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Robust Variable Structure and Switching-X'
Adaptive Control of Single-Arm Dynamics

Li-Wen Chen and G. P. Papavassilopoulos

Abstract— In this paper, the variable structure control (VSC) and
switching-o adaptive laws arc used to design a new robust controller
for single-arm rigid manipulators in joint space. The controller is shown
to be robust with respect to bounded disturbance. More particularly, a
bound on the tracking error is determined and shown to be smaller than
those resulting from the VSC law proposed in Slotine and Li as well
as the robust adaptive control law derived in Reed and loannou. The
simulations also show that the proposed control law has better tracking
precision performance than the VSC law and switching-o adaptive control
law. It can also suppress chattering and maintain good tracking precision
even if actuator unmodeled dynamics are considered.

I. INTRODUCTION

In the area of robotic control, the design of a manipulator’s
controller is a difficult problem owing to the nonlinearity, disturbance,

and unknown parameters of the manipulator’s dynamics. This leads -

to interesting and difficult robust variable structure control (VSC)
(9]-(18] and adaptive control [19]-[27], [7]-[8] problems.

Slotine and Li [23]-[26] exploited the structure of manipulator
dynamics, which is assumed to be disturbance free, to develop a
globally convergent adaptive scheme for position control of a single-
arm manipulator based on variable structure control (VSC) law.
The analysis and simulations show_ that the unknown parameters
can be precisely estimated if disturbances are not involved in the
manipulator dynamics. Slotine and Li mentioned the possibility of
applying the VSC for the control of single-arm dynamics with
bounded disturbance, but there are several important aspects they
did not consider. First, they did not apply the estimation law which
can guarantee that the estimated parameter will not drift to infinity in
the presence of bounded disturbances. Second, they did not simulate
and discuss VSC law while considering disturbances and unmodeled
dynamics. Reed and Ioannou [19], [27] developed two new robust
adaptive controllers which are based on the switching-¢ modification
control and computed torque method [1] for the control of a single-
arm manipulator with rigid links. Both the VSC and switching-o
adaptive control laws can guarantee that the tracking errors belong
to some error set in the presence of bounded disturbance and time-
varying parameters. In this paper we develop a new control law which
is a combination of VSC law and switching-o adaptive law to enhance
the control of single-arm dynamics with unknown parameters and
bounded disturbances.

The paper is organized as follows. In Section II we analyze the
new composite control law and compare it with the continuous VSC
law and switching-o adaptive law. In Section III we simulate and
compare these control laws in the presence of bounded disturbance
and unknown parameters with and without unmodeled dynamics
involved. Finally, in Section IV we summarize the results.
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[I. COMBINATION OF THE CONTINUOUS VSC
LAW AND SWITCHING-X ADAPTIVE Law

The dynamic equation of a single-arm manipulator with n links in
joint space is [1]-[4]

= D(q)§ + H(q, §)g + G(q) — d(t)

where 7 € R" is the vector of joint torques supplied by the
actuators; D(q) € R™*" is the arm mass (inertial) matrix which is
symmetric and positive definite; ¢, ¢, § € R" are the vectors of joint
displacement, velocity, and acceleration, respectively; H(q, §) €
R™*™ is the matrix from centrifugal, Coriolis, and frictional forces:
G(q) € R" is the vector of gravitational force; and d(t) € R" is a
uniformly bounded disturbance. Our objective is to find a controller
which uses the control law 7 as a function of the state ¢, ¢ and
the estimated unknown parameter Pin (2.3) which will make (2.1)
to have ¢ — g4 in the presence of disturbance d(t) and unknown
parameter P, where q4 is the desired trajectory. The combination of
the continuous VSC law and switching-o adaptive law for the control
of a single-arm manipulator with bounded disturbance and unknown
parameters is presented here for the first time. Our error bound is
smaller than those of the VSC law proposed in Slotine and Li {26]
and the robust adaptive control law derived in Reed and [oannou [19].

Lemma 1: Consider the following robust adaptive control law for
2.1

T = D(q, P)i- + H(q, ¢, P)ér + G(q, P) — KuS — dosat(5/0)

(2.1)

(2.2)
$(t) = P(t) = -T7'WT(q, 4, 4 §:)S - oT'P (23)
where
0, 1Pl < Po
c={o(lgl-1), R<IPI<2R @4
doy 2Py < || B||

ago > 0 is a scalar, Po > || P||, and {|z|| is l2 norm for the vector =.

do = diag(dio0, d20,---,dno) € R"*" (2.5)

ldl(t)l SdiOa = lv 2)"'!" (2'6)

d(t) = (di(t), da(2), -, da(t)) € R @7

di(t). d2(t),---.dn(t) are disturbances, and

d10(t),d20(t), - - ,dno(t) are upper bounds of disturbances.
sat(5/6) = (sat(S1/é1), sat(S2/d2),---,sat(Sa/éa))T € R

: (2.8)
o= (o1. éz,---,é,.)r, S = (51, 52,...,5")7‘
ey = JSi/%i if |S:/6:i| <1
sat (5-/4’1 ) - {sgn (Si/d’i), otherwise (29)

. 1, if Si > o:
sgn (Si/¢:) = {—1, if 5 < =6
¢; is called the boundary layer for the corresponding variable S;, S is
defined in (2.12), and the plot of sat(S;/¢:) is shown in Fig. 1. The
variables g, ®(P), W, and H, D, G are defined in (2.14), (2.11),
(2.22), and (2.23), respectively. K4 and ' are arbitrary constant
diagonal positive definite matrices chosen by the designer. Then we
can guarantee ¢ is close to g4 in a bound as in (2.42).

0018-9286/94504.00 © 1994 IEEE
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Fig. 1. Continuous VSC law.

Proof: In the following proof we drop the independent variables
of all functions for simplicity. We choose the following function as
a Lyapunov function candidate of the dynamic equation (2.1).

V(t, S, ®) = (1/2)S(t)TD(q)S(t) + (1/2)&(¢)'T8(t) (2.10)

where D(g) € R™*" is the arm inertia matrix which is symmetric
and positive definite, ' € R™'*™! is a diagonal positive definite
constant matrix chosen by the designer, and $(¢t) € R™! is as

&(t) = P(t)- P @.11)
where m1 is the number of unknown parameiers, P is an unknown
constant parameter vector, P(t) is the estimate of P, and $(¢) is the

estimate error of the parameter vector. We assume that the desired
trajectory gqq is twice differentiable, then we define S(¢t) € R" as

5(t) = §(t) + Aq(t), S(t) = §(t) + Ag(2) (2.12)
where
q(t) = q(t)—qa(t), @(t) = 4(¢) —qda(t). 4(t) = G(t) —ga(t) (2.13)

qa(t), 4a(t), and Ga(t) € R™ are the desired joint position, velocity,
and acceleration of the single arm, g(t), §(t), and §(t) € R" are
the joint position error, velocity error and acceleration error of the
single arm, and A € R™*" is a constant diagonal positive definite
matrix chosen by the designer. We also define the reference variable
g-(t) € R" as

ar(t) = qa(t) — A /0 () dt. @.14)

Therefore
4r(8) = da(t) — AG(t), 4-(t) = da(t) — AG(2).
From (2.12), (2.13), and (2.15), we then obtain
5(8) = §() = §-() = §.(¢)-
From (2.12), (2.13), and (2.1), we then obtain
DS = DG+ A9)
= D(§ — §a+ Ag)’
= D+ D(—da + AJ)
=(r—H§—G+d)+ D(—§s+ AJ)
=717—H§—G+d— Dja+ DAq.

(2.15)

(2.16)

2.17)
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Differentiating the Lyapunov function candidate (2.10) and using
(2.17), we have

V =ST(r - Hi— G +d— Dis + DAJ)
+ST((1/2)(D - 2H) + H)S+ &' T®. (2.18)
Since D — 2H is skew-symmetric [23]-{26], it holds (5]
ST(D—-2H)S =0. (2.19)
Inserting (2.19) into (2.18), we get
V=S"(r-H(§-S) -G +d—DPji+ DA§) + "T'd. (2.20)
Inserting (2.15) and (2.16) into (2.20), we get
V=S"(r-—H§ -G+d-Dj.)+8"T$. .21)

Exploiting the structure of the manipulator dynamics, we can obtain
the relations [23]-{26]

W(q, 4. 4r, 4-)® = H(q, 4, )i + D(q, P)i- + G(q, P) (2.22)

where )
) A=H-HD=D-D,G=G-G @.23)
where | '

H,D,G are the estimates of H,D,G,
and

H, ﬁ,@ are the errors.

‘Inserting (2.2) and (2.22) into (2.21), we then obtain

V = ST(W® — RyS)+ ST(d — dosat(5/¢)) + ®TTd. (2.24)
Now, we analyze the derivative of Lyapunov function inside and
outside the boundary layer ¢; as follows: ’

1) Outside the boundary layer |Si| > ¢i,i =1, 2,---,n.
From (2.9) and (2.24), we get

V= ST(W&-RuS)+ST(d—dosgn(5/¢))+&TTd. (2.25)
From (2.6) and (2.9), we get

Sid; < Sidiosgn(Si/¢i), as Sifoi>1

Sid; < Sidiosgn(Si/¢i), as Sif¢: < 1. (2.26)

From (2.5), (2.7), and the definition of S/¢ in (2.8), we then
obtain :
5Td - STdosgn(5/9) <O0. 227
Inserting (2.27) and the switching-o adaptive law (2.3) into
(2.25), we get
V<-STK4sS—(P-P)ToP. (2.28)

From the definition of the inner product of two vectors, we
know

PTP < ||P||||PII. 229
From (2.29) and using the fact ¢ > 0 and Py > || P||, we obtain

aPT(P-P)>o0. (2.30)
Since V in (2.28) is always negative owing to (2.30) and the
positive definite matrix k4, we know that the joint position error

g will go to some finite value proportional to the boundary layer
@ if A in (2.12) is a positive definite matrix.
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2) Inside the boundary layer [S,| < ©,,i =1, 2,---.n
From (2.9) and (2.24), we get

V=S5S"(W& - KuS)+ ST(d - do(S/¢)) + ®"Tb. (2.31)
Inserting the switching-a adaptive law (2.3) into (2.31), we get
V =-5"K.5+57(d - do(5/0)) - (P - P)ToP. (232)
Define

do/® = diag (dio/®1, d20/G2. -, dno/bn)- (2.33)
From (2.6) and (2.7), we get
STd < |S|Tdoo, where doo = (dr0, dzo,- - -, duo)T. (2.34)
Inserting (2.33) and (2.34) into (2.32), we get
V =—ST(Kq+do/8)S +|5|Tdoo — (P — P)TaP. (2.35)
Let
Kq+do/é = KnKF. (2.36)

Inserting (2.36) into (2.35), we get

V < —(1/2)ST(K4+do/9)S
= (1/2)(ISI" Kn - dgo K7 *)(ISIT Kn — dooK;‘)
— (1/2)dgo K K |S| = (1/2)ISIT Kn (K7 ")  doo
+ 151 doo + (1/2)(dgo K 'y (dgo K7 )T

—(P-P)ToP. 237
Since K is diagonal, it holds '
Kn = KT, (K7H)T = K7 (2.38)

Since d3o|S| and PT P are scalar, we then obtain
%S| = ST doo, PTP = PT B. (239)

Inserting (2.38) and (2.39) into (2.37), we then obtain
V < —(1/2)ST(Ka+ do/8)S — (1/2)|||S|" Kn — dgo K |I?

+(1/2)ldgo K ||* = (P - P) o P. (2.40)
From (2.40), we get
V < —(1/2)ST(K4 + do/6)S — c PT (P - P)
+(1/2)lldgo KM IP. 241

From (2. 41). we get

limsup (1/T)

T—oo to

ST (Kat dof)S dt < lldo K5 I* — Jim_

@/T) /'

where do/@, doo, and K\ are defined in (2.33), (2.34), and
(2.36). In (28] we derived the error bound of the single arm
for switching-o adaptive control law as

. to+T
limsup (1/7) STK4Sdt < |ldL K7

T—oco to

T
(P-P)ToPdt (2.42)

(2.43)
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Fig. 2. Single-arm manipulator with- two-links.

where

K.KT = K4,doo = (dio, d20,+- ,dno)T.

In [28] we also derived the error bound of the single arm for

continuous VSC law as

to+T

ST(Ka+do/)Sdt < |ldio K II°

2.44)

where do/@, doo, and A, are defined in (2.33), (2.34). and

(2.36). We know from (2.30), (2.42), (2.43), and (2.44) that the

error bound for the combination of the continuous VSC law and

switching-o adaptive law is smaller than either continuous VSC

law proposed in Slotine and Li [23]-[26] or robust adaptive

control law proposed in Reed and Ioannou alone [19], [27].

limsup (1/7T)
T—oo

to

III. SINGLE-ARM SIMULATION

In this section we use a single-arm manipulator with two rigid
links as our simulation example (Fig. 2). The link lengths are both I,
the first and second link’s mass are m, and mg, the first and second
joint angles are q; and g2, the first and second joint torques are 7
and 72, and d,, d; are disturbances. The Lagrange-Euler equation of
motion for this single-arm manipulator with two links is [1]-[4]. See
(3.1) at the bottom of the page. In the simulation we let both m; and
m2 be 1 kilogram, the link length ! be one meter for simplicity, and
the time-varyving disturbances di, d2 be

di =ds=2/(1+¢) 3.2).
where ¢ represents time in seconds. We also let the desired trajectories

which are twice differentiable for joints 1 and 2 be

q14 = sin(t) + 0.1sin (3t)

g24 = 0.1sin (2¢) + 0.1 sin (4¢). (3.3)
We simulate our robust composite adaptive control law mentioned
in Section I, the continuous VSC law proposed in Slotine and
Li [23]{26] and the switching-o adaptive control law proposed in
Reed and Ioannou [19], [27] both without unmodeled dynamics and
with actuator unmodeled dynamics involved. We model the actuator
unmodeled dynamics as a first-order low pass filter, where its cut-
off frequency is 100 radians per second and dc gain is one. We can

m212 <+ ma cos (q2)12
--mzl2 cos (g2) Fmal

mllz + =
—mzl

1 2
3 mgl

7

)=C
(s

mo sin (q2)12q2

Stmasin(g2)0%¢2 \ (@1 +
Lmg sin(g2)%¢: 0 q'z

+ 3mal?cos (qg)) (ijl)
22 | 5
q2

3™ glcos (q1) + 3ma2 glcos (¢1 + ¢2) + ma glcos (ql)) _ (d; )

$ma glcos (1 + ¢q2) d,

3.1
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Fig. 3. The switching-o adaptive control law without unmodeled dynamics,
solid line: joint 1, dot line: joint 2.
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Fig. 4. The continuous VSC law without unmodeled dynamics, boundary
layer 0.1, solid line: joint 1, dot line: joint 2.

express our composite robust adaptivé controller 7y, T2 as

1. 1 - 4 ..
n=m (3 1r + Egcos(ql)) + g ((5 +cos(qg))q1r

1 1 .. . .. -1 . ..
+ (5 + 3 cos (q2)>qz.-‘ —sin(g2)d2g1- + - sin (g2)q2d2r

1 .
+ 5 gc0s(q1 + g2) + geos (‘h)) — ka1 51 — diosat(S1/é1)

. 1. 1 . 1. 1 . ..
T2 = M2 | =§ir + = cos(g2)d1r + 3% + 5 Sin (g2)d1d1-

3 2
1 N
+ 5 gcos (g1 + g2) — k4252 — d2o sat (S2/¢2) G4
where
L Si/¢i1 Sl/¢l$l s
sat(Si/i) = {sgn (Si/:), otherwise ‘= 12

and the switching-o adaptive law can be expressed as

: /1. 1 —1 -
my = —7; ‘(Equ + Egcos(qx))& — a1y i

i = 4 -
My = —v; ! ((5 + cos (qz))shr

1 1 . . ..
+ (3 + 5 cos (92))92r — sin(g2)d2q1r

-1 . .. 1
+ —-sin (g2)d24ar + 3 &eos (g1 + g2) + gcos (1)1

1. 1 . 1._

+ (gqxr + 5 cos (¢2)d1r + 3%r
1 . . . 1

+ sin (g2)d1d1- + 5 &cos (91 +q2) ) S2

(EX))

-1 A
=027, M2
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Fig. 5. The continuous VSC law without unmodeled dynamics, boundary
layer 10, solid line: joint 1, dot line: joint 2.
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Fig. 6. The composite control law without unmodeled dynamics, boundary
layer 0.1, solid line: joint 1, dot line: joint 2.
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Fig. 7. The composite control law without unmodeled dynamics, boundary
layer 10, solid line: joint 1, dot line: joint 2.

where )
0 [l < mo
ci={oo(l2l 1)  mo< il S2mo  i=1,2

oo 2mo < [l

where 11, 72, 1, and ™3 for the continuous VSC law and switching-
o adaptive control law as described by Chen and Papavassilopoulos
[28]. We let initial values of the estimated parameters m; = 0.8,
m2 = 1.2, controller gains k4y = k4o = 2, and chose scalars
A1 = 20, A2 = 15, where 11, and i ar the estimates of m, and ma,
respectively. We let djo and d2o be the upper bounds of disturbances
d; and d2, thus dyo = d2¢o = 2. We also choose 09 = 5, mg = 1.1,
7 = 72 = 1/2.3. In the simulation, the different boundary layers
0.1 and 10 are used and Adams variable step-size predictor-corrector
techniques [6] are used to solve these equations. Their plots are in
Figs. 3 to 7 for the case without unmodeled dynamics and in Figs. 8
to 12 for the case with actuator unmodeled dynamics. In each figure,
the solid line represents the position error of joint 1 and the dotted
line is the position error of joint 2. Fig. 3 shows the joint position
error of the single arm as the switching-o adaptive control law is
used. Figs. 4 and 5 represent the joint position errors of the single
arm as the continuous VSC law with the boundary layers 0.1 and
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Fig. 8. The switching-o adaptive control law with actuator unmodeled

dynamics, solid line: joint 1, dot line: joint 2.
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Fig. 9. The continuous VSC law with actuator unmodeled dynamics, bound-
ary layer 0.1, solid line: joint 1, dot line: joint 2.

10 is used. Figs. 6 and 7 show the joint position errors of the single
arm as the composite control law with the boundary layers 0.1 and
10 is used. Figs. 8-12 are plotted in the same fashion as Figs. 3-7
where the actuator unmodeled dynamics are considered. For the sake
of clarity, there are two plots in each figure. The time scale of the
left one is from zero to 15 seconds and the right one is from 2.5 to
15. Comparing Figs. 6 and 7 for the composite control law with
Figs. 4 and 5 for the continuous VSC law, we can see that the
joint position errors of Figs. 6 and 7 are smaller than those in the
corresponding Figs. 4 and 5. We also can see that the joint position
errors in Figs. 6 and 7 for the composite control law are smaller than
those for the switching-oc adaptive control law in Fig. 3. Thus the
tracking precision performance of the composite control law is better
than in the switching-o adaptive control law and the continuous VSC
law. Comparing Figs. 11 and 12 with Figs. 6 and 7, we see that the
joint position error of the composite control law for the case without
unmodeled dynamics is smaller than for the case with the actuator
unmodeled dynamics, as was to be expected. Comparing Fig. 8 with
Figs. 11 and 12 and comparing Figs. 9 and 10 with 11 and 12, we
can see that the composite control law is more robust to actuator
unmodeled dynamics than the continuous VSC law and switching-o
adaptive control law.

IV. CONCLUSIONS

In this paper, we have analyzed our composite robust adaptive
control law and compared it with the continuous VSC law and the
switching-o adaptive law for the single-arm dynamics with bounded
disturbance, unknown parameters, and actuator unmodeled dynamics.
We can see that the combination of the continuous VSC law and
the switching-o adaptive control law has better tracking precision
performance than either the VSC control law or the switching-o
adaptive control law alone for both the cases without unmodeled
dynamics and with actuator unmodeled dynamics. From the theo-
retical analysis, we know that a small boundary layer may excite
high frequency unmodzled dynamics which will cause instabilities,
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Fig. 10. The continuous VSC law with actuator unmodeled dynamics,
boundary layer 10, solid line: joint I, dot line: joint 2.
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Fig. 11. The composite conuol law with actuator unmodeled dynamics,
boundary layer 0.1, solid line: joint 1, dot line: joint 2.
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Fig. 12. The composite coatrol law with actuator unmodeled dynamics,
boundary layer 10, solid line: joint 1, dot line: joint 2.

but the simulations show that the system with a small boundary
layer (Fig. 11) still has good tracking precision even if actuator
unmodeled dynamics are considered. The reason is that the high-
frequency amplitude of the control torque is small. The joint position
error without unmodeled dynamics, however, is smaller than with
actuator unmodeled dynamics. Although the simulations show that
a small boundary layer can achieve better tracking even if actuator
unmodeled dynamics are considered, such a boundary layer is limited
by its physical attributes.

REFERENCES

(1] 1. J. Craig, Introduction to Robotics: Mechanics and Control. Reading,
MA: Addison-Wesley, 1986.

2] H. Asada and J. J. E. Slotine, Robot Analysis and Control. New York:
Wiley, 1986. , ’

(3] R. P. Paul, Robot Manipulators: Mathematics, Programming and Con-
trol. Reading, MA: MIT Press, 1981.

[4] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics Control, Sensing,

Vision, and Intelligence. New York: McGraw-Hill, 1987.

(5] G. Strang, Linear Algebra and Its Application. New York: Academic,
1980.

(6] R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical Analysis,
Wadsworth International. 1981.



1626

17
(8

91
(10]
(1]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

(20]

21]

(22]

(23]

(24]

(25]
(26]
[27]

(28]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL,, VOL. 39. NO. 8, AUGUST 1994

G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and
Control. Englewood Cliffs, NJ: Prentice-Hall, 1984.

Y. D. Landau, Adaptive Control: The Model Reference Approach. New
York: Marcel Dckker, 1979.

V. L. Utkin, Sliding Modes and Their Application in Variable Structure
System. Moscow: MIR, 1978.

V. L. Utkin, “Variable structure systems with sliding modes,” IEEE
Trans. Automat. Control, vol. 22, pp. 211-222, 1977.

V. L Utkin, “Variable structure systems-present and future,” Auto.
Remote Contr., pp. 1105-1120, 1983.

V. L. Utkin and K. D. Yang, “Methods for construction of discontinuity
planes in multi-dimensional variable structurc systems,” Auto. Remote
Contr., pp. 1466-1470, 1978.

V. L. Utkin, “Equations of the sliding regime in discontinuous system,”
Auto. Remote Contr., pp. 211-218, 1972.

J. J. E. Slotine and S. S. Sastry, “Tracking control of nonlinear systems
using sliding surface with application to robot manipulators,” /nt. J.
Control, vol. 38, pp. 465492, 1983.

A. F. Filippov, “Differential equations with discontinuous right hand
sides,” Am. Math. Soc., vol. 62, pp. 199-231, 1964.

Y. Y. Hsu and W. C. Chan, “Optimal variable structure controller for
DC motor speed control,” in Proc. Inst. Elec. Eng., 1984, pp. 233-237.
R. A. DeCarlo, S. H. Zak, and G. P. Matthews, *“Variable structure
control of nonlinear multivariable systems: A tutorial,” in Proc. [EEE
1988, 1988, pp. 212-232.

J. J. E. Slotine, “On modeling and adaptation in robot control,” in Proc.
IEEE Int. Conf. Robotics and Automation, 1986, pp. 1387-1392.

J. S. Reed and P. A. Toannou, “Instability analysis and robust adaptive
control of robotic manipulators,” /EEE Trans. Robotics and Automation,
vol. 5, pp. 381-386, 1989.

T. C. Hsia, “Adaptive control of robot manipulators-A review,” in Proc.
[EEE Int. Conf. Robotics and Automation, pp. 183-189, 1986.

S. Dubowsky and D. T. Desforses, “The application of model referenced
adaptive control to robot manipulators,” ASME J. Dynamics Sys., Meas..
Contr., vol. 101, pp. 193-200, 1979.

J. J. Craig, P. Hsu, and S. S. Sastry, “Adaptive control of mechanical
manipulator,” in Proc. IEEE Int. Conf. Robotics and Automation, 1986.
pp- 190-195.

J. J. E. Slotine, “Sliding controller design for nonlinear system,” /nt. J.
Contr., vol. 40, pp. 421-434, 1984. :

J. J. E. Slotine and W. Li, “On the adaptive control of robot manipu-
lators,” presented at the ASME Winter Annual Meeting, Anaheim, CA,
pp- 51-56, 1986.

. “Adaptive manipulator control: A case study,” in Proc. [EEE Int.
Conf. Robotics and Automation, 1987, pp. 1392-1400.

., Applied Nonlinear Control. Englewood Clifs, NJ: Prentice-Hall.
1991.

P. Ioannou and J. Sun, “Robust adaptive control,” class notes of EE685.
USC, 1992.

L. W. Chen and G. P. Papavassilopoulos, “Robust optimal force variable
structure and adaptive control of single-arm and multi-arm dynamics.”
Ph.D. dissertation, Department of Electric Engineering-Systems, Univ.
Southern Calif., 1991.

Set of Reachable Positions for a Car

Philippe Soueres, Jean-Yves Fourquet, and Jean-Paul Laumond

Abstract— This paper shows how to compute the reachable positions
for a model of a car with a lower bounded turning radius that moves
forward and backward with a constant velocity. First, we compute the
shortest paths when the starting coafiguration (i.e., position and direction)
is completely specified and the goal is only defined by the position with the
direction being arbitrary. Then we compute the boundary of the region
reachable by such paths. Such results are useful in motion planning for
nonholonomic mobile robot.

L

Let us consider a car moving forward and backward with a lower-
bounded turning radius R (without any loss of generality, we assume
R = 1) and an upper-bounded velocity. The position and the direction
of the car are, respectively, defined by the coordinates (z, y) of the
reference point and the angle 8 between the abscissa axis and the main
axis of the car (see Fig. 1). So, the car is completely defined as a point
(z. y, 8) in the configuration space R? x S'. If we assume that the

INTRODUCTION

_linear velocity is constant, the motion is defined by the control system

T =cosf-u;
y=sinf-u,
8 = us

(X)

with |u ()] = 1 and |u2(t)| < 1 where u; and u- are, respectively,
the linear arid angular velocity of the car. Such a differential system
expresses kinematic constraints which characterize the nonholonomic
nature of the.car [4]. This is the Reeds and Shepp model.

Initiallv this model has been introduced by Dubins [3] for a car
that moves only forward (i.e., v; = 1). He determines a sufficient
family of shortest paths.' Using this result and the result of Melzak
[6], Robertson [10]. and Cockayne and Hall [2] provide the set of
accessible positions for the model of Dubins (i.e., u; = 1). N

The problem of finding a shortest path between two configurations
when backward motions are allowed (u; = =+1) has been set by
Reeds and Shepp in [9]; it has been completely solved after a
sequence of different works [1], [9], (11], [12].

This paper solves the following problem:

How do we compute the set of reachable positions from the
origin by path of a given length when the final direction of the
car is not specified?

It is solved in two steps: among all the paths linking an initial
position with fixed direction of the car to a final position with free
direction. we point out a shortest one. Then, from the shortest path
expression, we obtain the complete analytical description in the plane
(O, z, y) of the set of positions reachable from the origin by a path
of length lesser than some given value. Section II presents the state
of the art on Reeds and Shepp’s problem. Section [II shows how
to apply the Pontryagin Maximum Principle (PMP) to compute a
sufficient family of optimal paths. This family is then reduced by
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lie., a family rich enough to always contain a shortest path to link any two
configurations. !
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