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Risk sensitivity is studied in connection to a class of noncooperative games with incomplete 
information. Specifically, we consider a two-player noncooperative stochastic game where each 
player maximizes the expected value of a utility function with constant absolute risk aversion. The 
approach generalizes more traditional models for economic policy evaluation, including the 
linear-quadratic stochastic Nash game studied by Papavassilopoulos (1981) and the exponential- 
quadratic function studied, in the context of single decision making, by Van der Ploeg (1984). 
Conditions for the existence of noncooperative equilibria are derived. The paper offers new insight 
on the influence of risk attitudes on equilibrium. It is shown, among other results, that in the 
assumption of Gaussian distribution of the random variables a Nash equilibrium may not exist 
when players risk attitudes are too conservative. The main results are illustrated with an example. 

1. Introduction 

In the static approach of expected utility, risk aversion is conceptualised as 
concavity of a Von Neumann-Morgenstern utility function and is related to 
the price an agent would be ready to pay to avoid participating in a fair 
lottery. 

In a dynamic decision-making context, risk sensitivity entails lack of cer- 
tainty equivalence, in the sense that replacement of the random variables by 
their first moments does not lead to optimal solutions. Indeed, optimal 
risk-sensitive decisions should depend at least on the second moment of the 
probability distribution [Caravani (1987)]. 

Both features - concave utility and distribution-dependent optimal deci- 
sions - are exhibited by the class of exponential-quadratic functions studied 
by Jacobson (1977), Whittle (1981) and Van der Ploeg (1984) in the respective 
contexts of control, statistics, and economics. 

A different modelling context to study risk attitudes is that of noncoopera- 
tive stochastic games. Two players with different goals may prefer not to 
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cooperate and settle for a Nash equilibrium in which they fall short of their 
goals by a predictable (or expected) amount rather than cooperate and be 
given an uncertain reward. Again, as in the expected utility context. risk is 
akin to a costly preference for certainty. 

Moving from the background of exponential-quadratic functions, this paper 
is a study of the equilibria prevailing when two conflicting agents with 
different risk aversions and incomplete information engage in a noncoopera- 
tive game. 

In the paper we derive sufficient conditions for the existence of a Nash 
equilibrium. In the assumption of Gaussian random variables, we also derive 
necessary and sufficient conditions for the existence of a Nash equilibrium 
when the strategies are restricted to the class of functions affine in the 
information, or when the information available to the players is identical. In 
either case, the nature of these conditions is constructive, i.e., they provide a 
computable solution to the game. 

The results of the paper highlight the rather crucial role played by the 
information structure and the risk-aversion parameter in the existence of a 
Nash equilibrium. In particular it is shown that in the case of identical 
information and Gaussian random variables if a solution exists it has to be 
affine in the information. In the case of affine strategies, if a solution exists it is 
unique. The existence of such a solution is always guaranteed provided both 
players are either risk-neutral or risk-loving. Conversely, no solutions exist if 
both players are enough risk-averse, that is if their Arrow-Pratt indices go 
beyond a computable threshold. Hence caution and defensiveness not neces- 
sarily lead to noncooperative solutions of Nash type. 

Finally, on the basis of a paradigmatic example, we demonstrate the 
existence of trade-offs between risk attitudes. There exist Nash equilibria with 
one player risk-averse and the other risk-loving. But, beyond a certain degree, 
risk aversion of one player enforces imitative behaviour in the other: for a 
Nash equilibrium to exist, the opponent’s attitudes must also be risk-averse. 

In section 2 we specify the basic model and the form of players’ utilities. In 
section 3 we formulate a simple example showing the connection of our model 
to linear-quadratic games on one hand, and to exponential-quadratic single 
decision making on the other. Section 4 deals with Nash equilibria. We first 
consider the existence of a Nash equilibrium in the case of arbitrary strategies 
and incomplete information (Theorem 1). We then specialise our results to the 
case of identical (but incomplete) information (Theorem 2) and to the case of 
affine strategies (Theorem 3). In section 5 we use our results to discuss in some 
detail a particular case that naturally extends the examples of section 3. The 
main conclusions are summarised in section 6. 

The proofs of the theorems require intermediate results. These are presented 
in section A.1 of the appendix as a set of self-contained Lemmata, which 
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might be of independent interest. Section A.2 of the appendix contains the 
algebra required to carry out the example of section 5 in the main text. 

2. Model specification 

The model comprises a coupling constraint, a goal function, and an infor- 
mation structure. 

We assume that two players, indexed by i = 1, 2, wish to influence to their 
advantage a vector z E R” by exerting actions ui E R”‘l and u2 E R”z. Their 
influence on z is linear and uncertain, due to the presence of additive 
disturbances x. 

z = D,u, + D,u, + x, (1) 

where D, and D, are n X m, and n X m2 matrices. Vector x is a Gaussian 
random variable with respect to the probability space (a, 9, S) and is 
assumed to have zero mean and covariance matrix E. We express this by 
writing briefly x - N(0, 2). If one wishes, eq. (1) can be thought of as the 
reduced form of an econometric model, in which z collects the objectives of 
economic policy while ui and u2 are the instruments in the hands of two 
separate authorities. 

Player 1 has a twofold objective. On one hand he would like vector z to 
attain a target value a,. But to attain a, he must exert ui and he wishes ui to 
be small. So he perceives as a loss both the distance of z from a, and the 
magnitude of ui. Similarly for player 2, and if a, f u2, they can clearly engage 
in a noncooperative game. Assuming quadratic losses, the loss for player i is 

2, = $( z - u,)'Q, (z - ui) + +u;P;u,, (4 

where a prime denotes transpose. Matrices Q, - n X n and P, - m, X m, allow 
to weight differently the various loss components. For technical reasons, we 
assume P, to be symmetric positive definite and Q, symmetric positive 
semidefinite. 

By defining, in our context, welfare as minus loss (W= -2) the welfare of 
each player will be negative or at best zero. As Von Neumann utility increases 
with welfare and is defined up to an additive constant, it can be assumed to be 
bounded above by zero. Specifically, we consider exponential utilities of the 
form [Van der Ploeg (1984)] 

U(v)= -$(e-@zlr:_l). 
I 
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I welfare 

Fig. 1. Exponential utility parametrized by risk aversion 

Notice that for 8, + 0, U(y) -j W, so quadratic functions are obtained as a 
special case. Note that U( W,) is always negative and strictly convex for 0, < 0 
(or strictly concave for f?, > 0). Parameter Bj is easily interpreted as the 
Arrow-Pratt index of absolute risk aversion, 8, = -r/‘//u, where a prime 
denotes partial derivative with respect to W, [Pratt (1964)]. Parameter 8, is 
positive if player i is risk-averse (or negative if he is risk-loving). Risk 
neutrality is obtained for 8, = 0, the case of linear utility (see fig. 1). 

Let E be the expected value operator with respect to the random variable x. 
For small 10,EW,21 the expected utility of welfare tends to 

Therefore, variability of the welfare function decreases the expected utility of a 
risk-averse player and it increases that of a risk-loving player. Some advantage 
can accrue to the players by their information about the uncertain disturbance 
vector x. This information takes on the form of private observations of a 
random vector J, E RPd, linearly related to x by 

J’, = c,x. (4) 

where matrices C, have rank p, 5 n. This includes the case where x is perfectly 
observed ( p, = n) or is totally unobserved ( p, = 0). As special cases are also 
included the case of identical information, in which there is a one-to-one 
correspondence between yr and y2 (for instance C, = C,), and the case of 
disjoint information, in which y, and y, are statistically independent 
(C,2C,l= 0). Each player is assumed to have complete knowledge of his own 
goal function (i knows Bj, a,, Q,, P,) and of the coupling constraint parame- 

ters D, and D,. 
We assume that players maximize expected utility, that is i chooses U, as a 

function of y, so as to minimize the conditional expectation of an 
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exponential-quadratic loss function 

(5) 
In the sequel, - 1 will be omitted since it plays no role in the minimization. In 
order to make this formulation meaningful, we must specify the set A? in 
which the optimal solution is sought. Since each player is assumed to act 
purely on the basis of his own information, his real unknown is a function 

u, = Y,(Y,). 
Formally. y, is an element of the space Ai of T-measurable functions 

where ,q is the minimal sub u-field of 9 generated by y,. 
The complete model can now be put in so-called normal form [Basar and 

Olsder (1982, p. 207)] by eliminating z from (l)-(2) and replacing 2, in (5) 

where U’ = {u; u;}, U, = y,(y,), and minimization is with respect to y,. 
Furthermore, 

4,’ = - u:Q,, r,‘= { -ajQ,& -arQ,&}, A: = [Q,4 Q&l, 

R, = 
[ 

4'Q,D,+P, D;Q,4 1 [ D;QJ& D;QA 
4Ql4 D;QlDz ' R2= D;Q2D, I D;QzDI,+P, . 

The dimensions of the five arrays above are, in the order, 1 X n, 1 X m, n X m, 
m X m, m X m, with m = m, + m2. 

Each player’s minimand, therefore, is a functional of Yi and Y2 which will 
be denoted Je,(yi, y2). We investigate now whether a solution to problem (6) 
exists. This is equivalent to searching for a pair (vi*, y; ) satisfying 

J,JYP.Y2*) a,(Y19Y2*L v’y1 EM,, 
(7) 

J/3z(Y?~Y2*) G,(YAYA VY2 GA,. 

We recall that when such a pair exists it is termed a Nash equilibrium. The 
rationale for choosing yi* is to force 2 to play y2*, so as to secure himself the 
Nash payoff, a predictable (or expected) quantity. Clearly, he could gain more 
by not playing UT, if his expectation that the other cooperates were 
fulfilled - but he could loose more if it were not. It is precisely in this sense 
that we say that Nash solution is risk-averse.’ 

‘We slightly abuse of technical language, as the term is usually restricted to concavity of the 
utility function in single decision making. 
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We finally remark that the model considered is essentially a one-act, static 
game. It can also represent a multi-act dynamic game when lagged variables 
are suitably stacked into vector z. The information structure (4) however, is 
such that the resulting strategies are open-loop, that is they only depend on 
observed states of nature and not on previous actions. It is known that in this 
case the dynamic Nash game can be transformed into an equivalent static 
Nash game [Basar and Olsder (1982)]. 

3. Particular cases 

As an example, consider what is perhaps the simplest nontrivial instance of 
model (l)-(4): 

Coupling constraint 

Loss function 

Player 1 information 

Player 2 information 

Minimand 

s = d,u, + d,u, + v, 

2; = ;k;(s - a;)2 + +p,u,', 

y1=v+w*, 

y2 = v + w2, 

+ min, 

where v, wi, and w2 are scalar-valued, Gaussian, zero-mean independent 
random variables with variances2 f 2, 612, a-j, and ki 2 0, Pi > 0. The informa- 
tion available to each player comprises a subjective noise component (w,) and 
a common noise component (0). It is easy to recognize that this is an instance 
of model (l)-(4) if we make the identifications 

x={v wi wz}” 

i= {s Wl w21’9 

ai= {a, 0 O}‘, 

D;= {d, 0 0}', 

C,={l 1 O}, 

c,= (1 0 l}, 

k, 0 0 
e,= 0 0 0. 

[ 1 0 0 0 

‘All of which are assumed known to both players. 
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From these we deduce the normal-form matrices 

q, = - { a,k, 0 O}‘, 

r, = - { a,k,d, a,k,dZ}‘, 

R, = 
d;k, + P, d,d,k, 1 d,d,k, d;k, ’ 

. d,d,k* d;k, + P2 1 
The difficulty faced by player 1 is that, due to the coupling constraint, his 

own expectation depends on u2 and this is an unknown function of the 
random variabie yz (and symmetrically for player 2). The basic question he 
faces is whether or not a sort of noncooperative equilibrium is possible at all, 
that is, whether or not a Nash solution exists. The answer to this question 
brings into play, as we shall see, the agents’ risk attitudes in a rather crucial 
way. To motivate our subsequent study, we discuss first three particular cases. 

Case I. Two players with linear utilities: 8, = 0, = 0 
This is the stochastic quadratic Nash game studied in Papavassilopoulos 
(1981). The result is that the set of equilibria is generically nonvoid, in which 
case it includes a solution affine in the information. This is given by3 

u: = g,Eh,l + /JCL,, 

where 

P, + k,d; k,d,d,Fb,, J 

kzd,Vb, 7 f 1 P2 + k,d,2 

P, + k,d; k,d,d, 

k244 p2 + k,d; 

Ebl~,l = Flu,, fly,, %I~21 = F(o2, f)_v2, 

and F(a, f) is the function (a, f) + l/[l + (~/f)~]. 

‘Computation is straightforward in our case. 

J.E.D.C. E 
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Case 2. One player with exponential utility: 8, # 0, t$ = d, = 0 
This is the exponential-quadratic problem studied (in a more general dynamic 
context) by Jacobson (1977) Whittle (1981) and Van der Ploeg (1984). Their 
solution yields in our case 

* Ul = g,Ebly,l + ~1, 

where 

kldl 
“= - P,+k,d:-8,f2(1-F(o,,f))P,k,’ 

CL1 = -‘y1g1. 

A sufficient condition for the solution to exist is 

1 - 8,k,f2(1 - F( q, f)) ’ 0, (8) 

since this avoids the denominator of g, to vanish. It turns out that this 
condition is also necessary to ensure bounded utility (see remark in section A.2 
of the appendix). 

Case 3. One player with linear utility: 0, = 6, = d, = 0 

This is the classic linear-quadratic problem studied by Simon (1956) and Theil 
(1958). Its solution can be obtained by letting d, = 0 in case 1 or 
19~ = 0 in case 2, 

* Ul = g,E[Wl + ~13 

where 

g1 = - I’, + k,d; ’ 

Pl = -“lgl. 

Inspection of these cases shows that when utilities are linear in the loss 
(cases 1 and 3) the solutions depend on f, ui, and u2 only via the function 
F( uI, f ). Since this is homogeneous of degree zero, the solutions do not change 
if f, ui, and u2 are multiplied by a scalar factor, that is if the uncertainty level 
is proportionally increased or decreased. The circumstance in which second 
and higher moments do not alter the optimal solution is known as so-called 
certainty equivalence [for example, Bertsekas (1976, p. 18)]. Although evi- 
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dented here in a particular case, certainty equivalence is peculiar of quadratic 
functions and it reflects a risk-neutrality assumption [Van der Ploeg (1984)]. It 
is, of course, questionable that an optimal strategy should remain so regardless 
of the uncertainty level affecting the decisions. 

We propose to amend this modelling defect by using the results of case 2, 
where the solution does depend explicitly on f*. As a natural extension of case 
2, we consider the case of two players with exponential utilities, as announced 
in the introduction. 

4. Nash equilibria 

In this section we characterize Nash equilibria. Some intermediate results 
are necessary in the proofs of the theorems. These are contained in section A.1 

of the appendix. 

Theorem 1 (General case). Let x E R” be N(0, 2). Let y’ = { y; y; } with 
y, E RJ’a, y, = C,x with rank(C,) =pi I n. Let y, E.M~, the space of m,-valued 

measurable functions of y,, and let y ’ = { y{ y; }. Let scalars 8; and matrices Q, 
and R, be dejined such that ,I’- ’ - e,Q, and Ri are positive de$nite. Let 

Je, (~13 ~2) 

A sufJicient condition for the pair ( y:, y; ) to satisfy the (Nash) conditions (7) 
is that ( yl*, y2*) satisfy, for i = 1, 2, 

E (A,,x + R,,Y + r,,> 

X 

Y y, riil I = 0, 

where 

A:=[A:, A;,], AI,-nxm,, A:,-nxm, ,) 

R,=[R:, R:,], R:l-mXm,, Ri,-mxm,, m=m,+m,, 

r,’ = { r,; r,; } , r,f - 1 X m,, r,; - 1 X m2. 

This condition is also necessary for 0, I 0, 



Proof. Let 

This is a continuously differentiable function of yr, yz. Setting equal to zero 
the first derivatives with respect to y, and taking conditional expectations, we 
obtain 

which is the condition of the Theorem, evaluated at the point (y,*, y:). 
Assume this condition holds and distinguish three cases. 

Casel: 8,>0, i=1,2 
Since R, is positive definite, f@,(y,, yz) is strictly convex in each of its 
arguments, therefore 

fe,(Yv UT) 2fe,(Yl*. UT> + 
a/,l(:,I. y;) (yl _ y;), 

1 

Taking conditional expectations the second terms on the right-hand side 
vanish and we obtain (7). 

Case 2: ,B! = 0. i = 1, 2 
The condrtton of the Theorem is readily interpreted as the necessary condition 
for the minimization of JO(yr, y2). Since this is a quadratic function of yr, yz 
and R, is positive definite, the minimand is strictly convex and the condition 

is also sufficient. 

Case3: 0<0, i=l.2 
The condition of the Theorem is again interpreted as the necessary condition 
for the minimization of J,,(y,, y2). Although this function is nonconvex, by 
completing the square it can be put in the form 

~exp(~{y+fi(x)}~R{y+R(‘)))f(~)l~ 3 1 
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with f(x) > 0. For 6 < 0, J@(y) has a unique global minimum and the 
condition is also sufficient for (7). 

For cases which are mixtures of case 2 and case 3 (say, 8, < 0, 8, = 0) the 
condition of the Theorem is clearly necessary and sufficient. QED 

The reason why this Theorem does not always provide a necessary condition 
is that, for 8, > 0, the derivatives JJB,(y,, yZ)/Jy, may fail to exist. At the end 
of this section we shall illustrate this point in more detail. 

In the case of identical information, however, the situation simplifies consid- 
erably, because both yi and yz depend on the same random variable y = y, = y,. 
We fall in the class of problems where y’ = { y{ yi} is a function of a single 
conditioning variable y, for which the following holds. 

Theorem 2 (Identical information). Let x E R” be N(0, 2). Let y E RP and 
y = Cx with rank(C) =p I n. Let y, EJH,, i = 1, 2, be the space of m,-valued 
measurable functions of y and let y’ = { 7; y; }. Let scalars 8, and matrices Q, 
and R, be defined such that 2-l - 6,Q, and R, are positive definite. Let 

Jl?,(Y,9 Yz) 

A necessary and sufficient condition for the pair ( y:, y: ) to satisfy the (Nash) 
conditions (7) is that ( yl*, y2*) satisfy, for i = 1, 2, 

A,,[~-~,SQ,I~‘(E[~IYI+~,S(~,+A:Y))+R,,Y+~,,=~, 
where 

E[xJy] = ZC’[CXP’y, 

and 

S = E[ xx’/ y ] = 2 - X’[ CZC’] ‘CZ:, 

A;=[A:, A:,], A:,-nxm,, Al,-nxm,, 

R,=[R:, R:,], RI,-mxm,, R:,-mxm,, m=m,+m,, 

r,’ = {r,; I;;}, r,; - 1 X m,, r,; - 1 X m2. 
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Proof. Since Je,( yl, yz) is a continuously differentiable function of y,, a 
necessary condition for (7) to hold is that aJ,,(y,, y2)/8y, vanish at y,*. By 
the argument used in the proof of Theorem 1, this condition is also sufficient. 
Since 

aJ,,m, = [I w4,,m~ 

away, = w aa~,p~, 
we have _ 

[I O]E[(A,x + R,Y + r,> 

x exp( t9,( ix’Q1x + (y’A, + 4;)~)) 1~x1 = 0, 

[O IIE[(~x+&Y+~,) 

x exp( 0,( :x’QZx + (y’A, + 4;)~)) ICX] = 0, 

and, by Lemma 5 (appendix), the result follows. QED 

Notice that if the condition of the Theorem is satisfied, then y* must be an 
affine function of y. Thus, in the case of identical information if a Nash 
equilibrium strategy exists, it must be an affine function of the information. 

When the assumption of identical information is dropped, it may still be 
worthwhile to check whether a solution affine in the information exists. 
Suppose 1, is restricted to the class ~2, of functions affine in the information. 
We have in this case: 

Theorem 3 (AfJine solutions). Let x E R” he N(0, 2). Let y’ = { y{ y; } 

with y, E RP’, y, = C,x with rank(C,) = p, s n. Let y, E -@‘,, i = 1, 2, be the 

spuce of m,-valued ufine functions of y, and let y’ = {y; y; }. Let 

Jo, (~1, ~2 ) 

A necessary and suflcient condition for the pair ( y:, y: ) to satisfy the (Nash ) 
conditions (7) (with Ml, M2 replaced by dl, ~9’~) is that, for i = 1, 2, there 
exist mutrices L, and vectors IJ, satisfying 
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where, for i, j E (1,2) and i #j, 

oi, = Q, + C,‘L;RljjLj~ + A;,L,C, + C;L;Aij, 

Ki, = A,, + R,,,LjCj, 

fili= R,i,, 

q,i= 4, + C,‘Li(ri, + Ri,jPj) +A:jPj> 

JI, = r,, + Rli,Plt 

E[xly,] =ZC,‘[C;ZC,‘]-‘y,, 

S,= E[xx’ly;] =,:-,YC,l[C,EC,l]-‘C,,.& 
with 

A:=[A:, AI,], A;,-nXm,, A:,-nXm,, 

r,’ = { r,; r,; } , r,; - 1 X m,, r-A- 1 Xm,, 

and the matrix Z- ’ - 8,0ij is positive dejinite. 

Proof. In terms of the definitions of the Theorem, the exponent for player 

one can be expressed as 

: [x’Qp + Y;R,,,Y, + Y;R,,,Y,] + x’ALY, + ~‘42~2 + Y;R,,,Y, 

+ 4;x + rilY1 + r12y2, 

and, for a fixed y2(y2) = L&,x + p2, this is a quadratic function of x and y1 

+x’[ Q, + C;L’R 2 122L2C2 +-%&2C2 + C2%4,21x + :Y;R,,IY, 

+Y; t A,, + R,,,L,C21x + [q; + (r;2 + ~;422)L2C2 + M,,Ix 

+ [r;, + W;,,~Y, + K, 

= :{x’ Y;} ;:I 2’ (y:) + {&‘;, I I %2 1 y1 
11 

{“) +K,, 



where K, is a scalar independent of x and yi. The problem faced by player 1 
is to find a strategy yi minimizing 

By the argument used in the proof of Theorem 1, the minimum y,* is unique 
and satisfies (necessarily, in this case) 

and similarly for y2*, with 1 and 2 interchanged. By Lemma 5 (appendix), the 
result follows. QED 

Before closing this section, we discuss in greater detail the difficulty encoun- 
tered in Theorem 1 for the case 8, > 0. Observe that Theorem 1, for 19, > 0, 
does not offer a straightforward procedure to evaluate the solution. Indeed, it 
is not even clear in what class of functions the search for a solution is bound 
to have success. The difficulty here is linked to the fact that y’ = { y,’ y;} is a 
function of both y1 and y, and, from the viewpoint of player 1, who forms his 
own expectations on the basis of y, only. y is a random vector whose statistic 
is not known u priori since it depends on what strategy y2 his opponent will 
adopt. In principle. player 1 could wonder what Nash solutions are available 
to him when the class of strategies of the other player is totally unrestricted, 
and choose the best for him. But this, in practice, is a formidable task for 
8, > 0, leading as it does to the serious mathematical difficulty which we now 
describe. 

Consider the set .q of m,-valued measurable functions of y, for which Jo, is 
finite. In the case 0, = 0, this is a well-defined set, indeed is the Hilbert space 
of square-integrable functions with respect to the Gaussian measure. The same 
applies when 8, < 0 since finiteness of Jo implies that of Jo for 0, < 0. 

When 0, > 0, however, e is no longer a linear space and the definition of a 
derivative encounters the difficulty of characterizing feasible perturbations. 
Suppose 8, > 0 and, for a particular choice of the parameters. y: has the form 
G(X) so that, in order to find yr*, one has to minimize with respect to yi 
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where x is a normally distributed scalar random variable with zero mean and 
unit variance. Let yl* be a point where Je, attains a jinite minimum. Consider 
now perturbations y:= yr* + E and y;= yr* - E with E > 0. If $(x) 5 0, at 
yt = yl+ we have 

exp( $(x)’ + 2(y: + e)+(x)) 5 exp( G(x)‘+ 2y:G(x)). 

Since the expected value of the right-hand side is finite, so is that of the 
left-hand side, and it is easy to check that Je,(y:, y2*) exists. However, at 

Yl = Yr the inequality is violated, the expectation of the left-hand side may 
well have an infinite value, and .I@,( y;, yZ*) may fail to exist. Actually, if 

I 
-/m if x2-1, 

+(x)= 0 if -l<x<l, 

+\l+x2-f51nlxl if x2 +l, 

we can compute the expectation appearing in Jo, and obtain 

eplYlz 

[ 

,_lexp( -2y,/mj dx + ,I e~‘/2”‘dx 

-32 &+I” -1 J271 

+ 
/ 

+(x exp(2y,/Slnlnlj dx 

1 1 fi[xlS ’ 
a quantity which is finite only for yt = 0. We conclude that the minimum of Jo, 
is finite at yt* but any perturbation of yt* yields an infinite value of Jo,. For a 
similar difficulty in the context of team decision theory, see Radner (1962) and 
Speyer (1980). 

Notice that the derivative with respect to yt of the quantity inside the 
expectation is 

and, at yt = yt* = 0, its expectation is certainly finite, a fact used in the proof 
of Theorem 1. 
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5. An example 

As an example, let us return to the model of section 3 and complete the 
analysis by considering: 

Case 4. Two players with exponential utilities 

Assuming affine solutions 

u: = g,E[uly;l + EL, 

and using the results of Theorem 3, we obtain 

P, + k,dt - e1P,k,f2h,(g,) k,4d,F(o2,f) -’ k,d, 
k,d,d,F(o,.f) P,tk,d:-e,P,k,f2h2(gl) I( I k,d, ' 

P, + k,di -4P,k,f2h(g,) k,d,d, 

k,d,d, P2+k2d:-e2P2k2f2h2(g,) 

with 

h,(g,) = (1 + QQ’(c,, f))*(l - +,J)) 

h2bd = (1 + 4g,~b,J))2(1 - F(a23 0) 

Ebl~,] = %I, f)rl> +I~21 = F(o,J)y2, 

and F(u, f ) is the function (a, f) + l/(1 + (~/f)~). 
The solution is derived in detail in section A.2 (appendix). In particular, we 

have 

Wl(l + d,g,F(u*, 0) 
g1 = - P, + k,df - O,P,k,f*h,( g2) ’ 

(9) 
d 2P2 - a1 

” = - 1 + d,g,F(u,, f) gl’ 

provided (see remark in section A.2 of the appendix) 

1 - ‘V,f2h,(g,) ’ 0, (10) 

and similarly for g,, p2 with the indices 1 and 2 interchanged. Notice that, for 
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Fig. 2. Reaction curve of player 1 

8, = 0, the solutions become those of case 1 in section 3, while for 8i # 0 and 
8, = d, = 0 we get case 2. We shall now concentrate on the relationship 
between the reaction multipliers g, and g,. 

Assume, with no loss of generality, that d, < 0, d, 0 and the 
plane - g2). 8i = eq. (9) the straight (a - in fig. For 
8i 0 condition always holds, lies between - a)i the g, 
and asymptotically to zero g, -+ co. It has a minimum 
and unique maximum. closer 8, to zero, closer is curve to 

- a),, it for > 0, it for < 0. addition, by the 
admissible part this curve up to point where = 8,k,f2h,( Where 
this holds, eq. yields 

gl = - (1 + d,gJht f))/d,, 

which is line (b - b),. For 8, > 0, (9) goes to + cc when the denominator 
becomes zero, so it will hit line (b - b),. As 8, > 0 increases, curve (9) 
intersects (b - b), closer to the right. Moreover, all the mentioned curves and 
lines mutually intersect at the point g, = 0, g, = - l/d,F(o,, f). A similar 
diagram can be drawn in this plane for g, as a function of g,. 

Suppose both players are risk-loving (8, < 0). Condition (lo), and the 
corresponding condition for player 2 with 1 and 2 interchanged, are always 
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Fig. 3. Reaction curves when both players are risk-loving (8,. B, > 0). The shaded area: the set of 
Nash equilibrium points. 

satisfied and there is always a Nash equilibrium point N determined by the 
intersection of the reaction curves inside OA,M,A, in fig. 3. In particular, 
N = M, in the risk-neutral case (6, = 0), and N + 0 when both players are 
very risk-loving (0, + - co). 

Players reactions tend to become weaker as their attitudes become more 
daring. They feel nature, although unpredictable, will ultimately act in their 
favour. This is true when their attitudes towards risk are equally daring, better, 
when point N is in Og&4,g,,. 

But if one is much less daring than the other, he is likely to have a stronger 
reaction than in the risk-neutral case, that is, point N is in MOg,OA, or in 
M,g,,A,. For instance, the intersection of the dotted reaction curve of player 
2 with the reaction curve of player 1 inside M,g,&, indicates that player 2 is 
much less daring than player 1. 

When both players are risk-averse (0, > 0) curve (9) can have one of the 
three shapes ((Y - al), ((Y - LX,), or ((Y - (Ye) shown in fig. 4. The reaction curve 
of player 2 is ( j? - d) and, for 8r, 8, sufficiently close to zero, the curves 
intersect. When one of the players’ risk aversion, say B,, increases, a Nash 
equilibrium may fail to exist, as in the cases ((Y - 0~~) and ((Y - CQ). 

The point M is the intersection of the lines defined by the boundary of the 
admissible strategy sets, determined (for 8, > 0) by inequality (10) and by a 
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0 . 
0 

Y? 

Fig. 4. Reaction curves when both players are risk-averse (8,. ~9, < 0). The shaded area: the set of 
Nash equilibrium points. 

corresponding inequality for player 2 (obtained by interchanging indices 1 and 
2). Thus intersections are only possible in the area M,B,%?B, which deter- 
mines the set of Nash equilibria. 

A solution never exists as long as 8r is above the value at which (9) hits 
(b - b)2 at E (for instance, see point W) and/or e, is above the value at 
which (9) hits (b - b)2 at M. On the other hand, a solution always exists, as 
long as 8r is below the value at which (9) hits (b - 6), at point B, and, at the 
same time, d2 is below the value at which (9) hits (b - b)2 at point B,. An 
example where the above conditions are not satisfied is given by curve 

(a - (3). 
Generally, risk aversion makes reactions stronger than risk neutrality, but 

again only when attitudes are similar. Otherwise, the less cautious has a 
weaker reaction. 

When one player is risk-averse (0, > 0) and the other risk-loving (0, < 0), 
possible Nash equilibria are inside M,BJ,A, in fig. 5 (or inside M,B,C,A,, if 
8, < 0, 8, > 0). A solution always exists, as long as r3r is below the value at 
which (9) hits (h - b), at C,, and never exists if 8, is above the value at which 
(9) hits (b - 6), at B, (for instance, see point W). Compared to the case of 
risk neutrality, reaction should be tightened for the cautious player and 
weakened for the daring. 
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Fig. 5. Reaction curves when player 1 is risk-averse, player 2 is risk-loving. The shaded area: the 
set of Nash equilibrium points. 

From the discussion above, it is apparent that Nash equilibria are possible 
only if the risk-aversion parameters stand in a certain relationship. In a 
(Oi - 13,) plane, Nash regions are easy to find. To do this, identify four points: 

O,,, the value ut which curve (9) hits (b - b), at point C, (jig. 5) 
By inspection of fig. 5, a solution always exists for 8, 5 8,,, and similarly with 
1 replaced by 2. This point is obtained by solving 

g2=0, 

g, = -l/d,, 

1 = b%f2h,(g,), 
from which 

1 
41 = kf”(l - F(% r>> . 



< (l~)zYz~z?zdztl - ;PzY + 'd 

- = z8 ((J ‘b)y8’p + I)zp’y 

‘Ip/( (/ %),gWp + 1) - = 18 

%U!“~OS Icq pauyqo 
s! soys ‘I(g - s) uo sag N uayM ‘si ~eyl ‘11 30 Japloq ayi w ‘0 put! uor%al 
alq!wa3 ayl apyt s! “0 uaym %u!uyqo suognlos I!uul ayl sazpaw.wy:, sqJ_ 

(g .&J) zv AO (p %J) Iv IV I(9 - 9) sly (6) a~~n3 y3!zf~ iv anlvn ayz ‘Vre 

~(Z~)ryz/l+e = I 

‘“p/( (J “D),pp + I) - = ZB 

‘Ip/(( / ‘ygZ8"p + 1) - = 18 

%uyos Ilq pauyqo 

so lu!od s!q~ ‘i: 1cq paDelda1 1 I#M 6pepup pue ‘E1e 7 Ie 103 lsrxa suoynlos 0N 

(g ct$l-) Jy IV yq - q) sry (6) am23 Ys!YM 10 anp ayr ‘E1e 
- 

~(z~)~~z/~~le = I 

‘ 

‘Ip/(( / ‘zD)pi?zp + 1) - = 18 

pauyqo s! lu!od S~J ‘0 aAye%auuou e seq luauoddo aql31 pxa LIED suoqqog 
%~!~o~-yy s! ay p “a.! ‘0 aqe%au I? stq luauoddo aql 31 pxa suo!ln~os ON 

(S ‘it+& ‘8 zulod IV ‘(4 - 9) Sl!y (6) .XU?l3 Zj3!YM It’ a?Z/Vo at/r “‘0 

.auole %u~~x 1 lahyd 01 paMoIle uo!s.IaAr! 3s~ 

30 aa.rSap Isa@q ayl ‘s! w.p ‘(8) .ba us Ie 30 anleA ~pg ayl so 110 w_p aqoN 



Fig. 6. Nash equilibria in the risk-parameter plane (shaded area). Imitative equilibria inside 
&, MB,2Q: A4 = critical point of mistrust. 

We end up with the diagram of fig. 6, where the shaded area contains all 
pairs (et, 0,) for which Nash solutions exist. The curved part in fig. 6 is found 
by eliminating g,. g, from the equations of 19~~. 

Notice that if a player acting alone, as in case 2, eq. (8) has a maximum 0, 
say 8,, for player 1, in the game set up he can have a 8, greater than 13,~. 
provided the other player has a 0, sufficiently close to zero. 

Notice also that if one of the players, say player 1, is risk-averse beyond 
threshold 19~~‘ then there is no way to reach a Nash equilibrium by compensa- 
tion, that is by a risk-loving attitude of the other. For 8, between 8,, and 8,, 
caution of player 1 must induce caution in player 2 before a Nash equilibrium 
can be reached. We call these imitative equilibria (see fig. 6). 

This sets a clear asymmetry with respect to the risk-loving case, where 
risk-loving behavior of one player can always be matched, if one wishes, by a 
(moderately) cautious behavior of the other in a Nash equilibrium. 

However, equilibria are only possible up to point A4 in fig. 6. Overcautious- 
ness beyond this point makes it impossible to reach a Nash equilibrium. We 
call this point a critical point of mistrust. 

Finally notice that, for f’ + 0, the reaction multipliers become those of the 
de-coupled single-objective quadratic-cost case and the shaded area of fig. 6 
becomes the whole plane. 

6. Conclusions 

Generalizing results known for linear-quadratic games, we have shown 
connections between Nash equilibria and risk-aversion parameters when two 
players with exponential utilities engage in a noncooperative game with 
incomplete information. We have shown that when the disturbances are 
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Gaussian, solutions affine in the information exist, provided the Arrow-Pratt 
parameters satisfy a condition essentially prohibiting excessive risk aversion. 
Unlike the linear-quadratic case, players’ optimal reactions are sensitive to 
proportional changes in the noise covariances. The case in which players have 
a single instrument and a single target has been discussed in detail. The 
exercise shows that in a Nash equilibrium the relationship between a player’s 
reaction to the perceived state of nature and his own risk attitude is rather 
complex. Generally, risk aversion makes reactions stronger than risk neutrality 
(or risk love) but only when attitudes are similar. When both players are 
risk-averse but by very different degrees, the less cautious of the two can have 
a weaker reaction than in the risk-neutral case. 

The existence of a Nash equilibrium is conditional upon risk parameters. 
When both players are risk-loving or neutral, a Nash equilibrium always 
exists. When one of the players is risk-averse beyond a computable threshold, 
a Nash equilibrium only exists if the other player is also risk-averse. A sort of 
imitative equilibrium is thereby established. There are cases in which the 
reaction curves of the players fail to intersect. This occurs when one player’s 
risk aversion far exceeds that of the other. Hence we have reasons to believe 
that excessive risk aversion can be a factor of instability in the resolution of a 
conflict. 

Appendix 

This appendix comprises two sections. Section A.1 contains analytical 
results which are necessary to the proofs of Theorems 1, 2, and 3. Section A.2 
develops the algebra needed to solve case 4 in section 5. 

A. I. Analytical results 

To make the exposition self-contained, the results are presented as a chain 
of lemmata. We make repeated use of the estimation formulas 

E[xJp] =X’[CX’]-~~, 

E[xx’ly] = 2 - /ZC’[ CZC’] -‘CZ, 

valid for x - N(0, Z) and y = Cx, where C is a full-rank matrix. 

Lemma I. Let x E R” be N(0, I) and Q a matrix such that ,I--’ - Q is 
positive definite. Then 

J = Eexp( fx’Qx + q’x) = 

where r = [2-l - Q]-‘. 
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Proof, 

J= 
/ 

+ CC exp( $x’Qx + q’x - jx’Z-‘x) dx 

-cc GE 

/ 

+m exp( - $(x - X)‘P(x - 2) + M) 
= 

-Cc /m dx 

VI 
i-- / 

fin exp( - $(x - X)‘P(x - x)) 
= 

EeM -m /m dxl 

where T, X, and M, by equating coefficients of equal powers of x in the 
exponent, are given by 

r-1 L-1 
- Ql x= rq, M = iq’rq. 

Since r is positive definite, the integrand on the right-hand side is a 
probability density function and the result follows. QED 

Lemma 2. Let x E R” be N(0, Z) and Q a matrix such that 2-l - Q is 

positive dejinite. Then 

J = Ex exp( $x’Qx + q’x) = 

where r = [Z-’ - Q]-‘. 

Proof. 

J=/ 
+ o. x exp( +x’Qx + q’x - jx’X’x) dx 

pm dGi?z 

=/ 

+mxexp(-:(~-Z)‘T-l(x-F)+M) 

-cc 

Irl J M +mxexp(-:(x-x)‘T-l(x-x)) = tie -cc / \lo”lrl dx5 
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where, as in Lemma 1, 

r-l=E:-1-Q x=rq, M = iq’rq. 

Since r is positive definite, the integral on the right-hand side is X and the 
result follows. QED 

Lemma 3. Let x2 E R” be N - (0, 222) and let x’ = {xi xi}. Let 

Q = ;:: ;12 , 
[ 1 

dim( Q,,) = n X n, Q12 = Q;,, 
22 

4’= {4; 4;L dim(q,) = n. 

Assume 2,’ - Q22 is positive dejinite. Then if x1 is independent of x2, 

J = E[exp( +x’Qx + qlx) 1x1] = 

where the expectation is with respect to x2 and 

with 

r,, = [G - Q22] -l, 

r,, = Q,, + QJzQn, 

r,, = Q12r2, = cl. 

Proof. 
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Conditioning can be ignored since x1 and x2 are independent. By Lemma 1, 

and the result follows. QED 

Lemma 4. Let x2 E R” he N - (0, .X2,) and let x’ = {xl xi}. Let 

Q = ;;; ;y2 , [ 1 
dim(Q,,)=nXn. Qu = Q;,> 

72 

4’= bl; 4;L dim(q,) = n. 

Assume Z;2’ - Q22 is positive dejinite. Then if x1 is independent of x2, 

J = E[ x2 exp( +x’Qx + q/x) Ix,] 

v-221 =J- 11221 
exdfVW2,x, + r22q2h 

where the expectution is with respect to x2 and 

r11 1 r12 
r= I 0 0, 

i I r2, 0 r22 

with 

r,, = [-G - Q221 Y 

r,, = Q,, + QJnQn, 

r12 = Q,,r,, = r;,. 
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Proof. 

= ev( i4Qllxl + q;x,)E[ xzexp(%Q22x2 + (x;Q12 + qi)x2)lxl]. 

Conditioning can be ignored because xi and x2 are independent. By 
Lemma 2, 

exdh’Ql,xl + e’xl + i(4Q12 + q;)r22(Q21x1 + q2)) 

xG,(Q,,x, + d, 

and the result follows. QED 

Lemma 5. Let x E R” be N(0, 2) and y E RP be a vector satisfying y = Cx 
with rank(C) = p 5 n. Let Q be a matrix such that 2- ’ - Q is positive dejinite. 

Then 

J=E[(Ax+d)exp($x’Qx+q’x)lCx] =O, 

if and only if 

A[I-.SQ]-‘(E[xly]+Sq)+d=O, 
where 

S=.X-X’[CX’]-‘CZ=E[xx’ly]. 

Proof. Let [ = .T ix so 6 - N(0, I). In terms of .& 

J = E[ (AZ&J + d)exp( ~.$“.Z~QZ~~ + qlIi[) ICS~~]. 

Decompose the p x n matrix CZ$ in singular values. Since p 5 n, 

c2: = u[n o]v’, 

where U and V are p x p and n x n unitary matrices whose columns are 
eigenvectors of CX” and _Z iC’CIT:i. A is a diagonal matrix containing the p 



144 P. Curavum and G. Papavussilopoulos, Risk-senwive noncooperative gums 

singular values of CI i. Since this matrix has rank p, its singular values are 
nonzero. 

Consider the partition I/ = [V, V2 ] with VI - n x p. 

E= UAV,‘.$. (A.11 

Since UA is invertible, conditioning on Cx is the same as conditioning on V<(. 
Using the identity I = VV’, we have 

J = E[ (A& VV’[ + d)exp( ~~‘VV’2~Qh4”~ + q’2%‘V’[) IV{c;] . 

Let now 

z’ = {z; z;}, r’= (r-1 r*}. 

Then 

J = E[ ( A,z, + A,z, + d)exp( $z’Rz + r’z) lzl] = J1 + J,, 

where, by Lemma 3, 

J, = ( Alzl + d)E[exp( $z’Rz + rrz) lzl] 

= (A,z, + d)\lir,,lexp( *?‘I?), 

and, by Lemma 4, 

J, = A,E[ z2exp( 4z’Rz + r’z) lz,] 



P. Curuouni ond G. Pupuvassiiopoulos, Risk-sensitive noncooperative games 145 

with 

r,,= [I-RJ’, 

r,, = RI, + RJ**Rn, 

r,, = RIJzZ = &‘,. 

Since r,, is nonsingular, the condition 

J= mexp($Ti;) [(A,+A2rZ1)z1+AA2r22r2+d] =0 

holds if and only if the quantity in square bracket is zero, or 

A~[(z+ v,r,,vp@~)v,v~~+ v,r2,v;xiq] + d= 0. 

Now 

64.2) 

where the last step follows from an easily verifiable matrix identity and the 
fact that Z - AB is invertible if and only if Z - BA is. Furthermore, we have 
the identity 

therefore (A.2) becomes 

Now, from y = UAVi’[ and 5 - N(0, I) it follows 

I’,V;.$ = E[[ly] = Z-:E[xly]. (A.4) 

Also 

v-y; = z - v,v,l = z - ~~C~[ cxq - ‘CI’:. 

Using (A.4) and (AS) in (A.3) the result follows. QED 

(A.5) 

Notice that the assumption of positive definiteness in Lemmata l-5 is 
crucial. It is not difficult to see that when this assumption is violated, the 
integrals involved in the expectations do not have a finite sum. 



A.2. Solution of case 4 in section 5 

s = d,ul + d,u, + o, 

yl=u+w,, 

yz = u + “2, 

Licpl = yc,( s - L7J2 + p$d: 

1 
-+ min. 

Assume player 2 adopts an affine strategy, 

~2 = LY, + ~2 = g,E[ uly,] + cl2 = g, 
f’ 

7~2 + ~2 = g2F2y2 + ~2. 
j2+02 

Then, 

c!i?, = +k, (d,u, + d, L, yz + d,p., + u - q)’ + $u: 

= jk,( d,u, + (1 + d,L,)u + d2L2wz + d,p, - a,)‘+ +P,u:. 

Let 

(Y = 1 + dzL,, P=dzLz> 

and 

x1 = I: + WI =.v1. 

x, = aI_’ + pwz. 

x’= {x, x,}, 

h,, = d,pz - aI. 

Player 1 seeks U, that minimizes 
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The first-order condition is 

E ([O Mb + (W: + fib, + VA,) 

Xenpjs,(tx’[ i jJ x + (0 k,d,u, + k,h,,}x ill 1 
[l 01x =o. 

By letting 

A = [O Ml, 

d = (k,& + P,) u1 + k,dlh,,, 

e=e, ; [ 1 
k” , 

1 

q’ = 8,{0 k&u, + k,h,,}, 

c= [l 01, 

this can be written 

E[ (Ax + d)exp( $x’Qx + qtx) ICx] = 0. 

By Lemma 5, 

A[I-Se]-‘(E[xlCx]+Sq)+d=O, 

where 

S = E[ xx’ly,] = 2 - X’[ C-X’] - ‘CZ, 

== fZ+4 I af2 

af’ 1 ff2f2+p*u~ 

A brief computation yields 

1 0 

[I-5$-'= o 1 I 1 , 
1 - O,k, 

(A.6) 
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A[Z-.sQ]-'={O k,dl}[Z-SQ]-‘= 

I “F,Yl + @,(44% + klh2) 

Assembling the various terms, 

k,d, 

‘yFlY1-t @,W,% + klh2) 

1 - O,k, 
+ (k,df + P,) u1 + k,d,h,, = 0. 

From this we get 

k,d& d,k,h,, 

” = - k,d; + P, - O,P,k, Yl + k,df + P, - O,P,k, 

or 

with 

g1 = - k,d; + P, - 8, [ a’!‘(1 - F,) + ,@a,‘] P,k, 

k,d,(l + d&z) 

= - k,df + P, - fl,[ (1 + d2L,)*f2(1 - F,) + d:L;o,2] P,k, ’ 
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Since 

k,d,(l + d,g,F,) 
g’= - k,df+P,-b’,f2[(1+d2g2F,)‘(1-F,)+d;gfF2(l-F,)]P,k, 

” = k,df + P, -S,f’[(l + d,g,F’)*(l - F,) + d:g:F,(l- h)] f’,k, ’ 

and similarly for player 2 with indices 1 and 2 interchanged. These are eqs. (9) 
of section 5. 

Remark. It has been observed at the end of section A.1 that if the assump- 
tion of positive definiteness of Z-’ - Q is violated, the expectations in 
Lemmata 1-5 yield an infinite value. It is not difficult to see that positive 
definiteness of 1-i - Q implies that of Z - SQ in Lemma 5 and this in turn 
implies 1 - O,k, > 0 in eq. (A.6) which, after proper substitutions, is condition 
(10) of section 5. Condition (8) in section 3 is the same as (10) for d, = 0. 
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