eigenvalues�i’s of both matricesA andB are arranged in the
nondecreasing order.

One should note that the implication (2) does not hold in the reverse
direction. For example, the matrices

A =
2 1

1 2
and B =

3 0

0 1

have the same set of eigenvalues, but neitherA � B norB � A.
Let M : SRn�n ! SRn�n; Q 2 SRn�n, and define

� := fX � 0 : Q+M(X) � 0g (10)

to be the feasible set of the MIN-RANK problem (1)–(3).
As mentioned at the end of the previous section, we now consider

the possibility of using ideas from the least element theory andZ

matrices to approach the problem of determining the minimal rank
matrix of the set� (10). The main obstacle in this avenue is that
the Löwner ordering cannot be used to introduce a lattice structure
on the space of symmetric matrices. Given two symmetric matrices
A andB, the inf operation that yields the matrixC := inffA;Bg

cannotbe defined such thatC � A; C � B, and the implication

D � A; D � B ) D � C (11)

holds in general. In particular, the matrixinffA;Bg and an arbitrary
matrix D such thatD � A andD � B do not have to be even
comparable.Hence, any attempt to define a greatest lower bound (in
the sense of L̈owner) for a set of symmetric matrices which parallels
the vector case (with componentwise ordering) runs into difficulty.

Fortunately, there is a remedy for this problem. Ando [2] realized
that for a given pair of symmetric positive semidefinite matrices,
although the set

�(A;B) := fX 2 SRn�n
: 0 � X � A; 0 � X � Bg

does not possess a maximal point, it has in a sense “many maximal
elements.”

The set of the maximal points of�(A;B), which shall be denoted
by �sup(A;B), has the following property:

8D 2 �(A;B);9Z 2 �sup(A;B) :

Z 2 �(A;B);D � Z;

& 6 9W 2 �(A;B) :W 6= Z; W � Z: (12)

The matrixZ 2 �sup(A;B) that satisfies (12) not only depends on
the matricesA andB, but also on the specific matrixD.

In [2], a complete characterization of the maximal points of the set
�(A;B), along with an algorithm for their computation, is provided.
More explicitly, in [2] the set�sup(A;B) is parameterized by a
subspaceN � range(A) \ range(B) and ann2-by-n1 matrix
K such thatK�K � In , where n1 (respectively,n2) is the
number of positive (respectively, negative) eigenvalues of the matrix
[N ]A� [N ]B with multiplicity counted; the notation[N ]A denotes
the short of the matrixA to the subspaceN [2]. Moreover, given
a matrixD 2 �(A;B), a matrixZ 2 �sup(A;B) satisfying (12)
is constructed as

Z =
1

2
f[N ]A + [N ]B � LjL�1([N ]B � [N ]A)L

�1jLg (13)

whereL := ([N ]A + [N ](B) � 2D)
1=2; L�1 is the inverse ofL

restrictedto the range of[N ]A� [N ]B andjAj denotes the positive
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square root of the matrixA2. For more details on this construction
and, in particular, the reason for the existence of the restricted inverse
of L, the reader is referred to [2, p. 5, lines 15–16; p. 10, lines 5–7].

Analogous to the case of the componentwise ordering for vectors,
we define the following generalization of a (meet semi-) lattice.

Definition II.1: A set� � SRn�n

+ is called a (meet semi-) hyper-
lattice if for all pairsX andY in � there existsZ 2 �(X; Y ) such
that Z 2 �.

In the next section, we demonstrate that for an important class of
linear mapsM anda negative semidefinitematrix Q, the set� (10)
is in fact a (meet semi-) hyper-lattice. In the spirit of theZ matrix
theory, we then proceed to demonstrate that having a (meet semi-
) hyper-lattice, the minimal rank element can in fact be found via
convexoptimization.

A note on the terminology is necessary before we start our main
discussion. Following Alizadeh [1], a constraint optimization problem
is called an SDP, if its variables are either (symmetric) matrices
or scalar valued, the objective is a linear functional on the product
space of the spaces of the variables, and the constraint set is defined
by linear equalities or inequalities (either componentwise or Löwner
ordering).

A. When is the Set� a (Meet Semi-) Hyper-Lattice?

In this section we show that when the linear mapM in the
definition of the set� (10) has a particular form, and the matrix
Q is negative semidefinite, the resulting� (10) is a (meet semi-)
hyper-lattice. For this purpose, we consider a generalization of the
Z matrices.

Definition II.2: A symmetric preserving linear mapM : SRn�n

! SRn�n is of typeZ if it can be represented as

M(X) = X �

k

i=1

MiXM
0

i (14)

for some matricesMi 2 Rn�n
(1 � i � k) and integerk � 1. A

control problem which can be formulated as a MIN-RANK problem
with a typeZ linear map is considered in Section III.

The main result of this section is now stated.
Lemma II.1: Let the linear mapM in the definition of the set�

(10) be of typeZ and the matrixQ be negative semidefinite. Then
the set� is a (meet semi-) hyper-lattice.

Proof: We would like to show that for two symmetric matrices
A andB in �, there existsZ 2 �(A;B) such thatZ 2 �.

We first note that the set�(A;B) is compact. It suffices to show
that for someZ 2 �(A;B)

Z � �Q+

k

i=1

MiZM
0

i :

SinceZ � A andZ � B, one has

i

MiZM
0

i �

i

MiAM
0

i

and

i

MiZM
0

i �

i

MiBM
0

i :

As a result of the assumptionA;B 2 �, one concludes that

A � �Q+

i

MiAM
0

i � �Q+

i

MiZM
0

i � 0

and

B � �Q+

i

MiBM
0

i � �Q+

i

MiZM
0

i � 0

for all Z 2 �(A;B) (recall thatQ is assumed to be negative
semidefinite). Hence for allZ 2 �(A;B); (�Q+

i
MiZM

0

i) 2

�(A;B).
In particular, for allZ 2 �(A;B), there existsY 2 �sup(A;B)

such that

Y � �Q+

i

MiZM
0

i (15)

by the definition of the set�sup(A;B). Letg : �(A;B)! �(A;B)

be the point-to-set map such that

g(Z) = Y 2 �(A;B) : Y � �Q+

i

MiZM
0

i : (16)

The mapg is upper semicontinuous. To see this, letfZkgk�1 and
fYkgk�1 be a sequence of matrices such that

Yk � �Q+

i

MiZkM
0

i

and letZk ! Z� and Yk ! Y �. Define

M(Zk; Yk) := Q+ Yk �

i

MiZkM
0

i :

The mapM is linear onSRn�n
� SRn�n and is therefore contin-

uous. Since the cone of positive semidefinite matrices is closed

0 � lim
k!1

M(Zk; Yk) =M(Z
�
; Y

�
)

and therefore

Y
�
� �Q+

i

MiZ
�
M
0

i

henceY � 2 g(Z�).
Since g is upper semicontinuous on the convex set�(A;B), it

has a fixed point via the Kakutani’s Fixed Point theorem [7]. That is,
there exists a matrix̂Z 2 �(A;B) such thatẐ � �Q+

i
MiẐM

0

i .
Hence,� is indeed a (meet semi-) hyper-lattice.

B. Finding a Minimal Rank Matrix in a (Meet Semi-) Hyper-Lattice

We now consider the problem of finding the minimal rank matrix
of the set� defined by

� := X � 0; Q+X �

i

MiXM
0

i � 0 (17)

with Q � 0. As we discussed in the previous section, the set�

is a (meet semi-) hyper-lattice (Definition II.1). We shall assume
subsequently that� is nonempty.

The following theorem provides us with an algorithm for finding
a minimal rank matrix of the set� (17).

Theorem II.2: A minimal rank element of� can be found by a
semidefinite program.

Proof: Consider the following semidefinite program:

min I �X (18)

subject to:Q+X �

i

MiXM
0

i � 0 (19)

X � 0: (20)

Since� is assumed to be nonempty, letA 2 � (17) (such a matrix
can be found be a semidefinite program itself). Now consider instead
the problem

min I �X (21)

subject to:Q+X �

i

MiXM
0

i � 0 (22)

X � 0 (23)

I �X � I �A: (24)
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It should be clear that the optimum of both SDP’s, (18)–(20) and
(21)–(24), are the same. The latter SDP has an optimum since
� \ fX : I � X � I � Ag is a compact set, andI � X is a linear
functional inX. Let ~X be the optimal solution of (18)–(20). We now
claim that ~X is of minimal rank in�. To show this, letY 2 � and
Z 2 �( ~X; Y ), such thatZ 2 � (this is possible since� (17) is a
(meet semi-) hyper-lattice). By the optimality of~X

i

�i( ~X) �
i

�i(Z): (25)

On the other hand, sinceZ 2 �( ~X; Y ), one has

�i(Z) � �i( ~X) (i = 1; � � � ; n) (26)

and

�i(Z) � �i(Y ) (i = 1; � � � ; n): (27)

In view of (25), (26) implies that�i(Z) = �i( ~X) (i = 1; � � � ; n).
Thus by (27), for an arbitrary matrixY 2 �

�i( ~X) � �i(Y ) (i = 1; � � � ; n): (28)

Suppose now that~X is not of minimal rank in�. Then there exists~Y
such that�i( ~Y ) = 0 and�i( ~X) 6= 0 for some indexi. Since ~X � 0;

�i( ~X) > 0, which violates (28). Hence~X is of minimal rank in�.

III. FIXED-ORDER OUTPUT FEEDBACK PROBLEM

Let � be a continuous-time linear time-invariant dynamical system

�: _x = Ax +Bu (29)

y = Cx (30)

with matrix A 2 Rn�n (and all other matrices of appropriate
dimensions).

Suppose that it is desired to design a stabilizing controller of order
k for �

_z = AKz +BKy (31)

u = CKz +DKy (32)

whereAK 2 Rk�k. We would like to check, for a givenk, whether
such a controller (of fixed order) exists.

In [5], El Ghaoui and Gahinet show that this important problem in
control theory can be reduced to a MIN-RANK problem.

Theorem III.1 [5]: There exists a stabilizing dynamic output feed-
back law of orderk for � if and only if there exist matricesR and
S and scalar > 0 such that

AR +RA
0

� BB
0 (33)

A
0

S + SA � C
0

C (34)

and
R I

I S
� 0 (35)

rank
R I

I S
� n+ k: (36)

Let

X =
R I

I S
:

It can be shown that the above problem can be reduced to solving
the following instance of the MIN-RANK problem [9]:

min rankX (37)

subject to: ~AX ~A
0

�X � Q (38)

X 2 L (39)

X � 0 (40)

for an appropriate choice of the matrices~A and (symmetric)Q

which is affine in; moreover, the setL is defined as

L := X 2 SR
2n�2n

: X =
U I

I V
; U; V 2 SR

n�n
:

The subsetL can, for example, be defined by a set of linear equalities
of the form 1

2
Eij �X = 1, whereEij is a matrix whose entries are

all zero, except theijth entry which is one (this fixes theijth entry
of the matrixX to one).

Let us rewrite the above problem for� > 0 as

min
X;

rankX (41)

subject to:(Q � �I) +X � ~AX ~A
0

� 0 (42)

X 2 L (43)

X � 0: (44)

We now realize that the above problem is exactly a MIN-RANK
problem with a linear map of typeZ, except that the solution has
to be found in the affine setL. This additional constraint does not
introduce a difficulty for the applicability of the approach described
earlier, provided that the restriction of the set� (10) with the linear
map

M(X) := X � ~AX ~A
0

to L (if nonempty) is a (meet semi-) hyper-lattice (refer to [9] and
[2, pp. 8–10]). Assuming that this is in fact the case, in order to solve
this instance of the MIN-RANK problem arising from the fixed-order
output feedback synthesis, one thus solves the following semidefinite
program for an appropriate choice of� > 0:

min
X;

I �X (45)

subject to:(Q � �I) +X � ~AX ~A
0

� 0 (46)

X 2 L (47)

X � 0 (48)

 > 0: (49)

The constraint thatQ � �I � 0 can be added as an additional
constraint to the above semidefinite program (note that in the case
where � > 0 has to be chosen very large, the rank of an optimal
solution of the above SDP might only provide us with an upper bound
on the minimal rank solution). The above approach consequently
results in an efficient way that can be used to study the fixed-order
output feedback synthesis problem for the continuous-time linear
time-invariant systems.

IV. CONCLUDING REMARKS

In this paper, we have described an approach for solving the
problem of minimizing the rank of a positive semidefinite matrix,
subject to the constraint that an affine transformation of it is also
positive semidefinite. In this direction, an approach analogous to
finding the least element of a meet semilattice, with componentwise
ordering for vectors, is developed. However, our analysis uses some
additional ideas and concepts since the positive semidefinite ordering
cannot be used to introduce a lattice structure on the space of
symmetric matrices. The applicability of our results to the fixed-order
output feedback synthesis problem is also provided; this application
also reinforces the usefulness of exploiting the structure of the
nonconvex optimization problems arising in control theory.
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1
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dependent Lyapunov functions.

Manuscript received April 20, 1995; revised November 15, 1995. This
work was supported in part by the National Science Foundation under Grant
ECS-9496249 and the Air Force Office Scientific Research under Grant
F49620-92-J-0127.

W. M. Haddad is with the School of Aerospace Engineering, Geor-
gia Institute of Technology, Atlanta, GA 30332-0150 USA (e-mail:
wm.haddad@aerospace.gatech.edu).

V. Kapila is with the Department of Mechanical Engineering, Polytechnic

NOMENCLATURE

<; <r�s; <r Real numbers,r�s real matrices,
<r�1:

( )T ; ( )�1; tr ( ); E Transpose, inverse, trace, expec-
tation.

Ir; 0r r � r identity matrix,r � r zero
matrix.

Sr; N r; Pr r � r symmetric, nonnegative-
definite, positive-definite matri-
ces.

Z1 � Z2; Z1 < Z2 Z2 � Z1 2 N
r; Z2 � Z1 2 P

r;
Z1; Z2 2 Sr:

n; l; m; p; p
1
; q; nc; ~n Positive integers;1 � nc � n;

~n = n + nc:

x; u; y; z; xc; ~x n-, m-, l-, q-, nc-, ~n-dimensional
vectors.

w(�); w
1
(�) p-, p

1
-dimensional white noise,

L2 signals.
A; B; C n� n; n�m; l� n matrices.
Ac; Bc; Cc nc�nc; nc�l; m�nc matrices.
D1; D2; D11; D21 n � p; l � p; n � p

1
; l � p

1

matrices.
E1; E2 q � n; q �m matrices.

I. INTRODUCTION

In a recent series of papers [9]–[12], a refined Lyapunov func-
tion technique was developed to overcome some of the current
limitations of Lyapunov function theory for the problem of robust
stability and performance in the presence of constant real parameter
uncertainty. Since, as noted in [9]–[11], conventional Lyapunov
bounding techniques guarantee stability with respect to time-varying
parameter perturbations, a feedback controller designed for time-
varying parameter variations will unnecessarily sacrifice performance
when the uncertain real parameters are actually constant. To over-
come some of the limitations of conventional Lyapunov bounding
techniques, the authors in [9]–[11] developed a general framework
for robust controller analysis and synthesis based onparameter-
dependent Lyapunov functionsthat is both flexible in addressing
a large class of uncertainty structures and restrictive in excluding
uncertainties that are not physically meaningful. Specifically, in
this framework, the Lyapunov function is allowed to be a function
of the uncertain parameters, thus guaranteeing robust stability and
performance via a family of Lyapunov functions. As demonstrated
in [9]–[11], the form of the parameterized Lyapunov bounding
function proves to be critical because the presence of uncertainty
within the Lyapunov function curtails arbitrary time-variation of the
uncertain parameters, thus yielding a more effective robust analysis
and synthesis framework for constant real parameter uncertainty.

In this paper, we extend the results of [9]–[11] to guarantee robust
H2 and H

1
performance in the presence of constant real-valued

parameter uncertainty. Thus, the results presented herein provide a
further refinement of the results in [13] which considered the design
of H

1
robust controllers in the presence of arbitrarily time-varying

real-valued parameter variations.
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