=032

Distributed Algorithms with Random Processor Failures

G, P. Papavassilopoulos

Abstract— We examine a distributed algorithm where the processors
may fail in 2 random fashiva. This results in 2 model with random
communication delays. Convergence conditions are derived. Extensions
of the analysis and cesults to cases where the random processor (ailures
are perccived and cocrected within random time intervals are possible.
For the sake of simplicity, the analysis is presented for a two processor
model for solving a system of linear equatioas.

[. INTRODUCTION

The area of asychronous parallel and disuibuted algorithms has
been recognized as being of great importance in achieving the solution
of very large problems (see [1]{11}). One of the issues that has
attracted the attention of researchers is the study of coavergence
under several types of delays by which the messages arrive (0 the
processors from other ones. In this correspondence, we examine a

generic case where the message delays are due to processor failures .:

which can happen in a random fashion. We show that random failures
of processors result in a model which is generically covered by
the Markovian delay model of [13], and that the conditions for
convergence assume a particular and quite meaningful form for the
probiem at hand. For the sake of simplicity, we consider in detail
the case of two processors which work in parallel toward solving a
svstemn of linear equations.

In Section Il we state the problem, and in Section {il we provide
the solution. Finally, in Section IV, we discuss the results, delineate
important issues to be studied further pertaining to the problem
considered here, and point out other classes of interesting problems
that can be cast and analyzed in the same framework.

II. PrROBLEM DESCRIPTION

Let us consider the system of lincar equations

r=Adr+0 n

where A is an n x 1 real matrix and b is a vector in R". A way of
solving this system for & is given by the algorithm

ey = A + b. kE=0.1,2.---)

which converges if all eigenvalues of A are within the unit disk. Con-
sider now that we have two processors—P1 and P2—implementing
algorithm (2) in parallel. P1 updates x}, and P2 updates rf, where ri
is composed of the first ny components of x.. and x2 of the remaining
ny = n — n components. Thus, splitting .4 and b appropriately, (2)
can be written as

(3a)
(3b)

Anst + Aprt + b
Anr 4 Azrt + b

t —
Lo =
2
Ciwl =

Equations (3a) and (3b) assume implicitly that x? comes to P

immediately so that Pl uses r} in updating rj according to (3a).
Similarly. £} becomes immediately available to P2. If £} suffers at

Manuscript received July 21, 1992; revised January 14, 1993 and March 25,
1993. This work was supported in pant by the National Science Foundation
under Grant CCR-9222734

The author is with the Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA 90089-2563 USA.

IEEE Log Number 9216467.

{EEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL.. 39, NO. 5. MAY 1993

time &, a delay d(2. L k)= 1.2.3,---. in arriving from P2 to Pl
and r} suffers a delay d(1. 2. k) =1, 2, 3.-- -, in arriving from P!
1o P2, then (3a and 3b) must be substituted by

Anrg + -h'z-"f--.l(z. 1.y 04 (4a)

-421{{-—4‘ 1t Azt + by, (4b)

For the cases where the delays d(i. j. k) are bounded, sce the
analysis in [1]-[5]., and {t!}: and for the case where they are
stochastic, see the analysis in {13]. and [14]. The case that we wish 10
examine in this correspondence is the following one. We assume that
P! never fails, whereas P2 may fail to function as may happen with
probability 1 — p.0 < p < 1. If P2 fails, it takes a certain amount of
time to have it fixed, namely, 1 instants of time. During this period.
P1 keeps on working using the last reported value of r?, whereas P2
remains idle during this period. when it restarts, it uses the ' value
communicated to it by P, at this current time, and the £ value that
it had when it stopped functioning. A formal description of this case

is as follows. Let
An A T= Au A
A2 : 10 I

A

A

If
Loy = Arg + 0)
then
r A+ L. with probability p ™
¥=2 = 1 Jeoy + b, with probability 1 — p.
If
Lhm) = .—-l-«u +E
L = :I.FL-—I. +5
iz = Arpoi + b
it = Arioi—g + b
Tpegey = Axpqa + 0 (8)
then
E Aria +0 ifl4+1<m
- e g
Tkt {-“-l'ké-l + 0, iftl4+1=m. ®

Our objective is to study the convergence of the sequence ry.
generated by (6)9).

0018-9286/94504.00 © 1994 IEEE

’

IEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 5. MAY 1994

{11, SoLuTiOoN

For reasons of simplicity, and without foss of gencrality, we will
consider that b is the zero vector. Also, for reasons of simplicity, we
will consider 1 = 3, i.e., when P2 fails, it remains idle for 3 instants
of time before recuperating. The gencralization of the results for any
m > 1 will be obvious from our analysis.

1¢ is clear from (6)—~(9) that the evolution of the algorithm depends

‘on the updating formula used during the last three instants of time.
In particular,

ifre = AAAri3 thea royy = AAAATL_3 = AAATL 2

ifre = AdAze3, then reyy = AAAAL 3 = AA Az
ifry = AAATL_3, then L4

= AAdAzi_3 = AAArc—2
’ifn. = AA T3, then riag

=444

AAdri_y = AAAri_2

ifre = AAdAAzc-a, then ri 4
_ {._4_,&,4,_71_“._3 = AdArioz
AAAAI[:-: = AAAIL....-z

ifre = _-l.‘l—.'{l'l.:_g. then rea
_ {,_-1_.4Exk_3 = Addriz
Ad4Ar3 = Addri 2

if.l‘g- = .-l.‘l.-lrk_.g, then .l“:.-+1A
{i.-l.—l.—lrk-s = i.-l:lrg-._-z
.‘L-L%A:L-_; = .‘L-i.{.l’g.-g

with probability p
with probability 1 — p

with probability p
with probability 1 — p

with probability p
with probability 1 — p.
(10)

It is clear now that we can cast the evolution of the algorithms
(6>(9) in the following framework. Let

[= AL [; = A4 (1
Then (6)~«9) can be described equivalently as
reae3 = [(K) - xe (12)

where T'(k} is a Markovian process of matrices, which can take the
take values [y. C2.--+, 7 for each k and the Markovian transition
matrix is P:

0 0 0 o o0 1 0%°
1 0 0 0 0 0 O
0 1 0 0 0 00
P=j0 1 0 0 0 00
0 0 1L~-p 0 0 0 p
00 0 1-p p 0 O
0 0 1~p 0 0 0 p
r O 1—-p p(L=p) 0 0 0 p?
0 0 0 1-p p 0 0
0 0 0 0 01 0
= 0 0 0 0 01 01].(13)
1—p pl—p) p*A-p) © 0 0 p
1-p p(l=p) pPa-p 0 00 p
1-p p(l—p) p*1-p) O 00 p

The mean square convergence of the sequence {za}(! =
0.1.2.---) can be studied by applying directly the results of {12]

10

and {13], in particular Theorem 1 of {13} or Theorem | in Chapter 4
of {12]. References {12] and {13] consider the general iteration

Yeer = DKy

where [(k) is a stationary Markovian process with state space the
n x n matrices Ty,---, T and with associated transition matrix
P of dimension m x . Thus, applying the results of [12] and
[13] and using thc casily verifiable fact that for the sequence
generated by (6)—9) with nme =.3:-mcan square convergence of
{ra}{{ = 0.1,2,3,--) implics mean square convergence of
{z«}(k =0, 1,2,3---) yields the following.
Theorem 1:'? Let

Fr=CioM)s(felhy2---a(H-007)

T = unit matrix with the same dimension as T. (14)

The sequence {zx} generated by (6)«9) converges in the mean
square sense to the solution of (1),} for every initial condition, if
and only if all the eigenvalues of the mauwix [(P' © T} are strictly

.. inside the unit circle.

We will now proceed by examining the particular form that the
condition of Theorem | assumes when the [';'s are as in (11) and P
is as in (13). Let A be an eigenvalue of [(P' @ T) with associated
eigeavector =’ = (x}, x3, r3. T, 5. T6. x7), where each r; € R".
It holds

(1 —p)Ti(rs + 26 + x5) = Ay
(1 = p)Taz1 + p(l — p)Ta(zs + 26 + 77) = Axz

p(1=p)Tazy + p*(1 — p)Talas + 26 + 27) = Ax3
(1~ [))F.ul‘z = Ay
st:g = Ars
Te(xs + x4) = Aws)
pPlrr +p'Tolxs + 26 + 27) = Azr (15)
where

-[:.‘ = F. C 1',..

y=rIs;+xe + 7.

If the eigenvalue X is zero, then the condition of Theorem 1 is
met. Thus, consider X # 0. We then have '

1—-p=

1 = ‘—"_-Fly

Iy = p__(l;p)r.—2y+ L}Brz L ; ”ny

= p’(I; 123 S 1’(1;1:)-f3¥rw
o=t :\'P-f‘ [1)(1;1’)r2y+ Izvle ;”Fly]

1The symbols.& and & denote, respectively, the Kronecker product and
sum of (wo matrices, and ¢ denotes the transpose of a matrix.

2[; should be pointed out that Theorem 1 of {13} provides a sufficient
condition for convergence in the mean square sensc of the iteration Y4y =
[(k)ye + i, where wy is noise. Nonetheless, it is clear, from equations
(18) and (20) of [13], that if the noise is identically zero, then the conditions
provided are also sufficient. See also (12]. :

3The condition of Theorem 1 that T(P & T} has all its cigenvalues strctly
inside the unit circle implies that A has no eigeavalue equal to 1. and thus
(1) has a unique solution. For if A has the cigeavalue 1 with associated
eigenvector I, then (T'. T') is an cigenvector of both A® A and A@d with
associated eigenvaluc 1, and thus 1 is also an cigcavaluc of I(P' & 7).

- 1034

— 1 _ 1_ —
- §r PMA JE AR 1: PF}
1 1- I
e = Kf‘[h (: PIE, 4 p(”)r T,]
l-— 1 - pll—p)=
CAntser e,
1 - — =
+ (—X.}ﬂ‘rzrl]y
3 2
SN A St 1 o
=5 .y+AF. 3 Cyy. (16)
Adding now the last three equations, we have
2(1 = p)= = 1-pY= = =
y= {3(—’\—’2&.1‘2 + g(—A—i—}i)—Fstl"n
2 1- S 1-—- ?_
-+ ;-’—-(-—,\—._,—-p—)l‘sl'; + p—(-T_.,—’Z)—Fs[‘;;Fl
1-p)= ==
+ 0P R,
1-pP====
LI 218 A A A
3 2
Pr , P(l-p==
+ 7\-[-7 + — F1F:}y an
which implies that A satisfies
det| — A*T + A%p%(1 — p)TsTa + Ap(1 - p)°Ts T2l
+ A2p2(1 —p)TsT3+ 2p(1 - p)zfs—[:afx
-+ z\p(l — 1))2T5F4r2 +(1— p)rfsf.fgr.
+ AT + A =TT =0. (18)
Let
L=4A% 4. M=4dcA (19)

Using the property that (4 & BWC @ D(E G F) = (ACE) @
{ BDF) holds for any matrices A. B. C, D. E. F with combatible
dimensions, we obtain
502 = [(4473) 2 (A4D))[(FF4) S (144)]
=LMML=L*APL
=L\’
FeTa=LM?ML% =
Tl = LML\
TsTula = LMPMLMM L =
TeTuTaTy = LA LA LA
r-=r
T-T. = LArs.

LA r?

LAMPLAL

(20)

Substituting (20) in (18). and after some extensive matrix manip-
ulations, we have the equivaleat 1o (18)

det] = AT + {L{PpI + (1 = p)AL)P =0 @n
Setting
A=y (22)
we have the equivalent
det] — p* T+ Lipy [+ (1 = p)AMP] = 0. 23

A litde refiection will persuade the reader that in the general case
where m is not necessarily 3, (23) should be replaced by (24). We
have thus simplified the condition of Theorem 1 and we have the
following.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL.,

VOL. 39, NO. 5. MAY 1994

Theorem 2: The sequence {r<} gencrated by the algorithm
(6)<9) converges in the mean square scase, for every initial condition
to the solution of (1), if and only if the roots of the cequation

det] = "' T+ L™ T+ (L= p) M} =0 (24)

are strictly within the unit disc, where L = AG A and Af = Ao A

In the case where Processor 2 never fails, i.c., p = 1, (24) becomes
det| — ™! FLp" =0

and since the eigenvalues of L are the pairwise products of the

cigenvalues of A, the convergence condition says equivalently that

all eigenvalues of A should be within the unit disk. Similarly, when

p = 0, ie., P2 fails aiways, after operating correctly only once,

condition (24) yields

det]— "+ IM™| =0

which says equivalently that the eigenvalues of (Ad) & (AA) are

within the unit disk, or equivalently that the eigenvalues of AA are
within the unit disk as should be expected.

IV. DIsCUSSION OF THE RESULTS AND CONCLUSIONS

The rapidity of convergence for the case m = 3 is, of course,
related to the cube of the largest magnitude root u of (23). But since
the |u|? yields the rate of convergence of {zo, z3, Ts. x9,--}, Le.,
231 ~ (J1]*)', we obuain that £* ~ (J]%), i.e., the whole sequence
{z+} coaverges in the mean square sense with a rate like [u|*.

It should be interesting to notice that (24) has the obvious in-
terpretation that it considers the convex combination p- L - ™ +
(1 — p)LM™. Notice also the symmetry between the powers of u
and M/, both of which are m. Unfortunately, the dependence of the
roots of (24) on p is not linear. Obviously, the roots of (24) and their
interplay with p and m is an important issue. Several questions which
are not trivially resolved arise. 1) If we have stability for p = 1 and
p = P. i.e., if the iteration is guaranteed to work in the best and
worst cases, does that imply that it will operate successfully for any
p in (P. 1)? Given the nonlinear dependence of the roots of (24)
on p. the answer may very well be negative. 2) I[f we have stability
for a certain m, does that imply that we will have stability for any
other m’ where 1 < m' < m (p is considered fixed)? Both of these
questions have practical importance: for 1) the rationale is that if
we substitute processor P2 with another processor which is of better
quality (i.e.. it has a larger p) and we were guaranteed convergence
with the older, less reliable processor, should we expect things to
work as well with the better quality processor? For 2), the rationale
is that if we substitute P2 with another processor that may fail with
the same probability as the previous one, but it takes less time (o fix
it, i.e.. m' < m, should we expect things to work at least as well
as with the other (more time-consuming) to repair the processor?
Both of these questions essentially ask whether a better quality P2
(ie.. largcr p or smaller m) is preferable. Since the answer may be

negative (see Appendix A), it is worthwhile to single out classes of
A maurices for which the answer to these questions is afficmative.
Although it may seem bothersome that there are cases where a worse
quality processor may facilitate convergence, it is not surprising. For
example. classical relaxation schemes may facilitate convergence by
atlowing a slower pace. The fact that processors may fail is not a
characteristic introduced by the algocithm but a real characteristic of
any processor used. [t is clearly important to single out classes of

{EEE TRANSACTIONS ON AUTOMATIC CONTKOL. VOL. 39. NO 5. MAY 1994

problems (i.c.. matrices A) for which it holds that a better quality
processor is always beneficial.

Another issue of importance that can be casily incorporated into
our mode! concems the case where if P2 fails, it takes 0 or |
or 2 or---or { — 1 instants of time to realize that it failed with
corresponding probabilities q1. ga.- -+ .q. As soon as it is realized
that P2 failed, it takes 1 or 2 or 3 or- - -or w instants of time to fix it
with corresponding probabilities a. g2.---.7,.. This more general
case can be easily cast in the generic framework of iteration (12)
where the (k) matrices assume a finite number of possible values
and {[(k)} is a Markovian process. Again, the basic theorem of {12]
and [13} can be applied in this case, but the notation becomes more
cumbersome. See Appendix B.

Finally, the case where we do not have only two processors but
many, several of which can fail, can easily be covered by extending
in a straightforward manner the framework and analysis presented
here, at the expense of a more involved notation.

Besides all these extensions, we believe that a deeper understanding
of the conditions supplied in Theorem 2, and the study of the first

two questions presented in the second paragraph of this section, is™

of paramount importance in understanding the generic features of
parallel algorithms with random failure of processors.

A model related to the one studied here can be found in [15] where,
instead of processor failures, the authors consider that a processor
takes a random nummber of stages to complete its assigned calculation.
The random failure model we consider can be recast equivalently
by assuming random processing times. Reference (15} considers
nonlinear iterations and provides sufficiency conditions for almost-
everywhere convergence, whereas in this corresponding it is done
by considering that iinear iterations provide necessary and sufficient
conditions for mean square convergence.

APPENDIX A

As an example, so that both questions 1) and 2) can be answered
in the negarive, let
-1]
=y
c

4 is swable if and only if ~9/12 < ¢ < 3/12. and AX is stable
if and only if —~3/12 < ¢ < 27/12. Thus, for p close to zero, the
condition of Theorem 2 is met whereas for p close to 1, it is not
met if 3/12 < ¢ < 27/12. Thus, substituting the P2 with another
one that fails with a smaller probability may be detrimental to the
coavergence of the algorithm. For the same range of values of ¢, i.e.,
3/12 < ¢ < 27/12, the condition is met for m fixed, if p = p(m)
is sufficiently close to zero, whereas in the extreme case m = 0
(and for any p), (24) reads det| — AT + L{p- I +(1 - p)- I] =det
| = AI + L| which has roots greater than one in magniwde. Thus,
substituting the Processor 2 with another one that can be fixed faster
(actually m = 0 means it never fails!) will be detrimental to the
convergence of the algorithm.

iy

APPENDIX B

Let us consider the same model considered in Section Il with two
processors—P1 and P2—where P2 can fail with probability 1 — p.
and where it takes two instants of time to fix it ie, m = 2. In
addition, consider that the failure is either noticed immediately with
probability g or noticed one unit of time later with probability 1 —g¢.
Clearly, if the failure is noticed right away, the algorithm will operate
with A for two time periods, whereas if it is noticed with a delay
of one instant of time, the algorithm will operate with A for three
instants of time. A raticnale similar 1o the one used in (10) results

1035

in the following model. Let

[y = 4444, r‘l = IA,{A_ 03 = _{‘_‘_‘]‘
o= A444 [y = A344.
e =A434 o= 4447,
Ca=AA44. [y =A444.
T = A47dA, [AXTA
If ro = [ire_y. then soyy = [jrioa, where the transition
probabilities p,; are given by the Markovian matrix
(p 1-p 00 0 0 O 0 0 0 0
0 0 0100 0 0o 0 0 0
p tl—p 00 0 0 O 0 O 0O o0
0 0 0040 0O 1-¢g 0 0 O
o 0 000 p O 0 0 1—-p o
p=]0 0o pO0O0O01-p 0 O O O
0 0 0100 O 0 0 0 0
0o 0 0000 O 0 0 0 1
9 0 00g¢O0 0O 1-¢0 0 O
0 0 0000 O o 1 0 o
10 0 0 0 6 p 0 0 0 1-p 0]

Thus. considering the sequence yr = xq, we have yry = [l}ys
where {[({)} is a Markovian process that takes possible values
[1.Tg.--+.T11 with transition matrix P.

Theorem (1) of {13] or Theorem 1 in Chapter 4 of {12] are
now applicable and yield the desirable conditions for mean square
convergence. [t should be noticed that this model can be easily
generalized to the case where the fixing period m is any integer.
and where the failure is noticed right away with probability ¢ or with
one stop delay with probability qi,---. or with ! steps delay with
probability ¢qrs1. and where py + -+ + pryr = 1. Clearly, even for
relatively small values of m and I, the possible values of the I'(1)
stochastic matrix increase rapidly in multitude.

REFERENCES

{11 D. Chazan and W. Miranaker, “Chaotic relaxation,” Linear Algebra
Appl. vol. 2, pp. 199-222, 1969.

(2] G. M. Baudet, “Asynchronous iterative methods for multiprocessors.”
J. ACM. vol. 25, pp. 226-234, 1978. :

(3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compuia-
tion. Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.

(4] P. Tseng, D. P. Bertsekas, and J. N. Tsitsiklis, “Partially asynchronous.
parallel algorithms for network flow and other problems,” S/AM J.
Contr. Optimiz. vol. 28, pp. 678-710, 1990.

5] 1. N. Tsitsiklis. D. M. Bertsekas, and M. Athans, “Distributed asyvn-
chronous deterministic and stochastic gradient optimization algorithms.”
IEEE Trans. Automat. Contr., vol. AC-31, pp. 803-812, 1986.

{6] 1. N. Tsitsiklis and G. D. Stamoulis, “On the average communication

complexity of asynchronous distributed algorithms,” Rep. LIDS-P-1986.

Lab. laform. Dec. Syst.. M.LT. 1990.

K J. Kushner and G. Yin. “Asymptotic propertics of distributed and

cgmmunicating stochastic approximation algocithms,” SIAM J. Contr.

Optimiz., volL 25, pp. 1266-1290, 1987.

{81 D. Mitra, “Asynchronous relaxations for the numerical solution of
differential equations by parallel processors.™ SIAM J. Sci. Stat. Compui..
vol. 8, pp. 4358, 1987.

(9] H. T. Kung. ~“Synchronized and asynchronous parallel algorithms for

multiprocessors,” in Algoritluns and Complezity: New Directions and

Recent Resulis. J. €. Traub 1 al.. Eds. New York: Academic, 1976.

P. Spiteri, “Panallcl asynchronous algacithms for solving bouadary

value problems.” in Parallel Algorithms and Architecture, M. C.eral.

Ed. New York: North-Holland, 1986.

(7

(10}

1016

{11] A. Uresiaand M. Dubois, “Parailel asyacheonaus algorithms for discrete
data,” J. ACM, vol. 37, pp. 588-606. 1990.

B. t{. Bharucha, “On the stability of randomly varying systems,” Ph.D.
dissenation, Univ. Calif., Berkelcy. 1961,

8. F. Beidas and G. P. Papavassitopoulos, “Convergence aaalysis of
asynchronous lincar iterations with stochastic detuys.” Parallel Compu.
vol. 19, pp. 281-302, 1993. (A shoner version appeared in Proc. 30ih
IEEE CDC. Eagland, Dec. 1992.)

{12]

(IR

{13 . "Asynchronous impicmentation of optimization algorithms with
time drift,” Rep. 91-10-01, Dep. Elec. Eag.—Syst.. South. Calif,, 1991,
{15] A. 1. Gao. Y. Mi Zhuy, and G. Yin, “Joint robustness of noise and

Liapunov fuaction for parailel stochastic approximation algorithms,™ J.
Mash. Anal. Appl... vol. 173, pp. 229-254, 1993.

Sampled-Data Controller Design for Uncertain Systems

Richard M. Dolphus

Abstract—This note presents a sampled-data controller design method-
ology for uncertain systems. A coatinuous system with bounded time-
varyving uncertainty is sampled at intervals of length T. The controtler
is designed using a Riccati equation approach by neglecting oT?)
uncertainty terms in the discretized system. Stability is verified for this
choice of T with the O(T?) terms included. If there exists a stabilizing
continuous controller, then there also exists a stabilizing sampled-data
controller for a sufficiently small choice of T.

[. INTRODUCTION

Several papers address the problem of designing a continuous
controller to stabilize a linsar system containing time-varying un-
centainty. for example, see {2]. [5] (1¥]-{13]. Here we consider the
case where 2 sampled-data controller is used as shown in Fig. 1.
The sampled state & = r(kT) is found by sampling r(¢) at
intervals of length T. The discrete control uy is passed through a
D/A device consisting-of a zero-order hold to obtain u{t}. We work
with a state-space representation of the system. as opposed (o the
transfer function representation used in [1]. Other previous work with
uncentain sampled-data systems includes an analysis technique for
robust stability [3). and design of a nonlinear (ultimate boundedness)
controller for a matched system [9]. Here we are interested in linear
controller design which we apply to systems with rank-1 uncertainty.

Consider the problem of determining a linear full state feedback
sampled-data conuoller. One approach is to first design a continuous
controller using the techniques referenced above, and then use the
same feedback gain matrix in the sampled-data controller with a
“sufficiently small” sampling time. [t is not clear, however,what
constitutes “sufficiently small” for a system with uncertainty. Instead
of using a continuous controller design in a sampled-data controller
setting. here we design the controller with the discretized system in
mind. :

The structure of the uncertainty is changed in a complex manaer
when the model is discretized. We show that by neglecting discretized

uncertainty terms of O(T?), however, the remaining terms retain the

Maauscript received October 17, 1990: revised August 17, 1992, Paper
recommended by Associate Editor D. F. Delchamps. This work was supported
by NASA under Grant NGT-50551.

The author is with the Depantment of Mcchanical and Acrospace Engineer-
ing. University of Califomia, trvine, CA 92717 USA.

IEEE Log Number 9216468.

EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOLL 3 NQOL S, MAY 1994

u(f) (1)

Contiuuous System

D/A

—_——

{hscrete Control Law

Fig.
structure of the uncerinty in the continuous model, ie. 10 (T)
there is no smearing of the uncertainty terms throughout the matrices.
We can design based on these simpler terms. and then verify that
the design is stabilizing for the true system with the O(T?) terms
included. As T becomes small. the O(T?) terms become negligible.
and so our ability to design a sampled-data controller is only a
function of the origina! continuous system’s uncertainty structure.
The inference is that if a stabilizing continuous controller can be
designed for an uncentain system, then a stabilizing sampled-data
controller can also be determined.

We develop a design methodology which is a sampled-data version
of the continuous time design technique presented in [13}. This tech-
nique is a Riccati equation approach for systems whose uncertainty
satisfies rank-1 conditions. Sampled-daia versions of other continuous
time design techniques can be developed using the same general
framework. For matched time invariant uncenainties a sampled-data
controller design methodology is given in [6]. Here we extend that
work to include uncertainty that is rank-1 and time varying.

II. PROBLEM FORMULATION AND NOTATION
Consider a system described by
)= (A+AArrnic(e) + (5= A8 (1)) u(t))
where r(t) € R” is the state and u{tj € R" is the control. The
uncertainty 7{t) € R' belongs to a known compact set TR where

i=1.2.- 1)

R={rrr <r. &£ ri. (2)

We assume that (A. [3) is a controllable pair. the matrix functions
AA(-) and AB(-) are continuous, and r(-) is Lebesgue measurable.
Using a sampled-data controller with zero-order hold, the control
u(t) is given by

w(t)=uar Tor kT <t < kT +T 3

where uy is a function of r.. the state measured at ¢ = AT. Our
problem is to find a linear relationship between uy and x4 such that
the closed-loop system is asymptotically stable.

Following is a discussion of notation. We use script letters A
and B for the continuous system, and italic leuers A and B for the
discretized system. The norm || - || indicates the induced matrix 2-
norm. For real symmetric matrices .\ and 1. we write X' > 0(.X >
0) if X is positive (semi-) definite, and X' > V(X2 1)if(X~-1)
is positive (semi-) definite. We also use the ordering notation O(-).
For scalar T and matrix M T), we write M(T) = O(T?") if there
exists a constant scalar i > 0 such that AT € m|T]" for all
T in a neighborhood of zero.

HI. MODEL DISCRETIZATION
Define the nominal system as system (1) with AA = 0 and
AB = 0. Let
£y = A 4+ Buy H)

0018-9286/94504.00 © 1994 IEEE

	~LWF0043
	~LWF0111
	~LWF0113
	~LWF0115
	~LWF0117

