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Abstract 

A distributed asynchronous algorithm for minimizing a function with a nonstationary 
minimum over a constraint set is considered. The communication delays among the 
processors are assumed to be stochastic with Markovian character. Conditions which 
guarantee the mean square and almost sure convergence to the sought solution are 
presented. We also present an optimal routing application for a network that connects 
various U.S. cities. Results of the extensive simulation that we implemented assert the 
practical applicability of distributed asynchronous algorithms with stochastic delays. Com- 
parison results for varying the probability distribution of these delays are provided. The 
impact of varying the communication delay bound and the stepsize is also assessed. 

Keywords: Optimization problem; Asynchronous iteration; Stochastic communication delay; 
Multiprocessor environment; Convergence analysis 

1. Introduction 

The recent emphasis on parallel processing is motivated by the compelling need 
to accelerate computations when solving large dimensional problems in which 
great memory storage and immense computation capabilities may hinder the 
performance of centralized algorithms. A number of processors are utilized that 
operate simultaneously in a collaborative manner on several subproblems decom- 
posed from the original one. To further amend the enhancement of performance, 
the processors are permitted to communicate asynchronously such that little 
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coordination of communication is maintained. It is shown that dispensing with the 
synchronization points at the end of each iteration induces improved efficiency, 
load balancing among processors and reduction of processor idle periods [4,6,9,22]. 

Tsitsiklis, Bertsekas and Athans [19] proposed asynchronous implementation for 
solving optimization problems which seems to offer the initial work of the current 
investigation. Since then, several algorithms suitable for operation in a multipro- 
cessor environment emerged such that diverse areas are covered. Kushner and Yin 
[lo] studied stochastic approximation techniques for parallel processing using the 
ODE approach. In their analysis, the approach of weak convergence was utilized. 
Kaszkurewicz, Bhaya and Siljak [ll] implemented asynchronous iterations to solve 
a class of nonlinear problems and derived results that retained the quasi-domi- 
nance conditions previously studied by Siljak [16] for the synchronous case. Beidas 
and Papavassilopoulos [2] studied asynchronous algorithms with stochastic delays 
in minimizing a function with time varying minimum. Furthermore, Uresin and 
Dubois [23] proposed asynchronous algorithms that deal with nonnumerical meth- 
ods such as symbolic computation and artificial intelligence applications. 

In this paper, we study asynchronous algorithms with stochastic delays that solve 
minimization problems with time drifting minimum over a constraint set. The 
plausibility of the notion of stochastic delays stems from the fact that it models the 
case of an unpredictable delay in the communication among the processors and 
therefore addresses various reliability aspects [2]. Constrained optimization prob- 
lems are prevalent in actual applications, where the nature of the problems solved 
necessitates imposing natural conditions. Other cases are when the designer often 
wishes to confine the acceptable values of processors’ iterates to lie within a 
certain region in order to further prevent the processors from straying away from 
the correct solution. 

Efficiency is a monumental concern regarding all algorithms. Our second main 
interest in this paper is to measure performance and estimate efficiency of the 
distributed asynchronous algorithms with stochastic delays. We also obtain com- 
parison results of distributed asynchronous algorithms with stochastic delays and 
their deterministic delays counterpart algorithms of the same problem under 
duplicate conditions. In particular, we apply these algorithms to treat optimal 
routing of data communication that best exemplifies nonlinear multicommodity 
network flow problems. It is often the norm to find that the size of these problems 
is overwhelmingly large that a set of processors operating in distributed fashion is 
required to provide the anticipated solution. 

The paper is organized as follows. In Section 2, we describe the model of 
asynchronous iterations for constrained minimization problems under conditions 
of time drift. We provide convergence conditions and analysis of the proposed 
models in Section 3. These conditions guarantee also convergence for the case 
when the problem is time invariant. In Section 4 we devise the distributed 
asynchronous algorithm that solves optimal routing of data communication net- 
works. A test problem of a network that routes data among several interconnected 
U.S. cities and its computational results are given in Section 5. Finally, we discuss 
conclusions in Section 6. 
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2. System model 

We employ a model of n processors working asynchronously on minimizing a 
function F(t, X) subject to x E Q. The minimum x *(t> is nonstationary, i.e. 
changes with time t. We assume that the function F(t, X) is continuously differen- 
tiable and that the constraint set Q is nonempty, closed, convex and does not 
depend on time. Assume that the motion of the minimum is characterized by the 
known nonlinear function R(t, X) such that 

x*(t+ 1) =R(t, x*(t)), (1) 
and the initial value x * (0) is unknown. Knowledge of the law describing the drift 
was assumed by Dupac [8] and Tsypkin, Kaplinskiy and Larionov [21]. It, therefore, 
becomes appropriate to utilize this prediction defined in Eq. (1) in the formulation 
of the minimization algorithms. 

We assume that the set Q is a Cartesian product of lower dimensional subsets 
Qi. This entails that the projection of x on the set Q is equivalent to the 
projection of xi on the set Qi for all i which lends itself naturally to paralleliza- 
tion. Consequently, each processor projects independently on its constraint set. We 
let Qi GVl, where Cy,,n, = N and allow each processor i to update x,(t). We 
denote dji(t) as the delay incurred by transmitting a message from processor j to 
processor i at time t. We let the communication delays (dji(t)], for all j and i, be 
stationary Markov chains with state space 

S=(1,2 )...) B}, 

where B is the maximum allowable communication delay for the transmitted 
messages. We let the probability transition matrix corresponding to dji(t) be 
Pji = (pji(Z, m)), where 

pji(l,m)=Pr{dji(t)=mIdji(t-l)=Z}, forl,m=l,2 ,..., B, (2) 

where here and in the sequel Pr{Cl denotes the probability of event C. 
As was done in Beidas and Papavassilopoulos [2], we utilize the vector y’(t) that 

summarizes the information available to each processor due to the presence of the 
communication delays, i.e. 

Xl(t + 1 -dli(t)) 

yi( t) = 

[ : I 
X,(t+l-dd,,(t)) . 

(3) 

Assume that instead of computing the gradient, the processors are only able to 
obtain a noise corrupted version of it. The asynchronous gradient projection 
algorithm proceeds as follows. Processor i evaluates a gradient iteration, projects 
back onto the set Qi using the unique closest Euclidean distance and assumes this 
value as its new update. 

x’,(t+1)=Ri(t7 Yi(t))-7(t)(~F(t, R(t, Yi(t)))+li(t))? 

q(t + 1) =Il[fi(t + l)], (4) 
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where 

(5) 

Convergence is studied with the use of the Lyapunov function defined as the 
squared norm of the distance away from the desired minimum, i.e. 

V(t, X)=$IIX--X*(t)l12, (6) 

where here and in the sequel II * II is the Euclidean norm. Let 4, define the 
previous information of the algorithm until time f such that 

4,={dji(r), f;(r),for r<t and j, i=l,..., n}. (7) 

3, includes the initial condition information. We note that x,(t) is uniquely 
determined by the random variables defined by ,a;. 

The basic assumptions are introduced, the form of which is expressed in terms 
of y’(t) which is the information available to each processor. This permits the 
individual verification of the basic assumptions by the various processors. It is 
important to note that the ability of such verification is an intrinsic property of 
asynchronous iterations, 

Basic assumptions: 
(1) There exists deterministic positive K,(t) such that for all i, we have 

E[(Y#) -XX’))yW(f, Y’(Q) + W)) IA] 

rK,(t)E[ IIY’(q -x*(t,ll”l9,]. (8) 

(2) There exist deterministic nonnegative K,(t) and K,(t) such that for all i, we 
have 

E[ ll~F(tP Yi(t))+li(t)l1213t] 

s&(t) +K,(t)E[ IIY’(f> --x’(t+ 1) l1214,]. 

(3) There exist nonnegative cu(t> and /3(t) such that 

(1+~(~>)IIx(t>-x*(t)ll 

(9) 

I Ibqt, x(t)) -R(t, x*(q) II 5 (1 +p(f>) IIx(t) --x*(t) II. (10) 

(4) For the initial approximation, we have 

ElIx(0) -x*(0)112<~ and llx*(O)Il <a. (II) 

Given the previous history of the algorithm, inequality (8) requires that the 
expected direction of - VF(t, y’(t)) is one of decrease with respect to the 
Lyapunov function V(t, y’(t)). Inequality (9) imposes growth conditions on the 
update &F(t, y’(t)) and the noise. The inclusion of K,(t) in inequality (9) is 
indicative of the presence of additive noise with variance that is not necessarily 
finite. 
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Convergence analysis 

We formulate the main convergence results of process (4). Let us denote 

s(t) = (1 +p(t))‘+ y2(t)&(t)(l +P(t))2 - 2y(t)K,(t)(l ++))2. 

(12) 

For a closed and convex set Qi, the projection operator has the following 
properties, 

(x-ni[x])‘(y-IIJx])~O forall YEQ; 

I117,[x]-ni[Y]lI I Ix:-Yll forawx, Y 
(13) 

The analysis is carried out by utilizing the second property of the projection 
operator 17,[ .I which allows the Lyapunov function defined by Eq. (6) to maintain 
a supermartingale and hence the convergence is retained as in the nonconstrained 
case established by Beidas and Papavassilopoulos [2]. Therefore, since x,(t + 1) is 
an orthogonal projection of jii(t + 1) on Qi and since xF(t + 1) E Qi then 

IIx,(t+l)-x;(t+l)(I 

5 II Ri(t7 Y’(t)) -Ri(t> x*(t)) -r(t)py(h qc y’(t))+5,(q)ll 

(14) 

This enables the usual Lyapunov argument to be exploited to reduce the error 
defined in Eq. (6) and shaping this error equation to fit the form of an easily 
manageable vector inequality. 

We also note that a sequence v(t) of random variables converges to a random 
variable v almost surely if 

Pr(!\m v(t) = V) = 1. (15) 

Theorem 1. Consider the sequence (x,(t)} generated by Eq. (4). Suppose that the cost 
function F( t, x) has a unique minimum at x = x * (t > E Q for any t. Let the basic 
assumptions (l)-(4) be satisfied. In addition, assume that 

(1) %?(t) <to, 9(t) 20, 
t=o 

(2) Y&(t) cc02 
t=o 

(3) 5 II R( t, 0) II 2 < w, 
t=o 

(4) 5r2(t)K,(t) < 03. 
t=o 

Then for every initial condition the sequence {xi(t)) converges to x: (t> E Qi in the 
mean square and almost surely for each i. 
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Proof. Subtracting xf (t + 1) from Eq. (4) and taking norms, we write 

IIxi(t+1)-X;(t+1)l12 

= llfli[i[Ri(t, Yi(t))-7(t)(yF(t7 R(tT Yi(t>) +ii(t))] 

-Ri(t7 x*(t)) 11’. (16) 

Using the properties of the projection operator and recalling the fact that x;(t) E 
Qi, we write 

llxi(t+1)-.x;(t+1)l12 

S II Ri(t? Yi(t)) -Ri(t9 X*(~))I12+~2(~)II~F(t7 r(t7 Yi(t))+Ji(f)l12 

-2y(t)(Ri(t7 Y’(t)) -Ri(t9 x*(l)))l(v, F(f, R(t7 Yi(t)) + ii(t)). 

(17) 

Here, we notice that applying steps similar to those of the proofs contained in 
Beidas and Papavassilopoulos [2] yields the required result. 0 

It is worthy of mention that convergence in the mean square requires a weaker 
version of condition 4, which can be replaced by lim, ,,r2(t)K2(t) = 0. 

Next we cover different cases of the projection operator as the constraint set Qi 
takes more specific forms. 

Example 1. Let the set Qi consist of simple constraints such that 

Qi={xi:xi>O}. 

In this case, the asynchronous gradient projection algorithm is described as 

Xi(r+l)=max{O, Ri(t, Y’(t))-y(t)(KF(t, R(t, Yi(t)))+li(t))}- 

(18) 

Example 2. Let the set Qi consist of upper and lower bounds such that 

Qi=[xi:ai~xi<bi}, 

where a, and bi ~5%‘~‘. In this case, the asynchronous gradient projection algorithm 
takes the form of 

( ai qt+ 1) <Ui 

Xi( t + 1) = I bi 

Ri(t, Yi(t>) -y(‘) 

&( t + 1) > bi 
(19) 

1 x(c~(t, ~(t, y’(t))) +Li(t)) otheree. 
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4. Routing network 

Suppose that we are given a network of nodes and arcs and a set W of ordered 
pairs w of distinct nodes referred to as the origin-destination (OD) of w. We are 
also given that rw (measured in data units/seconds) is the arrival rate of traffic 
entering the network at the origin and exiting at the destination of w. We denote 
P,,, as the set of all simple paths that connect the origin and destination of w, x,, as 
the flow routed through path p and x, as all the path flows xp E P,,,. The 
fundamental constraints imposed on this problem require the conservation of the 
load when shared among the various paths and maintaining the nonnegativity 
property of the path flows which yield 

C xp=rw, -VwE W, 
PEP, 

(20) 

x,20, VPEP,, VWEW- 

Define Fij as the total flow of arc (i, j) 

Fij = c xp. 
all paths containing (i, j) 

Consider a cost function such that 

(21) 

(22) 

D(x) = cDij(Fij). (23) 
(i,i) 

Our objective is to find the set of paths for each origin-destination pair and the 
amount of flow routed along each path such that the cost function defined in Eq. 
(23) is minimized. 

The distributed asynchronous algorithm of this section is carried out along the 
lines of the one studied by Tsitsiklis and Bertsekas [18]. It takes the gradient 
projection form in which processor w is responsible for updating x,. At every step 
the update is in the direction opposite to the gradient of the cost function and 
whenever a processor detects that its iteration is excluded from the constraint set, 
it enforces feasibility by projecting its iteration back onto the feasible set. 

In a manner reminiscent of the ARPANET algorithm [13], the end node of any 
arc ascertains the amount of flow through that arc by averaging of some previous 
values of the total flow of the arcs Fij. We therefore write 

fij(t) = i cij(t, t’)Fij(t’), 
t’=t-T 

where cij(t, t’> are nonnegative scalars such that 

c Cij(f, t’) = 1 
t’=t-T 

and T is the bound over which the averaging is implemented. The averaged value 
of the total flow of arcs gii is then propagated to all other nodes. Due to the 
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distributed asynchronous nature of the algorithm, this information may be received 
with a delay. Consequently, processor w computes 

/Q(t) = c o;j(Ej(t+ 1 -d”(t)), (25) 
(i,j)Ep 

where ’ denotes the derivative and A, is all the A, for the paths p E P,,,. We note 
that d”(t) is the communication delay encountered when sending information to 
processor w at time t. The next step casts the equality constraints in a form that is 
forthcoming to parallelization by means of transforming the equality constraints to 
nonnegativity constraints. Then each processor would be able to project onto the 
positive orthant at its own pace and independently of the other processors. 
Consequently, processor w finds the minimum first derivative length (MFDL) [5] 
path 6,,,(t) such that 

In practice, there exist transients in the total flows F’j that occur as the routing 
changes. This contributes to having a settling time quite substantial to be ignored 
that renders processor w incapable of computing actual flows. Processor w will in 
turn use A,(t) to compute desired path flows Z,(t), whose components are Z,(t) 
for p E P,. Therefore, the actual values do not assume their desired values 
instantaneously. Instead, the actual flow x,(t) takes some value between X,(t) and 
x,(t - 1). We assume that there exist scalars (Y > 0, a,(t), such that 

up(t) 2ff, VP, t, (27) 

and 

x,(t+ 1) =a,(t)X,(t) + (I -Up(f))Xp(f), VP, t. (28) 

The distributed asynchronous algorithm is described as follows. For any p E P,,,, p 

+IjJt) 

Zp( t) = max 0, xp( t) - Y 
i f?Lst) 

(w -L,&dt)))? (29) 

where HP is the second derivative length 

HP(t) = C Dt(&j(t)) 
(i,j)ELp 

(30) 

and L, is the set of arcs belonging to either p or the corresponding minimum first 
derivative path &,, but not both. For p =&,(t), we have 

Xfi,@,(f) = r, - c “Jf)’ (31) 
PEP,#ZBJf) 
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5. Simulation studies 

In this section we use computer simulation to measure performance and 
estimate efficiency of distributed asynchronous algorithms with stochastic delays in 
the context of data communication optimal routing networks. 

In our test problem, we considered the network topology depicted in Fig. 1 
where all the connections are assumed to carry the flows bidirectionally. This 
network connects various U.S. cities with the intention of routing data as follows. 
rl: load to be routed from Seattle to Detroit 
rz: load to be routed from Detroit to Seattle 

; : 

3. 

4. 

5. 
6. 
7. 
S. 
9. 

Seattle 10. Cincinatti 

San Francisco 11. Detroit 
Los Angeles 12. Cleveland 
Minneapolis 13. Pittsburg 
Rlilwaukee 14. Boston 
Chicago 15. New York 

St. Louis lci. Philadelphia 
Dallas 17. Washington 
Houston 18. Atlanta 

Fig. 1. The network topology. 
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r3: load to be routed from Chicago to Washington 
r4: load to be routed from Washington to Chicago 
r5: load to be routed from Houston to Atlanta 
r6: load to be routed from Atlanta to Houston. 

In all the simulations, we considered the cost function at every arc to be 
quadratic 

Dij = 3( fij)2, for every (i, j), (32) 

the traffic loads r,,, for all w were equal to 3.0 and the parameter T in Eq. (24) 
was chosen to be 4. In addition, the parameter (Y in Eq. (27) was chosen to be 0.25. 
The distributed asynchronous algorithms with stochastic delays were tested on 
different initial conditions to show the uniqueness of the minimum point. 

In our simulation, the delays d”(t) assume their values from the set (1, 2, * * *, B), 
where B is the communication delay bound and the delays were either sequences 

“0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Stcpsize (gamma) 

1) Distributed asynchro~~ous algorithms with 13 = 4 
2) Distributed asynchronous algorithms with 13 = S 
3) Distributed asynchronous algorithms with B = 12 

Fig. 2. Performance curves for distributed asynchronous algorithms with bounded delays for different 

communication delay bounds. 100 runs were considered. 
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of Markov chains or independently generated with probabilities equal to the 
limiting behavior of these Markov delays. The delays were generated according to 
several probability distributions and the initial delays were chosen at random with 
equal probabilities. The probability distributions of these delays are relegated in 
the Appendix 2. 

It is assumed that the algorithm terminates at time t if the termination function 
TF(t) meets the tolerance level of 0.001, i.e. 

TF(t) = max 
T,T’E(I-B+l;~‘,t) 

Ellx(~) -x(~')lI I 0.001 

j 

0” 
‘=: 

2 . . 
ii 
c 

1) 
1’) 

2) 
2’) 

3) 
3’) 

600 

500 

400 

300 

200 

100 

0 

(33) 

0.2 0.4 0.6 0.8 1 1.2 I .*l 

Skzpsizc (g-a) 

Algorithms with hlarkov dcla.ys for probability distribution PDl 
Algorithms with indepcndcnt delays whose probabilities equal tllc 
limiting behavior of PDl 
Algorithms with hlarkov tlclays for probability distribution 1’112 
Algorithms with independent delays whose probabililies equal tile 
limiting behavior of PD2 
Algorithms with hplarkov delays for probability distribution PD3 

Algorithms with indcpendcnt delays whose probabilities qua1 tile 

limiting behavior of PD3 

Fig. 3. Performance curves for distributed asynchronous algorithms with stochastic delays under 
different probability distributions. B = 4 and 100 runs were considered. 
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We computed E II * II by averaging over 100 trials of the experiment. For each trial 
a different computer realization of the delays was used. Since the previous values 
of the iterations that lie within the delay bound affect the value at which the 
algorithm stands, the above termination criterion is necessary to ensure that all of 
these values have also been stabilized. 

We started by simulating the behavior of distributed asynchronous algorithms 
with bounded delays. In essence, the delays were independently generated from a 
uniform distribution on the set (1, 2, * * . , B}. Fig. 2 plots the performance of these 
algorithms as measured by the termination time in terms of varying the stepsize for 
the delay bounds B = 4, 8 and 12. 

0.4 0.6 0.8 1 1.2 

Slcpsizc @mm~4) 

1) Algorithms with Markov delays for probability distributiorl PUl 
1’) Algorithms with independent delays whose probabilities equal the 

limiting behavior of PDl 
2) Algorithms with Markov delays for probability distribution 1’112 
2’) Algorithms with independent delays whose probabilities equa.1 the 

limiting behavior of PD2 
3) Algorithms with Markov delays for probability distribution P/13 
3’) Algorithms with indepcnclcnt delays whose probabilities equal the 

limiting behavior of I’D3 

Fig. 4. Performance curves for distributed asynchronous algorithms with stochastic delays under 
different probability distributions. B = 8 and 100 runs were considered. 
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Next we tested the case of ordered scheduling that is discussed in Beidas and 
Papavassilopoulos [3]. A reasonable restriction is imposed where we assume that 
the information is received in the order it was produced. We assume that each 
processor w has a local memory where the latest x, generated at time instant t is 
kept and when the new information arrives it is labelled using a time stamp as to 
when it was computed by the other processors. If it happens that this processor 
acknowledges that the information it receives was generated at a time instant 
earlier than t, then processor w will discard it. Therefore, the probability distribu- 
tion enforces that 

Pr{ d”( t) > d”( t - 1) + I} = 0, for all w and t, (34) 

which entails that the entries of the probability matrices for the delays that are 
above the superdiagonal to be zeros. 

We simulated the distributed asynchronous algorithms with Markov delays 
having the property defined by equation (34) and the distributed asynchronous 

169 1 I ! 
: 

I 1 

: 
168.5 - ;. .<.. . ..( , ,. ,..I 

.?I : 

16(j_ 1. i / , .,. , I 

; 
I 165.5 _ , ._ :. 

165 
200 250 300 350 400 450 500 550 600 650 700 

Number of Iterations (1) 

1) Algorithms with Markov delays 

2) Algorithms with independent delays 

Fig. 5. Performance curves for distributed asynchronous algorithms with stochastic delays under PDl 
for y = 1.095. B = 8 and 1 run were considered. 
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algorithms with independent delays whose probabilities are equal to the limiting 
behavior of these Markov delays. Fig. 3 and Fig. 4 illustrate the performance of 
these algorithms for different probability distributions and for B = 4 and B = 8, 
respectively. 

In general, we make the following observations. Firstly, for small stepsize y, 
changing the probability distribution has little discernible effect on the termination 
time. Secondly, the performance curves of the algorithms with Markov delays 
follow those of the algorithms with independent delays, corroborating our intu- 
ition. Thirdly, the performance curve which corresponds to the probability distri- 
bution PDl that places emphasis on recent values of the delays spans more values 
of stepsizes before the eventual divergence. 

From Fig. 3 and Fig. 4, we notice that the performance curves of the Markov 
delays lag those of the independent delays. This is attributed to the fact that the 
time needed to bring the Markov delays to their limiting behavior causes the 
algorithms with Markov delays to converge more slowly than the algorithms with 

167.6. . I I , 

167.25 _ 
200 250 300 350 400 450 500 550 600 

Number of Iwra:ions (t) 

1) Algorithms with Markov delays. 
2) Algorithms with independent delays. 

Fig. 6. Performance curves for distributed asynchronous algorithms with stochastic delays under PD2 
for y = 0.845. B = 8 and 1 run were considered. 
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60() ...... ..... .; 1 i ................ i. ........ .... ., ..... .... 

500 ..... 

i ...I 
................. . ...... ... _ 

0 j i 
0 2 4 6 8 10 12 14 16 18 

Communication Delay Bound @) 

I) Algorithms with Msrkov delays for stepsize 7 = 0.05 

2) Algorithms with Markov delays for stepsize 7 = 0.1 

3) Algorithms with Markov delays for stepsize 7 = 0.2 

Fig. 7. Effects of stepsize and delay bound on performance for distributed asynchronous algorithms 
with Markov delays. 100 runs were considered. 

independent delays. This effect is more prevailing for the case of B = 8 where for 
some stepsizes the algorithms with independent delays converge while their 
Markov delay counterparts do not. 

To underscore the above phenomenon, we obtained Fig. 5 and Fig. 6 by plotting 
one run of the performance of algorithms with Markov delays for y = 1.095, 
probability distribution PDl and y = 0.845, probability distribution PD2. The 
same was done for the algorithms with independent delays. From both figures we 
notice that while the independent delays case converges to the minimum value of 
the cost function, the Markov delays case exhibits severe oscillatory behavior 
around the minimum. 

Next, we examined the effects of the stepsize y and the communication delay 
bound B on distributed asynchronous algorithms with Markov delays. Fig. 7 
depicts the termination time as the delay bound B and stepsize y are varied. 
Noteworthy of mention is that Fig. 3 and Fig. 4 show that algorithms with stepsize 
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y chosen to be 0.05, 0.1 and 0.2 display constant termination time as the 
probability distribution is changed. We note that the termination time grows 
quickly with decreasing stepsize y. In addition, it grows faster with increasing delay 
bound B when stepsize y is small than it does when y is large. 

In summary, 
0 Fig. 1 shows the performance of asynchronous algorithm when using determinis- 

tic delays for different delay bounds. Fig. 2 shows the performance of the 
asynchronous algorithm when using stochastic delays with delay bound B = 4. A 
comparison between these figures shows that the algorithm with stochastic 
delays sustains convergence for larger values of the stepsize y (i.e., y E (0, 1.3)) 
where the algorithm for deterministic delays converges only for y E (0, 0.5). 
This observation is even more prevalent when the delay bound is large. A 
comparison of graph 2) of Fig. 1 with that of Fig. 3 for B = 8 shows that 
algorithm with deterministic delays converges only when y E (0, 0.2) while the 
algorithm with stochastic delays with a certain probability distribution converges 
for y E (0, 1.1) 
This leads us to conclude that the region of convergence is larger when using 
stochastic delays. 

0 Now that we have shown the merits gained when using stochastic delays, we 
included Fig. 5-Fig. 7 to discuss performance issues of using certain type of 
stochastic delays over another. In particular, we show the performance of the 
algorithm with independent delays versus Markovian delays. 

l Fig. 7 displays the performance of the asynchronous algorithm when other 
variables are changed. In particular, the effect of stepsize y and the communica- 
tion delay bound B on the performance of the asynchronous algorithm with 
Markovian Delays. 

6. Conclusion 

We studied the behavior of distributed asynchronous iterations with stochastic 
delays that solve optimization problems with nonstationary minimum over a 
constrained set. For the purpose of confining the iterates to the constraint set, 
each processor evaluates a gradient iteration and then projects back its iterate 
independently of the other processors. This procedure guarantees that each iterate 
generated by the algorithm is contained in the constraint set. The analysis that 
establishes the sufficiency conditions required to guarantee mean square and 
almost sure convergence is based upon utilizing a Lyapunov function given by Eq. 
(6) and using properties of the projection that maintain its supermartingale 
property and, finally, showing that the adverse effects possibly inflicted by the 
communication delays are negligible. 

With the aid of simulation studies we estimated the performance of distributed 
asynchronous iterations with stochastic delays and obtained comparison results as 
the probability distribution of these delays changed. We also assessed the impact 
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of varying the communication delay bound and the stepsize on the termination of 
these algorithms and it was shown that the performance of distributed asyn- 
chronous algorithms is in fact predictable. 

Appendix 1 

0 Almost sure convergence (with probability 1) is a form of convergence of 
random variables. A sequence X(t) of random variables is said to converge to a 
random variable X, almost surely (with probability l), if 

Pr(/$X(“) =X) = 1, 

where P&4) indicates the probability of event A. 
l A sequence of random variables X(t) is said to be supermartingale if 

E(X(t+1)(X(O),..., X(f)) rX(t), EX(0) Coo, 

where E(X(t f 1) I X(O), . . . , X(t)) is the conditional mathematical expectation 
of X(t + 1) for the given X(O), . . . , X(t). A supermartingale is a generalization 
to the stochastic case of the notion of monotonically decreasing sequence. 

0 The definition of positive orthant is the set 

Appendix 2 

We provide the probability distribution for the delays that result from the 
distributed asynchronous nature of the algorithms when solving the optimal 
routing network of U.S. cities given in Section 5. 

First, when the communication delay bound B = 4, the probability matrices that 
characterize probability distribution PDl are given below. 

0.75 0.25 0 

p’=p4= 

LO.25 0.25 0.25 0.251 1 0.625 0. 

0.8 0.2 0 0 
0.4 0.3 0.3 0 

0.2 0.2 0.1 
0.34 0.25 0.31 
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Second, the probability matrices that characterize probability distribution PD2 
are given below. 

(Pi, i=l ,* ..,6) = 

[ 0125 0.5 0.5 0125 0 0125 0 0125 I 

;-;5 ;-;5 ;-;5 8 25 

Third, the probability matrices that characterize probability distribution PD3 
are given below. 

0.2 0.8 0 0 
p’=p4= [ ;*; 0.25 0.55 0 1 p2 =p5 = 

0.375 0.625 [ 0.3 ;*z5 

0 0 
0.5 0 

0125 0.2 0.25 0.1 0.25 0.6 0.25 
’ 

0.25 0.125 0:125 0.25 0.125 0.25 0.625 

0.5 0.5 0 0 

p3 =p6 = [ 0.1 0.3 0.6 0 I 

0.1 0.2 0.2 0.5 
0.1 0.34 0.25 0.31 

Now we provide the probability distributions when the communication delay 
bound B = 8. First, the probability matrices that characterize probability distribu- 
tion PDl are given below. 

0.75 0.25 0 0 0 0 0 0 
0.55 0.1 0.35 0 0 0 0 0 
0.25 0.25 0.25 0.25 0 0 0 0 

pl =p4 = 8.;’ 0.33 0.21 0.06 0.07 0 0 0 

0:s 0.15 0.15 0.25 0.15 0.1 0.25 0.2 0.1 0.1 0.05 0 0.1 0 0 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
0.4 0 0 0.2 0.1 0.1 0.1 0.1 

0.5 0.5 0 0 0 0 0 0 
0.45 0.3 0.25 0 0 0 0 0 
0.25 0.25 0.25 0.25 0 0 0 0 

p2=p5 = 0.625 0.125 0.125 0.125 0 0 0 0 
0.3 0.3 0.2 0.05 0.05 0.1 0 0 
0.15 0.15 0.15 0.15 0.15 0.15 0.1 0 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

p3=p6= 

0.8 0.2 0 0 0 0 0 0 
0.4 0.3 0.3 0 0 0 0 0 
0.2 0.25 0.25 0.3 0 0 0 0 
0.1 0.24 0.25 0.31 0.1 0 0 0 
0.2 0.2 0.2 0.1 0.1 0.2 0 0 
0.2 0.3 0.1 0.05 0.05 0.15 0.15 0 
0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
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Second, the probability matrices that characterize the probability distribution 
PD2 are given below. 

pi= 

.0.5 0.5 0 0 0 0 0 0 
0.4 0.3 0.3 0 0 0 0 0 
0.25 0.25 0.25 0.25 0 0 0 0 
0.2 0.2 0.2 0.2 0.2 0 0 0 
0.1667 0.1667 0.1667 0.1667 0.1667 0.1665 0 0 
0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1426 0 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

for i= 1,...,6. 
Third, the probability matrices that characterize probability distribution PD3 

are given below. 

p’=p4= 

p2=p5= 

p3=p6= 

-0.4 0.6 0 0 0 0 0 0 
0.2 0.1 0.7 0 0 0 0 0 
0.2 0.25 0.1 0.45 0 0 0 0 
0.05 0.24 0 0.31 0.4 0 0 0 
0.2 0.2 0.2 0.1 0.1 0.2 0 0 

IO.2 0.15 0.1 0.05 0.05 0.15 0.3 0 
0.05 0.2 0.1 0.1 0.1 0.1 0.1 0.25 
0.05 0.05 0.05 0.05 0.05 0.05 0.075 .625 
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