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Abstract 

Beidas, B.F. and G.P. Papavassilopoulos, Convergence analysis of asynchronous linear iterations with stochas- 
tic delays, Parallel Computing 19 (1993) 281-302. 

We present a general linear model of asynchronous iterations, the communication delays of which are 
stochastic with Markovian character. This model allows static or dynamic allocation of the iterate vector 
components to processors. It also allows simultaneous updating of the same vector component by multiple 
processors. Sufficient conditions under which the model of asynchronous iterations converges in the second 
moment (and in the mean) to the sought solution are provided. For the specialization of the Markov case when 
the communication delays are independent, identically distributed (i.i.d.), we provide sufficient conditions for 
convergence in the second moment and necessary and sufficient conditions for convergence in the mean. 

Keywords. Linear algebra; iterative algorithms; asynchronous iterations; convergence analysis; multiprocessor 
systems; stochastic delays. 

I. Introduction 

Asynchronous implementation of iterative algorithms has recently witnessed extensive 
attention [3,18,19]. Asynchronous iterations allow processors not to fall idle but further 
compute after performing an update without waiting for an a priori fixed set of data. Hence, 
processors compute with available information at full speed. Asynchronous iterations are 
shown [8] to enhance efficiency in a parallel processing environment. 

The model we present permits static allocation of components to different processors in 
which each component gets assigned at the start of the algorithm to be updated by the same 
processor. For better load balancing among processors, dynamic allocation can be employed 
in which the assignment of components may change with time. In an effort to elevate the level 
of tolerance to processor failure, the model also allows concurrent updating of the same 
component by several processors. It is allowed that the processors use their individual updates 
with a possible bounded delay. 

In an early paper on asynchronous iterations, Chazan and Miranaker [5] discussed linear 
system of equations with nonnegative coefficients. Kung [8] considered issues that pertain to 
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the implementation of asynchronous iterations in multiprocessors. Baudet [1] proved a 
convergence condition for problems where no bound exists on the communication delays. 
Some applications are discussed in [11,13]. Tsitkilis, Bertsekas and Athans [15] studied an 
asynchronous model that seems to be the first of its class to treat optimization problems. In 
spite of assuming that the delays were unknown, they were dealt with in a deterministic 
manner. In Kushner and Yin [10], a model related to the one studied here is considered. The 
differences, however, are twofold. First, our model takes no regard to the structure of the 
matrix sequence which is associated with the augmented system model defined in Section 2. 
In [10] they discussed a model whose matrix sequence possesses the special form which has 
nonegative entries and the sum of its rows equals one. Second, in [10] the matrix sequence is 
assumed to have a unique stationary distribution. In our model, this property does not 
necessarily hold. A scheme can be implemented (see [17] for the deterministic case) to ensure 
that the receipt of updates conforms to the order with which they are produced. In particular, 
we exploit a proper  labelling process to impose that if the arrival of xj(k) to processor i is 
attained, future computations will be prevented from using iterates prior to xi(k- 1) 
inclusive. It is shown (see [16] for the case of i.i.d, communication delays) that the aforemen- 
tioned scenario produces a good communication complexity in which managability of the 
number of transmitted messages is preserved. 

A key assumption in the algorithms under study is that the communication delays among 
collaborating processors are assumed to be stochastic. Cases with stochastic delays appear 
when the load of the communication network that the processors use varies in an unpre- 
dictable manner, or some of its links are temporarily incapacitated. Therefore,  the random 
delay framework addresses the varying load conditions of the communication network as well 
as the reliability issue of temporary link or processor failure. In this paper, we derive 
sufficiency conditions that guarantee the convergence of the asynchronous linear iterations 
with stochastic delays. The virtue of these conditions is that they are developed not in the 
usual sense of the nonexpansiveness property available in [3,14]. Instead, we pass the 
iterations to a certain augmented space which is specified by the delay bound and utilize the 
Kronecker product notation [4] to facilitate the computation of the second moment of linear 
systems, the coefficients of which are Markov chains. 

In Section 2, we introduce the main model of asynchronous iterations in which specialized 
and overlapped computations are used. Motivations behind such classification of the main 
model are presented. State space formulae are given for the purpose of obtaining a generic 
description of the model. Convergence analysis is discussed in Section 3. Our main result 
provides sufficient conditions under which the main model converges in the mean and second 
moment to the origin for every initial condition. This is partly achieved by utilizing the 
generalized formula, represented by Equation (15), to the equation found in [4]. We discuss 
and provide a weaker set of conditions for the situation in which the Markov chain associated 
with the communication delays takes a special property. In particular, we discuss the case 
when the initial distribution of the Markov chain is a stationary one. Furthermore,  we study 
the models of ordered scheduling and independent delays. Finally, in Section 4 we present an 
example, the significance of which is to gain insight into the conditions furnished by our main 
result. Lengthy formula derivations and properties of Kronecker products and sums are 
relegated in the Appendix. 

2. System model 

In this section, we introduce the basic problem that will be studied, see Equations 
(9a)-(9c). We start by considering several cases that give rise to this model. 
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As processor j finishes computing, it propagates its value to other processors. With a 
possible delay, processor i combines the value of its own computation with the information 
received from processor j multiplied by the constant aij. We also assume that processor i 
picks up random measurement noise with every computation it completes. 

Case (i). Specialized computations 
We discuss a model of specialized computations in which each component of the vector is 

updated by at most one processor at the same time. We let dji(k) be the delay incurred by 
transmitting a message from processor j to processor i at the k th  iteration. We assume that 
the communication delays are bounded. We allow the bound of these communication delays 
to be different depending on the source and destination of the transmitted messages. This can 
be attributed to the location of processors in a certain network where some processors are 
placed farther apart than other processors. Consequently, we expect the delay bound of the 
processor transmitting messages to one closer to it to be smaller in comparison with the 
bound of the messages sent to a distant processor. 

The processors perform the updating according to the recursive scheme 
q 

xi(k + 1) -- ~ aijxj(k + 1 -d j i (k ) )  + Ti(k)ri(k).  (1) 
j=l 

We let {dji(k)}, for all j and i, be a stationary Markov chain with state space 

Sji = {1, 2 . . . . .  Bji }, 

where Bji is the maximum allowable communication delay for messages sent from processor j 
to processor i. We let te probability transition matrix corresponding to dji(k) be /~i = 
(/Sji(l, m)), where 

~ji(l, m) =Prob{dji(k ) = m ] d j i ( k -  1) = /} ,  for l, m = 1, 2 . . . . .  Bji. (2) 

The initial distribution of dji(O) can be arbitrary. In some instances, it is required that the 
knowledge of the initial conditions for t _< 0 be available. We, however, let the sequence 
generated by Equation (1) be defined only for nonnegative times and assume that the 
initializations {x~(0),...,Xq(0)} of the algorithm are random with finite mean and finite 
variance. We also let {ri(k)} be a sequence of zero-mean independent identically distributed 
random variables with finite variance and yi(k) be a nonnegative number. 

In our model, the communication delays, dji(k), can be stochastic in nature due to several 
factors: unknown load conditions resulting from other users, possible failures of some 
processors, etc. Their  stochasticity can also be deliberately imposed in an effort to localize 
communication around processors of interest. Assume that it is possible to group the 
processors involved in our model into different clusters of processors according to their level 
of computational efficiency. For the purpose of maintaining a low communication overhead, 
we reduce the frequency of message propagation from the cluster consisting of less computa- 
tionally efficient processors to the others. Let F t be the set of indices that correspond to the 
processors of this cluster, where 

F t c { 1 , 2  . . . . .  q}. 

We choose ft such that 

1 <ft<Bji 
and impose that 

Prob{dj~(k) <f~} = 0, for every k, j e F  t and i ~ F  t. (3) 
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Case (ii). Overlapped computations 
We introduce the model of overlapped computations where each component can be 

simultaneously updated by several processors through which less vulnerability to processor 
failure is achieved. If some processors cease updating at a certain time instant and on, 
asynchronous iteration will rely on the rest for generating the values of these components of 
x(k).  We use superscripts to indicate processors involved, i.e. x~(k) is the j th  component 
produced by processor i at the k th time instant. As a consequence of the unpredictable 
behavior of communication delays, various processors may render different updates of the 
same component. An averaging process among these updates is shown [15] to bring them 
closer to parity. A different technique can be exploited in which a processor that is faced with 
different updates of the same component selects its input with a certain probability. Assume 
that we have q processors to iterate on the vector x(k)  with Q components. For every 
component index i, we let F, c{1, 2 . . . . .  q} be the set of processors updating the ith 
component x,-. Also for every processor i, we let O i c {1, 2 , . . . ,  Q} be the set of components 
updated by processor i. We let ~m d~. i ( k )  be the communication delay resulting from sending 
component j calculated by processor l to be used in the updating of component i by 
processor m at the kth time instant and only define djilm(k) for j e F  t and i ~ D  m. The 
Markovian character of the tm dj~ (k) can also be specified as was done in the previous case. 
Therefore,  the processors perform the updating as follows 

O 
x • ( k + l ) =  ~7~ai j s jm(k)+ym(k)rm(k) ,  V i ~ D m ,  m = l  . . . . .  q, (4) 

j = l  

where 

m = d j i ( k ) ) ,  V l ~ F j ,  j , i = l , . . . , Q  a n d m = l  . . . . .  q 

l m and xj are allowed to occur with some probability for different 1. It is assumed that sii (k) are 
zero when lm dji (k ) are undefined. 

Example 1. We consider a system involving four processors that are responsible for 
updating the vector x(k )  of two components. In particular, the first two processors update the 
first component x~(k)while the other two processors update the second component x2(k). In 
this case, we have Q = 2,  q = 4 and 

Fl = {1, 2}, F2 = {3, 4} 

D 1 = {1}, D 2 = {1} 

D 3 = {2}, 04 = {2}. 

Therefore,  the processors update as follows 

x~( k + 1) = allS~l( k ) + al2s121( k ) + 3,~( k )r l (  k ) 

x2( k + 1) = alxs21( k ) + a12s2~( k ) + r21( k )r2( k ) 

x3( k + 1) = aelS3z( k ) + a22s322( k ) + y~( k )r3( k ) 

xa (k  + 1) = a21s42(k) + a22sa2(k) + y 4 ( k ) r 4 ( k ) ,  
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where 

x l ( k  + 1-d~(k)) 
s~,(k)= x2( k + l dll(k))2' ; 

Ix](k + 1 - d~12(k)) , 

s~i(k)=~x~(k+ l d~21(k)) ' 

Ix l (k  + 1 - d~3(k)) . 

s~2(k ) = [x2(k + 1 - d23(k)) ' 

[xI(k + 1 - d~4(k)) . 

s/2(k) = ~x2(k+l_d224(k)) ' 

Ix~(k + 1 - d ~ ( k ) )  

s21'(k) -- ~x4(k + 1 - d 4 ] ( k ) )  

]x3(k + 1 - d232(k)) 

4 ~ ( k ) =  ~ x ~ ( k + l  d4,:(k)) 

x3(k  + 1 - d ~ ( k ) )  ~(~) = 
x4(k + 1 -  d ~ ( k ) )  

x~(k  + 1 - d~'~(k)) 
4 ( k )  = 

x~(k + 1 - d244(k)) 

Assuming that d~(k) and d2~(k) take values from {1, 2} and {1, 2, 3}, respectively, we can 
have several schemes for s~l(k). For example, 

S{l(k ) =x~(k), x~(k - 1). (5) 

Equation (5) represents the case as processor 1 only considers the iterates provided by its own 
computations to update xl(k). Another case is to allow s{i(k) to use the following choices 

s{,(k)=x~(k), x ~ ( k - 1 ) ,  x2(k), x12(k-1) ,  x 2 ( k - 2 ) .  (6) 

We assume that the choices in Equation (6) occur with some probabilities• 

2.1 State augmentation 

For the purpose of easily observing the behavior of the models generated by Equations (1) 
and (4), we utilize state augmentation to formulate a suitable state-space representation in 
which a generic description of the models is provided• We apply the state augmentation 
procedure to the model of specialized computation of Case (i). We let 

Bi* = maxBij, (7) 
J 

and introduce the vectors y(k) and w(k) of dimension n = Y'.~=lBi* defined in the following 

y(k)  

manner: 

x,(k) 
x , ( k -  1) 

XI( k - BI* + 1) 

x2(A)  

x2(k -  1) 

x2( k - B2* + 1) 

xq(k) 
x ~ ( k  - 1) 

xq (k -B*  + 1) 

w(k) ~ 

r- 
q(k) 

i 0 
i • 

0 

r2(k) 

0 

0 

rq(k) 
0 

0 

(8) 
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Similarly, we can use state augmentation for the model of overlapped computation of Case 
(ii). 

This suggests that the above models can be rewritten in the following form 

y ( k  + 1) = C ( k ) y ( k )  + F ( k ) w ( k ) ,  (9a) 

where {C(k)} is a sequence of square constant sparse matrices containing aij as the only 
nonvanishing elements and {w(k)} is a sequence of zero-mean i.i.d, random vectors with finite 
variance, independent of {C(k)} and {y(k)}. Furthermore,  {F(k)} is a sequence of diagonal 
matrices where the only nonzero entries of this diagonal are "Yi(k) and the initial condition 
y(0) is random with finite mean and finite variance. The matrix sequence {C(k)} is a 
stationary Markov chain of finite state space 

0 = {C1, C2 . . . .  , G } ,  

with probability of transition P = (p~j), where the probability of evolving to the matrix Cj at 
the k th  iteration given that we started with C; at the (k - 1)th iteration is 

Pij = Prob{C(k)  = C j I C ( k  - 1) = Ci}. (9b) 

Let the row vector P0 define the probability distribution of the initial state, where 

l 

Poe = Prob{C(0) = Ci} , Poe > 0 and E Poi = 1. (9c) 
i=1 

Example 2. We consider a system representing a model of specialized computation of Case (i) 
involving two processors where B u = B22 = 1, B12 = 2, B21 = 3 and {dji(k) } is a Markov chain 
with transition probability /~i and state space Sii = {1, 2 . . . .  , Bji}. The algorithm iterates on 
the vector x(k )  whose ith component is iterated upon by processor i according to 

Xl(k q- 1) = allXl(k  ) -,b al2X2(k q- 1 - d21(k)) + , y l ( k ) r l ( k  ) 
(10) 

x2(k  + 1) =a21x, (k  + 1 - d12(k)) +a22x2(k  ) + Y2(k)r2(k  ). 

For this case, we write 

x (k) 

X l ( k -  1) 

y( k ) = x2( k ) 

x2( k - 1) 

x2(k  - 2) 

The C1, C 2 . . . .  , C have the following forms 

C 1 = 

C 3 = 

a l l  0 

1 0 

a21 0 

0 0 
0 0 

Ia; O0 
[  Ooo 

[ o 
a12 0 0 a u 0 0 a12 

0 0 1 0 0 0 
a22 0 0 ; C2----- a2~ 0 a22 0 

1 0 0 0 1 0 
0 1 0 0 0 1 

°°al  1 .ai °al ° 0 0 0 [ 0 0 0 
a22 0 0 , C4 = a21 a22 0 

1 0 0 0 1 0 
0 1 0 0 0 1 

0 

0 
0 

0 
0 

° 1 
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a,lO 0 a121]  ail 0 O Oaf21 o o o  [ ooo 
C 5 =  ~ a21 a22 0 0 ; C 6 =  a21 a22 0 • 

0 1 0 0 1 0 
0 0 1 0 0 1 

F(k) and w(k) can be written as follows 

[ k 0 0 0 i l  1 i 0 0 0 0 , 
r(k) = 0 y2(k)  0 • w(k)= / r 2 (k  ) . 

o o o / o  
L o  0 0 0 

In order to relate the probability of motion among the various states of the state space g2 to 
the probability transition matrix corresponding to {di~(k)}, we evaluate 

Prob{C(k)  = C1 I C ( k -  1) = C1} 

= Prob{d,2(k ) = 1, d2,(k ) = 11 d,2(k-  1) = 1, d2t(k-  1) = 1} 

= Prob{d,2(k ) = 1Dd l2 (k -  1) = 1} Prob{d2,(k ) = l J d E , ( k -  1) = 1} 

=/5,2(1, 1)/~21(1, 1). ~ (11) 

Performing a similar procedure to the remaining entries of the transition matrix yields 

P =/5,2 ®/521, (12) 

where ® denotes the Kronecker product. 

3. Convergence analysis 

In this section, we study the convergence of {y(k)} generated according to Equations 
(9a)-(9c). We will first derive sufficient conditions under which {y(k)} is convergent in the 
mean and second moment. 

An inductive argument shows the solution of Equation (9a) to be 

k k k 

y ( k + l ) =  F I C ( k - i ) y ( O ) +  ~_, I-I C ( k - j + i + l ) F ( i ) w ( i ) .  (13) 
i=0 i=O j=i  + l 

We note that A ®A =A[21 and At11 =A.  Evaluating the Kronecker product of y(k + 1) with 
itself yields 

yi21( k + 1) 

k k k 

= 1--I C[21(k - i)y[2I(0) + E F I  Ct21(k -J  + i + 1)rt2j(i)wn(i ) 
i=0 i=0 j = i + l  

k k k 

+ I-[C(k- l )y (O)® ~ [-I C ( k - j + i + l ) F ( i ) w ( i )  
1=o i=o J=i + l 

k k k 

+ ~ I-I C ( k - j + l ) r ( i ) w ( i ) ® l - I C ( k - l ) y ( O )  
i=0 j = i + l  /=0 
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k k 

+ E ~ C ( k - j + i + l ) F ( i ) w ( i )  
i = 0  j = i +  1 

k k 

® E l-'[ C ( k - n + m + l ) F ( m ) w ( m ) .  
m = 0  n = m + l  

m4-i 

In Appendix III, the following formula is derived 

where 

k 

E I-I Ct i ] (k - j+m)  
j = m  

k - m  ¢ 
=~i(~[i](P,®in,) ) ~,[il( P m , ®I~,) (Po®I,O, 

[Io, I , , . . . I , , ]  
l - times 

~ [ i ]  = C l [ i l ~  C 2 [ i ] ~  • . . ~) Cl[i], 

(14) 

for i =  1, 2, (15) 

I., is the identity matrix of dimension n i × n ~, ' denotes the transpose and ~ is the Kronecker 
sum. Equation (15) is a generalized form of the one contained in Bharucha [4]. The latter 
evaluates the expected value of the above product of matrices for m = 0 only. 

Let I1" II be an arbitrary matrix norm and p(A) denote the spectral radius of A, defined as 

p(A) a= max [Ai(A)[ ,  (16) 
i 

where the ai's are the eigenvalues of A. 

Theorem 1. Consider the sequence {y(k)} generated by Equations (9a)-(9c).  
(a) Assume that 

(i) p ( ~ ( P ' ® l n ) ) < l .  

Then the sequence {y(k)} converges in the mean to the origin for every initial condition. 
(b) Assume that 

(i) p(~t2}(P' ® 1,2)) < 1, 
c~ 

(ii) E IIe'eI~211illFt2j(i) ll <~. 
i = 0  

Then the sequence {y(k)} converges in the second moment to the origin for every initial 
condition. 

Proof of (a). We take expectations on Equation (13). Recalling that {w(k)} is a sequence of 
zero-mean i.i.d, random vectors, independent of {C(k)} and that y(0) is independent of 
{C(k)}, we obtain 

Ey(k + 1) 

=E C ( k - j )  E y ( 0 ) + E ~  1-] C ( k - j + i + l ) F ( i ) w ( i )  
i = o j = i + l  

=E C ( k - j )  E y ( 0 ) +  ~ E  [-[ C ( k - j + i + l ) F ( i )  ew(i) .  (17) 
i = 0  [ j = i + l  



Taking limits on 
leads to 

lim Ey( k + 1) 
k ~  

k 

= lim E FI C(j)Ey(O) 
k - - , ~  j = 0  

l i m f l ( ~ (  P,  k , = ®I,))  V(po®I, )Ey(O) .  
k --~ ~¢ 

By virtue of condition a(i), we get the required result as 

lira Ey( k + 1) 
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Equation (17) and using the formula of Equation (15) where i = 1 and m = 0 

(18) 

=0 .  (19) 

Proof of (b). We take expectations on Equation (14). Utilizing the final result of Appendix II 
and Equation (15) yields 

EYt2]( k + 1) 

= E /__I~IoC[2](k - i )  EY[2l(0 ) + Y'~ E . VI Ct2](k - J  + i +  1)/]21(i) Ewt21 
= i = 0  [ ) = t + l  

® 12)Eyt2 (0) 
k - 1  

k - i  t v 
+ J 2  ~ (~'t21(P'®I,2)) (P ®Inz)i(po®In2)I'[zl(i)Ew[21 

i - 0  

+ Ft2j( k ) Ewl2 J . (20) 

We consider the behavior of the three expressions summed in Equation (20) individually. 
(1) Expression 1, i.e. 

k t 
lim f2(~[21( P' ® 1,2)) ~ [ 2 ] (  P 0  ® 1,2)EYt21(0 ) . (21) 

k - * ~  

By invoking a similar line of argument which appears in the proof of part (a), it is shown 
that using condition b(i) yields 

k r 
limY2(~'[2]( P '  ® 1,2)) ~'[21( Po ® 1,2)Ey[2](0 ) = 0. (22) 

k ---" ¢~ 

(2) Expression 2, i.e. 
k - 1  

l imJ2 Y~ (~{21( P '  ® 1,2))k-i( p,  ® 1,2)i( p~ ® 1,2)Ft21(i) Ew[21. (23) 
k --~ ~ i = 0 

First, we show that using Conditions b(i) and b(ii) establishes the absolute convergence of 
k - I  

lim E (Vt21(P' k-i i , ®I.2)) (P'®I.2) (Po®I,2)F[21(i). (24) 
k ~ ¢ ¢  i = 0  

Condition b(i) suggests that 

3 M > 0  suchthat  [l(~t2j(P'®1.2))kll<M, Vk. (25) 
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Using this fact, we obtain 
k - I  

lim • I[(~[zl(P'®Inz))k-i(p'®I.2)i(p~®InQF[2](i)ll 
k ---, oo i = 0  

k - 1  

< lim E [[(~[2](P'®In2))k-i[[ I [ (P '  i , ®In:) ( po ® In2)Ft2j( i) II 
k "-* ~ i = 0  

< M II P;  ® In2 II lirno~ I[(P' ® I~2) [l ill F[2](i ) [I 
k 

< ~. (26) 

The last inequality follows from condition b(ii). Now, we use the 2"-domain analysis as a 
mathematical artifact to show that these same conditions drive Equation (24) to zero, 
where 

_U{s(k)} = E s(k) z-k (27) 
k =  - ~  

and z is a complex variable. Recalling the fact that if lim k ._,~s(k) exists then 

lim s(k)  = lira (1 - z -1) .U{s(k)} ,  (28) 
k ~  z---* 1 

and that if h(k - i) = 0 for i > k then 

.U E h ( k -  i)s(i) =.U{h(k)}.~'{s(k)}. (29) 
i = 0  

In accord with Equations (28) and (29), we write Equation (24) as 
k - 1  

lim Y'. (~[21(P' ®Inz))k-i(P ' ®Ine)i(p~ ®InQFtEl(i) 
k ---, o¢ i = 0  

= lim(1-z-1).2"((~t21(P'®InQ) i, f o r i > O }  
z---~ 1 

Z ( (  P' ® In2)i( P~ ® I n z ) F [ 2 ] ( i ) )  

= lim • (~[21( P' ® In2)) i Z - i  
z ~ l  i = 0  

lim (1 - z -1).2"(( P' ® 1,,2) i ( PO' ® Inz)F[21( i) } (30) 
z - - * l  

Condition b(i) allows the interchange of the limit and infinite summation in Equation 
(30). Condition b(ii) implies that 

lira ( P ' ®  I~2)~( p/~ ® In2)FE21(k) = 0. (31) 

Returning back to Equation (30), we obtain 
k - 1  

lim ~ (~[2](P'®In2))k-i(P ' i t ®In2) (po®InQFtz](i) 
k - - * ~  i = 0  

= ~ (~[2](P'®In2)) i l i m  (P'®In2)k(p;®In2)F[zl(k) 
i = 0  k --*. oo 

= o. ( 3 2 )  
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Equation (23) can be written as 
k - 1  

l imJ2  • (~[2]( P '  ® In2 ) ) k-i ( P ' ® In2 ) i ( p~ ® In2 ) I'[2]( i ) Ew[2 ] 
k ~  i = 0  

= J 2  lira (~t2j(e'®I~))k-i(e'®I.~)~(p'o®l.~)rt21(i) ewL21 
k Li=O 

= 0. (33) 

(3) Expression 3, i.e. 

lim F~21(k) Ewt21. (34) 
k "---> ~ 

From the fact that P is a transition matrix of a Markov chain, ( P ' ®  I~2) is a matrix of 
nonnegative entries whose rows sum to one and 

IIP'®I,,21i > p ( P ' ® I n 2  ) = 1. (35) 

We write 

II rt2~(k) tl -< II e '  ® l,z II k IL r t2j(k)II ,  for all k. (36) 

Utilizing Equation (36) along with condition b(ii) shows the absolute convergence of the 
series ET=0Ft21(i) and 

lim Ftel( k ) Ewt21 = 0. (37) 
k - - * m  

We conclude the proof by combining the results obtained from steps (1), (2) and (3). [] 

3.1 Special case: Po = Po P 

In this section, we provide a weaker version of the conditions for convergence of y(k)  as 
the Markov chain {C(k)} assumes a special form. In particular, if the initial probability 
distribution P0 satisfies the stationarity property in which 

Po = Po P, (38) 

then we write 

Prob{C( k ) = Ci} = ( po Pk )i 
= Poi 

= Prob{C(0) -- Ci} for i = 1 . . . . .  l. (39) 

Hence, if the initial probability distribution is a stationary one, then the distribution of the 
corresponding Markov chain will be invariant as time progresses. Combining Equation (39) 
with Equation (15) yields 

k 

E n Ctil( k - J  + m) 
j = m  

k - rn  t 
=~.~(~'til(P' ®Inl)) ~til(Po®I~i),  for i =  1, 2. (40) 

Corollary 1. Consider the sequence {y(k)} generated by equations (9a)-(9c).  Let {C(k)} be a 
Markov chain whose initial probability distribution is stationary as satisfied by Equation (38). 
Assume that 

(i) p ( c ~ ' [ 2 ] ( P '  ® In2)) < 1, 
oo 

(ii) ~ [I Ftz](i)1[ < ~. 
i = 0  
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Then the sequence {y(k)} converges" in the second moment to the origin for every initial 
condition. 

Next, we examine the case in which the value of the yi(k)'s is common to all processors. This 
suggests that Equation (9a) can be written as 

y ( k  + 1) = C ( k ) y ( k )  + y ( k ) w ( k ) .  (41) 

Corollary 2. Consider the sequence {y(k)} generated by Equation (41). Let {C(k)} be a Markov 
chain whose initial probability distribution is stationary as satisfied by Equation (38). Assume 
that 

(i) P(~[21( P' ® 1.2)) < 1, 

(ii) lim 7 ( k )  = O. 
k ---~ oo 

Then the sequence {y(k)} converges in the second moment to the origin for every initial 
condition. 

Proof. Using Equation (41) suggests that Equation (20) along with Equation (40) yields 

EYl21( k + 1) 

=J2(  W[zI(P' ® ln2))* ~'[21( P~ ® I.z)EY[21(O) 

k 

+J2  E (W[21( P ' ®  1.2))k-i~E21(P~ ® 2.2)Y2( i -- 1) EwE21 
i = 1  

+ 72(k ) Ewc21. (42) 

The analysis of the behavior of expression 1 summed in Equation (42) remains the same as 
that of Equation (20). As k gets infinitely large, expression 3 vanishes as a direct consequence 
of condition (ii). Now, we discuss 

k 

l imf2  • (~t21( P ' ®  ln2))k-i~[zl(P'o ® Inz)y2( i -- 1) Ew[2]. 
k ~ o o  i=1  

First, we show that using conditions (i) and (ii) establishes the convergence of 
k 

lim ~ (~[21(P'®/.2))k-iy2(i) .  (43) 
k-*oo i - 1  

Condition (ii) suggests that 

3 M > 0 ,  suchthat  y2(k)  <M,  Vk. (44) 

Using Equation (44) and condition (i), we get 
k 

lim ~ (~[2](P' ®InQ)k-iy2(i) 
k --~ oo i - 1  

k 

< M  lim E (~[2](P'®ln2)) k-i 
k --~ oe i _  1 

< ~. (45) 
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By performing a similar analysis to that used in the proof of part (b) of Theorem 1, we get 

k 
k - i  

l imJ2  Y'~ (~[2](P'®I.2)) c(~oi2](P(;®ln2)y2(i- 1)Ew[2] 
k - - ~  i - I  

=Y2 lim ~ (~f21(P'®l,,z) - ' y 2 ( i -  1) ~12](Po®l,,:)Ewf21 
k ~  i = 1  

= 0. [] (46) 

We note that condition (ii) of Corollary 1 is stronger than condition (ii) of Corollary 2. 

3.2. Case of ordered scheduling 

One of the major advantages of the models with stochastic delays is their ability to 
maintain the number of transmitted messages under control. This can be achieved by 
imposing a reasonable restriction on our models where we assume that the information is 
received in the order it was produced. We assume that each processor i has a local memory 
where the latest x i generated at time instant k is kept and when the new information arrives 
it is labelled using a time stamp as to when it was computed by the other processors. If it 
happens that this processor acknowledges that the information it receives was generated at a 
time instant earlier than k, then processor i will discard it. This translates into having the 
following property 

Prob{dji(k ) >dji(k - 1) + 1} = 0 ,  for all j ,  i and k. (47) 

Consequently, communication delays can be viewed as admitting a particular Markov property 
with some of the states never visited. Therefore,  the transition matrix /~ =/Sj~(l, m) is such 
that 

pyi(l, m) = 0 for m > 1 + 1. (48) 

Convergence conditions of this model can be derived using the results of this section for the 
particular choice of transition matrix defined in Equation (48). 

3.3. Case of independent delays 

We let the communication delays be sequences of i.i.d, random variables and provide the 
corresponding convergence conditions as a specialization of Markov case. For easy reference, 
we write below Equation (9a) describing this case 

y ( k  + 1) = C ( k ) y ( k )  + F ( k ) w ( k ) .  (49) 

Hence, if {C(k)} is an i.i.d, matrix sequence and 

Prob{C(k)  = Ci} =Pi, for all k a n d / =  1 . . . .  ,1, (50) 

then it corresponds to a stationary Markov chain of finite state space with transition matrix P 
of identical rows, i.e. Pij =Pj  and whose initial probability distribution is stationary where 
P0i = Pi for i = 1 . . . . .  I. Consequently, 

C1HPl CtHPl 

g~til( P '  ® I,~) = 

CtHPl Ctt~lPl 

C2[;lPl 

Cl~i 1Pl 

(51) 
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We define N/ as 

N~ = Qi - J / ,  for i =  1, 2, 

where 

21,,, I n, " '" I ' ,  

Z Z " '" Z 
Qi a= , J i & I ' ~ I n i ~  " "  ~ I ' ,  

Z Z " "  Z 

and Z is a matrix of zero entries. It can be verified that N~ = N/-1 
Using Equation (51), we write 

N / - I ( ~ [ i ] ( P  ' ® l ' i )  ) m  i = 

l 
E cj~,~pj z . . .  z 

j = l  

- -  C2[ilP2 Z • • • Z 

(52) 

by direct multiplication. 

(53) 

- Cv~p l Z • • • Z 

the structure of the matrix on the right-hand side of The observations extracted from 
Equation (53) are twofold. First, the sufficient condition which guarantees convergence in the 
mean for the case of independent delays to the origin for every initial condition, p ( ~ ( P '  ® 
I '))  < 1, can be replaced by 

( ')  p ~_,Cjpj <1.  
j = l  

It will be shown that this condition is also necessary for convergence in the mean. Second, the 
condition p(~'[2](P' ® 1"2)) < 1 of Corollary 1 and Corollary 2 can be replaced by 

( ' )  p E Cj~,pj < 1. (54) 
j = l  

Corollary 3. Consider the sequence {y(k)} generated by Equation (9a). Let  {C(k)} be an 
independent, identically distributed matrix sequence. The sequence { y(k)} converges in the mean 
to the origin for  every initial condition i f  and only i f  p ( ~ =  1Cipj) < 1. 

Proof. Taking expectations on Equation (9a) and recalling that {C(k)} is a matrix sequence 
independent of y ( k )  for which it holds that 

Prob{C(k) = Ci} =Pi ,  for all k and i =  1 , . . . , l ,  

yields 

E y ( k  + 1) = E [ C ( k ) y ( k ) ]  

=E[Cf~, )]ey(k)  

['} = Y'~ Cjpj  E y ( k ) .  
j = l  

Clearly E y ( k )  converges for any Ey(O) if and only if pZ~.=lCjp)  < 1. 

(55) 

[] 
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The following are proved using the earlier discussion on the specialization of the Markov 
chain to the independent case. 

Corollary 4. Consider the sequence {y(k)} generated by Equation (9a). Let {C(k)} be an 
independent, identically distributed matrix sequence. Assume that ( l )  
(i) p ~_, Cj~21p j < 1, 

j = l  

oo 

(ii) ~ II / ' i2] ( i )  II < 
i = 0 

Then the sequence {y(k)} converges in the second moment to the origin for every initial 
condition. 

Similarly, another corollary is provided below to cover the case of {C(k)} being an i.i.d, matrix 
sequence and Equation (41). 

Corollary 5. Consider the sequence {y(k)} generated by Equation (41). Let {C(k)} be an 
independent, identically distributed matrix sequence. Assume that 

(i) P(j~I  Cj'21&) < 1 '  

(ii) lira y ( k )  = O. 
k - - +  oo 

Then the sequence {y(k)} converges in the second moment to the origin for every initial 
condition. 

4. Example 

Consider a two-processor system where the information from the second processor arrives 
to the first with a delay such that 

x l (k  + 1) = - ~Xl(k ) + ex2(k + 1 - d ( k ) )  

xe(k  + 1) = exl (k  ) + ½xz(k ). (56) 

Suppose that 

d ( k )  ~ {1, 2}. (57) 

We assume that the communication delay d(k)  is a stationary Markov chain and let the 
transition probability matrix P be defined as 

3 • ( 5 8 )  
4 

Applying state augmentation yields the matrix sequence {C(k)} with the two possible matrices 

-3- e -3- 0 e 
= 1 C2 = 1 (59) C1 • 3- ; • 3- • 

0 1 0 1 
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p • = 0.6 • = 0.8 ~ = 1.1 

Pm Psm Pm Psm Pm Psm 

0.0 0.6915 0.4927 0.8299 0.7179 1.0301 1.1098 
0.1 0.6909 0.4969 0.8295 0.7261 1.0302 1.1234 
0.2 0.6897 0.5050 0.8287 0.7376 1.0304 1.1416 
0.3 0.6879 0.5186 0.8275 0.7541 1.0306 1.1669 
0.4 0.6855 0.5396 0.8257 0.7780 1.0310 1.2031 
0.5 0.6823 0.5710 0.8234 0.8132 1.0316 1.2560 
0.6 0.6780 0.6155 0.8203 0.8645 1.0323 1.3327 
0.7 0.6721 0.6734 0.8159 0.9349 1.0334 1.4382 
0.8 0.7550 0.7421 0.8665 1.0277 1.0671 1.5709 
0.9 0.8550 0.8179 0.9938 1.1234 1.2278 1.7241 
1.0 0.9447 0.8981 1.1101 1.2322 1.3750 1.8905 

Define the spectral radius needed to guarantee mean convergence and the spectral radius 
needed to guarantee second moment  convergence by Pm and Psm, respectively. We apply 
Theorem 1 and by examining Table 1 we observe that for all values of p and for e = 0.6 the 
system represented by equation (56) converges in the mean and second moment  while for 
E = 1.1 neither type of convergence can be obtained. Nevertheless, for E = 0.8 the variation in 
p is sufficiently powerful to drive the system in and out of its convergent state. We also note 
that for E = 0.8 and some values of p, convergence in the mean is the only one of the two 
types of convergence that is attained. 

It is worthy of mention that when the delay d(k)  defined by Equation (57) is deterministic 
and • = 0.6 the system represented by Equation (56) does not fulfill the nonexpansiveness 
assumption listed in Tseng et al. [14] (Section 3, p. 688), i.e. to asynchronously solve the linear 
system 

x = A x ,  

it must hold that 

[aii[ < 1, for all i. (60) 
j ~ l  

Therefore,  while Table 1 demonstrates the convergence of our asynchronous model with 
stochastic for •---0.6, no conclusion can be drawn regarding the convergence of the asyn- 
chronous iteration with deterministic delay. 

5, Conclusions 

We have derived sufficiency conditions for convergence of the general linear model of 
asynchronous iterations with stochastic delays. These conditions offer an alternative to the 
usual verification of the nonexpansiveness property contained in [3,14] where the communica- 
tion delays of the latter works were modeled as unknown but deterministic. The notion of 
stochastic communication delays appears  as a result of the possible failure of some processors, 
the congestion in a certain network and uneven load conditions. In proving convergence, we 
utilize the Kronecker product notation that provides a technique by which the computation of 
the second moments  of a linear system with Markov coefficients is achieved. For this purpose, 
the extended formula (15) is used to accommodate the effect of additive noise. The virtue of 
this formula is its ability to express the system equation in a proper  closed form. 
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Other  types of convergence such as that of almost sure can also be obtained with the aid of 
the supermartingale machinery. Another  issue concerns the extension of the discussed models 
to the nonlinear case where a nonlinear function appears  in the right side of Equations (1) 
and (4). Towards this goal, the convergence analysis for the nonlinear counterparts  of the 

described models has been carried out in [2]. 

Appendix 

L Properties of Kronecker products and sums 

Let matrix A = (aij) be of dimension m × n and matrix B = (bit) of dimension r × s. Their 

Kronecker product is defined as 

A®B&(ai jB ), f o r i = l , . . . , m a n d j = l  . . . . .  n 

I allB a12B "'" alnB 1 

lama B am2B "" am,B 

of dimension (mr) X (ns). 
The matrix A ®A is written as A[2 ] and Air ] = A .  The product is associative 

( A ® B ) ® C = A ® ( B ® C ) ,  

and obeys the relation 

AIBt®A2B2® ...  ®AiBi=(At® .. .  ®Ai)(B t® .. .  ®Bi) 
We also define the Kronecker sum A + B as the matrix with A and B diagonal entries and 

zeros elsewhere, i.e. 

where Z is a matrix of all zeros• 
The properties of Kronecker products are: 

(a) (A + B)®C=A ®C + B ®C 
(b) (A ® B)' =A' ® B', where ' denotes transpose. 

If A and B are square matrices of dimension a and b respectively, 

(c) A®B=(A®Ib)(Ia ®B) 
(d) (A ® B )  -1 = A  -1 ®B - l  
(e) t race(A ® B) = t race(A) t race(B) 
(f) det(A ® B) = det(A a) det(B b) 
(g) (L, ® Mt)(A ® B)(L2 ® M2) = LxAL2 ® MIBM2. 

II. Evaluation of Eyl21(k + 1) 

Given 
y ( k  + 1) = C(k)y(k)  +F(k)w(k) ,  (61) 

where {w(k)} is a sequence of zero-mean i.i.d, random vectors with finite variance, indepen- 
dent of {C(k)} and and {y(k)}. Here  we express Eyt21(k + 1). An inductive argument shows 

k k k 

y ( k + l ) = I - ' [ C ( k - i ) y ( O ) +  ~, I-I C ( k - j + i + l ) F ( i ) w ( i ) .  (62) 
i = 0  i=o J =i+ l 
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Evaluating the Kronecker product of y(k + 1) with itself yields 

yt2j(1, + 1) 
k k k 

= I-Ict2j(k-i)Yt21(O) + E I-I 
i = 0  i = 0  j = i + l  

Ct21( k - j  + i + 1)Ft21( i)wt21( i ) 

k k k 

+ FIC(k - I )Y (  0)® E I-I C ( k - j + i +  l)F(i)w(i) 
i=o J=i + l 

k 

+ C ( k - j + i  + 1)F(i)w(i)  ® I - I C ( k - l ) y ( O )  
l = 0  

+ C ( k - j  + i  + 1)F(i)w(i)  

l = 0  

k k 

E FI 
i = o J = i + l  

k k 

E 1-I 
i = o J = i + l  

k k 

® E  1-I 
m = 0  n = m + l  

m ~ i  

C(k - n  +m + 1 ) r ( m ) w ( m ) .  (63) 

We express Equation (63) in a form which facilitates evaluating expectations. 

yt2](k + 1) 
k k k 

= I--[C[2](k-i)Y[2](0) + E I-I C[2](k-J + i +  1)Ft2](i)w[2](i) 
i = 0  i = 0  j = i + l  

+ E 1-I ct2~(k-i+J+l) c ( j - 0 ® t n  (y(O)®r(j)w(j)) 
j=O i = j + l  = 

+ ~ I"I C~l (k - i+ j+l )  In® C ( j - l )  (F(j)w(j)®y(O)) 
j = 0  i = j + l  / = 0  

[0+ ] k - 1  k k 

+ Y'~ ~_, 1-[ CE21(k-l+J +1)  C ( j - m + i + l ) ® I ~  
i = 0  j = i + l  l = j + l  m 1 

( F(i)w(i) ® r( j )w( j ) )  

+ E  E 1-I c ~ j ( ~ - t + i + l  ~® II  C(i -m+j+l )  
i=1  / ' = 0 l = j + l  m = j + l  

( F( i)w( i) ® F( j)w( j) ). 

Taking expectations on equation (64), we obtain 

Eyt21( k + 1) 

(64) 

= E  Ct21(k-i) Eyt21(O)+ ~ E  I-] CE21(k-j+i+l)Ft21(i) Ewt21(i) 
i=O [ j = i + l  

+ I2E I-I c t~(~- i+J+l)  c(j-O®In E(y(o)~r(j)w(j)) 
j=O i = j + l  = 
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+ ~_~E I-I C t 2 l ( k - i + j + l )  I n ® I - I C ( j - l ) E ( F ( j ) w ( j ) ® y ( O ) )  
j = 0  i = j + l  1=0 

+ ~ ~2 E 1-I C t~ (k - t+J+ l )  C ( j - m + i + l ) ® I ~  
i = 0  j = i + l  l = j + l  m = i + l  

E( l"( i)w( i) ® F( j)w( j) ) 

[ ] + ~, ~ . E  1-I C [ 2 1 ( k - l + i + l )  In® 1-[ C ( i - m + j + l )  
i=1  j = 0  l = j + l  m = j + l  

E( F( i)w( i) ® r( j)w( j) ). (65) 

Recalling that {w(k)} is a sequence of i.i.d, zero-mean random vectors, i.e. Ew(i) = Ew = O, 
for all i, we obtain 

E ( y ( 0 )  ®I' ( i )w( i ) ) ,  for all i 

= [y(0)]  ®F(i )Ew( i )  

= 0  (66) 

and 

(67) 

(68) 

E(F(i)w(i) ®F(j)w(j)),  for i ~ j  

= F( i)Ew( i) ® F( j)Ew( j) 

~ 0 .  

Combining Equations (66) and (67), we finally obtain 

Eyt2l(k + 1) 

=E C[21(k-i ) EY[21(0)+ ~_.E l-I CE21(k-j+i+l)Fl21(i) Ewtzr 
i = 0  [ j = i + l  

III. Derivation of EI-Ik=mC(k - j  + m) 

Consider a finite Markov chain with initial distribution row-vector P0 of nonnegative row 
entries, where 

l 

POi = Prob{C(0) = Ci} and ~] Poi = 1, (69) 
i=1  

and a constant matrix of transition P between the states of constant matrices C i, i = 1 . . . . .  I. 
Here we derive 

k 

E I-I C ( k - j + m ) .  (70) 
j=m 

W e  consider next the case as m = k - 2 .  

E C ( k l C ( k -  1 ) C ( k -  2) 

= Y'~ CsCrCqProb{C(k ) = C,, C(k - 1) = Cr, C(k  - 2) = Cq}. (71) 
q,r,s 
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The properties of Markov chain suggest 

Prob{C(k) = Cs, C(k - 1) = Cr, C(k - 2) = Cq} 

= Prob{C(k) = C s f C ( k -  1) = Cr, C ( k -  2) -- Cq} 

Prob{C( k - 1) = C, [C(k  - 2) = Cq}Prob{C(k - 2) = Cq} 

= Prob{C(k )  = C, I C(k  - 1) = C,} 

Prob{C( k - 1) = C r l C( k - -  2) = Cq}(poPk-2)q 

=P,sPqr(PoPk-Z)q. 

Combining Equation (71) and Equation (72) leads to 

E C ( k ) C ( k  - 1)C(k  - 2) 

= E CsCrCqPr°b{C(k)=Cs, C ( k - 1 ) = C r ,  C ( k - 2 ) = C q }  
q,r,s 

= E CsCrCqPrsPqr(Poek-2)q 
q,r,s 

] = E E Cs ffrsfrPqr Cq(po ek-2)q .  
q = l  s = l  

We view 
l 

Usq = ~, PrsCrPqr 
r = l  

as the matrix entry in row s and column q of 

U = ( P '  ® I,,)c~(P' ®In), 
where 

~ = C I  (~C2(~9 . . .  (~Cl" 

Using Equation (74) reduces Equation (73) to 

E C ( k ) C ( k -  1 ) C ( k -  2) 

We also view 
l 

Ws= E u,qCo(poe -2)o 
q = l  

as the matrix entry in row s of 
¢ 

W=U~' (poPk-2®I , )  . 

Using Equations (77), (75) and (78), we write 

E C ( k ) C ( k  - 1)C(k - 21 
l 

= F_,C,w, 
s = l  

=jlg~w 

=Jl (g~(  P' ® I,) )2C~( poPk- 2 ® In)', 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 
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where 

. z , = [ l .  1 . . .  In] 

/-times 

In view of the properties of Kronecker products, the term in the last parenthesis of Equation 
(79) can be rewritten as 

( poe k-2 ® I.)'= (poP k- 2)'® I. 

= (P'k-2 ® l,,)( p'o® I~) 

= ( e , ®  i . ) * -2 (p~  ® I .) .  (80) 

Combining with Equation (80). we finally obtain 

E C ( k ) C ( k - 1 ) C ( k - 2 )  =J,(~(e '®l . ) )2~(e '®In)k-Z(p 'o®In)  (81) 

which can be successively generalized to 
k 

E E C(k - j  + m) =y , (~ ' (  n'® In))*-m~(e'® In)" (p'o ® In)" (82) 
j=m 

This naturally suggests 
k 

E 1-I C[2](k-j+m) =J2(~[2l(P'eln2))k--mv[2](P'®Znz)m(p'oeln2), (83) 
i=m 

where 

oG= ' I .d 

/-times 

~c~[2 ] = C112 ] i~ C2121 ~ • • • ~ C1[21, 
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