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Learning Algorithms for Repeated Bimatrix 
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Abstract. The purpose of this paper is to study a particular recursive 
scheme for updating the actions of two players involved in a Nash 
game, who do not know the parameters of the game, so that the resulting 
costs and strategies converge to (or approach a neighborhood of) those 
that could be calculated in the known parameter case. We study this 
problem in the context of a matrix Nash game, where the elements of 
the matrices are unknown to both players. The essence of the contribu- 
tion of this paper is twofold. On the one hand, it shows that learning 
algorithms which are known to work for zero-sum games or team 
problems can also perform well for Nash games. On the other hand, it 
shows that, if two players act without even knowing that they are 
involved in a game, but merely thinking that they try to maximize their 
output using the learning algorithm proposed, they end up being in 
Nash equilibrium. 

Key Words. Nash games, learning algorithms, bimatrix games, games 
with incomplete information. 

I. Introduction 

The p u r p o s e  o f  this p a p e r  is to s tudy a pa r t i cu l a r  recurs ive  scheme for 
u p d a t i n g  the ac t ions  o f  two p layers  involved  in a N a s h  game,  who do not  
know the pa r ame te r s  o f  the  game,  so tha t  the  resul t ing  costs and  strategies 
converge  to (or  a p p r o a c h  a n e i g h b o r h o o d  of) those  that  cou ld  be ca lcu la ted  
in the k n o w n  p a r a m e t e r  case. We s tudy  this p r o b l e m  in the context  o f  a 
mat r ix  N a s h  game,  where  the  e lements  o f  the matrices,  are u n k n o w n  to bo th  
players .  The  essence o f  the  con t r ibu t ion  o f  this  p a p e r  is twofold .  On the 
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one hand, it shows that learning algorithms which are known to work for 
zero-sum games or team problems can also perform well for Nash games. 
On the other hand, it shows that, if two players act without even knowing 
that they are involved in a game, but merely thinking that they try to 
maximize their output using the learning algorithm proposed,  they end up 
being in Nash equilibrium. 

In the context of  zero-sum games and team problems, schemes similar 
to the one examined here have been studied in Refs. 1 and 2. In Ref. 3 a 
Nash game and in Ref. 4 a Stackelberg game with unknown coefficients are 
considered. The costs in Refs. 3 and 4 are quadratic, whereas in Refs. 1 
and 2, as well as in the present work, the matrix game models are employed. 
These types of  studies can find applications in situations of  conflict or 
decentralized decision making where several parameters are unknown, as 
for example in economic systems where the agents do not know each other's 
parameters,  in traffic routing of  telephone or computer  messages (see Refs. 
1 and 2), in military systems, and elsewhere. 

The structure of  the paper  is the following. In Section 2, a complete 
analysis of  the 2 × 2 matrix case is provided. It is shown that, if the static 
game with known parameters  has a unique solution, then the proposed 
schemes for the unknown parameter  case converge in strategy and value 
within E to those of the known parameter  case, where E is controlled by a 
certain parameter.  It should be pointed out that the strategy pair considered 
is not a solution of the constructed dynamic game, but that it approximates,  
as time goes to infinity, the solution of the static game with known para- 
meters. I f  the unique solution is a mixed one, the rapidity of  convergence 
decreases as e does. The study of the proposed schemes is reduced to the 
study of an associated differential equation, which is essentially our central 
subject of  scrutiny. For the 2 x 2 case, the differential equation is analyzed 
in Section 2.1. The possibility of  limit cycles (an issue overlooked in Ref. 
1) is ruled out. 

The more general M × N matrix case is introduced and briefly discussed 
in Section 3. Although a relatively satisfactory analysis o f  the equation is 
possible for the 2 × 2 case, the M × N case is considerably harder. Some 
results are given, and some important issues concerning further study 
associated with the differential equation pertaining to the M x N case are 
also delineated in Section 3. 

As was mentioned in the previous paragraph,  the study of a differential 
equation is quite crucial to this study. It should be pointed out that a related 
differential equation, which represents an algorithm for solving zero-sum 
games, was first introduced and studied in Ref. 5. The differential equation 
of Ref. 5 pertains to the known parameter  case and does not cover the 
differential equation considered here. 
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2. The 2 x 2 Matrix Case 

Let us first review some known facts concerning the simple 2 x 2 Nash 
matrix game with known parameters. Consider the two matrices 

and let 

A i = [ a l l  a12] A2=[bll b~2], 
k a21 a22A' k b2~ b=J 

s {[x~] } = : x~+x2 = 1, x~->0, x2>-0 . 
X2 

Player 1 chooses rows, while player 2 chooses columns. A pair (x*, y*) 
S x S is a Nash equilibrium if 

V1 = x* Aly* >- xAly*, 

V2 = x* A2y* >- x* A2y, 

The pure solutions are: 

(I) X*=[10] , y*=[10] , 

(III) X*=[~], y*=[10] , 

~IV, X*:[~ ], y*--[~], 
The mixed solutions are: 

if 

Vx e S, ( la)  

Vy e 5:. ( lb)  

if a~ >- a21 and b~ >- bl2; 

if a12 ~ a22 and b~2 >- bu; 

if  a21 -> all and b2~ >- b22; 

i f  a22 ~ a~2 and b22 ~ b21. 

b22- b2t 3 
x* = [ t / ( b  H - b12 + b22- b21)] Lb~ - b12J' 

y* =[1/(a,a-a21+a22-a,2)][a22-a12], 
Lan - a 2 1 A  

(a~l-a2,)(a22-a12)>>-O, (bn-b12)(b22-b21)>_O, 

(2) 

(3) 
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and the denominators in (2) and (3) are nonzero. It is easy to see that pure 
and mixed solutions can coexist. The only cases where there exists a unique 
solution which has to be mixed are 

all > a21, a22 > ai2, bll < b12, b22 < b21, (4a) 

or 

alt < a21, a22 < a12, btl > b12, b22 > b21. (4b) 

2.1. P r o b l e m  S t a t e m e n t .  Let us consider the matrix game where the 
2 × 2 matrices Ai,  A2 have elements 

0_<a~<_l, 0----- b~j-< 1. 

If  player 1 chooses row i and player 2 chooses column j, then player 1 
receives a gain equal to 1 with probability aij and pays 1 with probability 
1 - a0, whereas player 2 receives a gain equal to 1 with probability b U and 
pays 1 with probability 1 - bi~. Let us assume that the players do not know 
the elements a,j, b~. The game is played repeatedly and, at each instant of  
time, the players choose a row and a column respectively and all that they 
learn is whether they win or lose one unit. The question is how they should 
choose a row or a column so that, as time goes by, things work as they 
would in the case where A~, A2 were completely known to them. 

One way of  going about this problem is the following. At time k, player 
1 chooses a probability vector 

kp2(k).]' pl(k)>_O, p2(k)>_O,p,(k)+p2(k) = 1, 

and player 2 chooses a probability vector 

[ q l ( k ) ] ,  ql(k)>O, q2(k)>O,q~(k)+q2(k)=l ' q(k) = [.q2(k)_l 

meaning that row i and column j are chosen with probability p~(k)qd(k), 
and thus player 1 receives gain 1 with probability a U or loses 1 with 
probability 1 - a ~ ,  given that row i and column j were chosen. Player 1 
knows pl(k), p2(k), knows whether row 1 or 2 was chosen, and also knows 
whether he gained or lost one unit. Similar things hold for player 2. Based 
on this knowledge, player 1 updates the vector pm(k), p2(k) by 

[,,,,,<+ ,,] _- ,,, ) 
p2(k+ I) Lp2(k)J' a,.k, e,,k , 
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where 

1, if row 1 was chosen, 

a~k = 2, if row 2 was chosen, 

1, if 1 unit was gained, 

e~k = --1, if 1 unit was lost. 
Similarly, player 2 updates q~(k), q2(k) by [<,,.<+1,>] 

q2(k+X = = \ [ q 2 ( k ) ] '  a2,k, 

where 

1, if column 1 was chosen, 
°12k = 2, if column 2 was chosen, 

1, if 1 unit was gained, 
e2k = --1, if 1 unit was lost. 

For a given pair of functions F~, F2, the vector [ Pl(k + 1), P2(k + 1), ql(k + 1), 
q2(k + 1)]' is a random vector, the probability distribution of which depends 
solely on [pl(k) ,  p2(k), ql(k), q2(k)]', and thus we deal with a Markovian 
process. The issue now is how to choose F~, F2, so that this Markovian 
vector behaves, as k ~ + ~ ,  in an appropriate way. For example, it would 
be desirable to have that 

[p,(k) ,  p2(k)]' ~ x*, [ql(k), q2(k)] ~ y*, 

E [ p ( k ) ' A l q ( k ) ]  ~ x*Ay*,  E[p(k) 'A2q(k)]  ~ x*A2y*, 

where x*, y* are as in Section 2. In the next section, we consider a particular 
choice of  F1, F2 and study the resulting behavior of p(k) ,  q(k).  

2.2. Analysis. Since we deal with the 2 x 2 matrix case, we need to 
consider only p~(k), ql(k),  which we from now on denote by p(k) ,  q(k).  
The following type of Fl(k),  F2(k) is chosen: 

I0h~(1 - p ( k ) ) ,  if 

~-OA2p(k)  if 
p ( k  + 1 ) = p ( k ) + l _ O A , p ( k ) ,  (5) 

! 
lOA2(1 - p ( k ) ) ,  

I 0 ~ 1 ( 1  - q ( k ) ) ,  

I - O ~ 2 q ( k ) ,  
q ( k + l ) =  q ( k ) + i _ O ~ q ( k ) ,  

kO~E(1 -q (k ) ) ,  

Ollk = 1, Elk = 1, 

a~k = 1, Elk -= --1, 

i f  O/lk = 2, Elk = 1, 

if  Cqk = 2, Elk = --1, 

if a2k ~--- 1, e2k = 1, 

if a2k = 1, e2k = -1 ,  

if a2k = 2, e2k = 1, 

if a2k = 2, e:k = -- 1, 

(6) 
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where 0, h~, 3,2, p,~, tz2 are nonnegat ive constants,  with 

1 -> 0Ai ,  1 --> 0/z~.  

Thus,  by construct ion,  

0 - p ( k +  1)-< 1, p<-q(k+l)<-l.  

This scheme is called l inear reward penal ty ergodic (LRPE)  algori thm; see 
Ref. 1. Each  o f  the four  cases in (5) and of  the four  cases in (6) occurs 
with the fol lowing respective probabili t ies:  

p(k)[allq(k) + a12(1 - q(k)] ,  

p (k ) [ (1  - aH)q(k) + (1 - a~2)(1 - q(k) ] ,  

[1 -p(k)][aE~q(k) + a22(1 - q(k)] ,  

[1 - p ( k ) ] [ ( 1  - aE~)q(k)+ (1 - a22)(1 - q(k)] ,  

q(k)[bHp(k) + b21(1 - p ( k ) ] ,  

q(k)[(1  - bn)p(k) + (1 - b2~)(1 - p ( k ) ) ] ,  

[1 - q(k)][b~Ep(k) + b22(1 - p ( k ) ) ] ,  

[1 - q(k)] [ (1  - b~2)p(k) + (1 - b22)(1 - p (k) ) ] .  

It holds that  

LLq(k+l ) -q ( k ) J  I .q(k)J  J LW2(p(k),q(k))J (7) 

where 

W~(p, q) = 3,~p(1 - p ) [ a . q +  a12(1 - q)] 

- 3,2p2[(1 - aH)q + (1 - a12)(1 - q)] 

- 3,1p(1 -p)[aE~q + a22(1 - q)]  

+ 3,2(1 - p ) 2 [ ( 1  - a2~)q + (1 - a22)(1 - q)],  (8a) 

W2(p, q) =/z~q(1 - q)[b,p + b2~(1 - p ) ]  - /z2q2[(1 - bH)p 

+ (1 - b21)(1 - p ) ]  - / . ~  q(1 - q)[b~2p + bE:(1 - p ) ]  

+ br:(1 - q)2[(1 - b~2)p + (1 - b22)(1 - p ) ] .  (Sb) 

For  0 very small, we anticipate (and this will be substantiated later) that  
the evolut ion o f  [ p (k ) ,  q (k ) ] '  will follow the evolution o f  the differential 
equat ion 

The fol lowing theorem is an easy extension of  Theorems 2.2, 2.3 and 
6.1 o f  Ref. 1. 
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Theorem 2.1. Assume that the differential equation (9) has a unique 
equilibrium point in [0, 1] x [0, 1] which is globally asymptotically stable 
there. Let x (0 )=p (0 ) ,  y ( 0 ) =  q(0). Then, 

Lq(k)-x(k)J Lkq(O)Jd 

1 r , < l  + o 0,, 
Lq(k)J  Lq(0)JJ  Ly(k)J  

, rr,,.<)llrp(o)l l 
ar k 0 J = 0 (0 ) ,  LLq( )JILq( )J 

liml~7,(k)-V,[=O(O), k-+ +oo ,  i = 1, 2, 

where 

k 1 -(~F ~ ~ l ia , (~F ~ >  l~ 7 t ' ( k ) - \  I . l - p ( k ) j  / k [ . 1 - p ( k ) J ] '  i= 1,2, 

uniformly for all k->O and p(O), q(O). Here, V~ = the  value for player i in 
the known parameter case; see (1). [] 

It is clear that all the results of  Theorem 2.1 hinge upon the behavior 
of  the differential equation (9). Let 

A = Az/At, /z = /z2 /~ l ,  O=O'Al ,~( t )=y((A1/IXx)  • t). 

Letting 0-~ 0 corresponds to 0-->0, and thus (9) becomes 

W~(x, y)J' (1o) 

where 

W,(x, )3) = x(1 - x ) [ ( a n  + a22 - a l 2 -  a2,))~ + a,2 - a22] 

+ ,X {x2[(an - a12)fi + a~2 - 1] + (1 - x)2[(a= - a21)3~ + 1 - a=]}, 

W2(x, )3) = :~(1 -)~)[(bn + b22- b ,2 -  b2,)x + b2,-  b22] 

+/x{fi2[(b,, - bz,)x + b2, - 1] + (1 - f i ) 2 [ ( b 2 2  - bl2)X -k- 1 - -  b 2 2 ] } .  

Next, we will study (10), where for notational simplicity we will use y 
instead of  ft. 

If  x = 0, then 

2=a[(a=-a- , t ) y+l -a22]>-O,  for ym [0, 1]. 

I f  x = 1, then 

• ~=Z[(al~.-a12)y+a~2-1]<-O, for y e [0, 1]. 
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Similarly,  

#---0,  

and  

if y = 0 ,  

where  

Fl(x, y) = [ ( a l l  + a 2 2 -  a12 -  a21)y + a 1 2  - -  a22] 

+ 3  ̀{ l / [ y ( 1  - y)]}[x/(1 - x)][(a11 - a12)y + a12- 1] 

+ [(1 - x ) / x ] [ ( a 2 2  - a2a)y + 1 - a22], 

F2(x, y)  = [ (bl l  "1- b22 - b~2 - b 2 1 ) x  + b21 - -  b22] 

+ / z { 1 / [ x ( 1  - x)]}[y(1 - y)][(bl~ - b2,)x + b21 - 1] 

+ [(1 - y ) /y ] [ (b22  - b~2)x + 1 - b22]. 

It  holds that  

O F2/ Ox + O F2/ Oy 

= - A  { l / [ y (1  - y ) ] }  [[1/(1 - x)2][(a~: - all)y + a12] + ( 1 / x  2) 

x [ ( a 2 2 -  a21)Y + 1 - a22]] 

- / z { 1 / [ x ( 1  - x ) ] }  [ 1 / ( 1  - y )2 ]  [(b2~ - b,1)x + 1 - b2~] + ( 1 / y  2) 

x [ (b22-  blE)X + 1 - b22]]; 

and,  since A > 0,/z > 0, 

OF1/Ox+OFE/Oy<O, for  ( x , y ) ~  (0, 1) x (0, 1). 

Thus,  by the cri terion o f  Bendixson  (see Ref. 6, p. 238), the differential 
equat ion  (10) has no limit cycle in (0, 1) x (0, 1). It  should be not iced that  
3, does not  need to equa l /z .  

Next ,  we invest igate the equi l ibr ium points  o f  (10); to this end,  we 
consider  the equat ion  

W~(x, y)=O. 

) - < 0 ,  i f y = l .  

Thus,  the solut ion of  (9) remains  always within the square  [0, 1] x [0, 1] if  
it starts there.  The phase  por t ra i t  o f  (10) can be ob ta ined  equivalent ly  f rom 

dx/  dy = Fl(x, y ) /  F2(x, y),  
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Let us assume that 1 > %. It holds that 

W,(0, 0) = ;~(1 - a~,_) > 0, 

W~(1,O) = 

Wl(0, y)  = 

W~(1, y)  = 

w,(o,y)= 

W~(1, fi) = 

W~(x,y)= 

where 

WI(0, 1)=4(1-  a21)> 0, 

- A ( 1 - a ~ z )  < 0 ,  W~(1, 1) = - h ( 1 - a i 0 < 0 ,  

X [ ( a 2 2 -  a z O y  + 1 - a22] > O, 

h [ ( a n  - a12)y + a12-1] < O, 

0, where 37 = (1 - • 2 2 ) / ( a 2 1  - a 2 2 ) ,  

0, where f i=(1-a12) / (aH-a12) ,  

O¢:>y[ N(x ,  A )/ D(x, h)] ,  ( l l a )  

N(x ,  A) = ((1 - A) (a12-  az2)x2+[alz - a22 + 2A ( a 2 2 - 1 ) ] x +  h (1 - a22)), 
( l l b )  

D(x, h) = ((1 - A )(--all + a22+ a12 + a2a)x 2 

+[-all-a2z+a~z+a2~+2A(a22-a21)]x+A(a21-a22)).  ( l l c )  

Since 

w~(0,y)>0, wl(1,y)<0, 

and  since W~(x, y) is quadra t ic  in x for  each y, there is a unique x for  
which W~(x, y)  = 0, with 0-< x -< 1. D(x, 0) has roots x = 0, t and 

D(0 ,  3`) = 3`(a22- a21), 

D(1,  3`) = 3, (all - a22). 

Thus the denomina to r  o f  (11) becomes  zero, for  x close to 0 or  to 1, if  h 
is very small. N(x ,  0) has roots  x = 0, 1 and  

N(0 ,  3,) = -3 , (1  - a22) < 0, 

N(1 ,  h ) =  A ( 1 - a ~ 2 ) > O .  

Thus, N(x ,  A) has a unique  root  between 0 and 1 which is close to 0 if 

all  + a22 - a12 - a2~ > 0. 

Finally, notice that, if  h is very small, then the curve W~(p, q ) = 0  follows 
closely the line 

q* = ( a22-  a12)/(aH + a2: - a12 - a2~), 

for  p ~ (0, 1). Using all these facts, we conc lude  that  the curve W~(p, q) = O, 
for  h > 0, A sufficiently small, is as in Fig. 1 or  Fig. 2, where the asymptotes  
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~1 E2 

/ 
Fig. 1. Case where a=all+a22--a12-a21>O. 

¢l, e2 are close to x = 0, x = 1 respectively. The point q* could be anywhere 
in the real line. Similar results hold for the curve W:(p,  q)= 0, under the 
assumption 1 > b~, where the role of a will be assumed by 

[3 = btl + b12-b12-b21 

and that of q* by 

p* = (b22- b21)/ ( bll + b22- b12 - b:l). 

Considering the signs of a, fl, and considering whether p*> 1, p* <0, 

~2 

Fig. 2. Case where a = all+a22~a12-a21 ~.0. 
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Fig. 3. Case w h e r e a > 0 , ~ > 0 a n d q * > l , p * > l .  

0 < p * < l ,  q*> 1, q*<0 ,  0 < q * < l ,  several situations, concerning the 
intersections of W1 = 0, W2 = 0, can arise. Some of them are delineated in 
Figs. 3-6. Twelve similar cases can appear by considering the a < 0 case. 

The general conclusion is that, ifA > 0,/z > 0 are sufficiently small, then: 

(i) i f a ~ < O a n d O < p * , q * < l ,  then the curves W~=0, W2=0inter-  
sect at a unique point which is close to (p*, q*); the point (p*, q*) corre- 
sponds to the unique Nash solution of (1), which has to be mixed; see Fig. 6; 

(ii) if a i 3 > 0  and 0 < p * ,  q * < l ,  then the curves Wl=0~ W2=0 
intersect at three points, one of which is close to (p*, q*), a mixed solution 
of  (1), and the other two are close to the pure solutions of (1); see Fig. 5; 

0 
, &  
v 

/ P" 

W2-O 

! P 

Fig. 4. Case where a > O, fl > 0 and q* > 1, 0 < p* < 1. 
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Fig, 5. 

qJ 

l 

q,, 

°1 

w,o/ 

p* 

w2:0 

1 p 

Case where a > 0 , / 3 > 0  and 0 < q * <  1, 0 < p * <  1, 

(iii) in all other cases, W1, W: intersect at a unique point which is 
close to the pure solution of  (1). 

In terms of  studying the stability behavior of  (10), only the cases of  
Figs. 3, 4, 5 and 6 need to be considered, since the study of  the other 20 
cases can be seen to be equivalent to the cases of  Fig. 3, or Fig. 4, or Fig. 
5, or Fig. 6. 

Case A. See Figs. 3 and 7. In this ease, 

( a > O ,  q * >  1 , / 3 > 0 ,  p * >  1) 

¢z> (a22-- a12>  a21 -- aH > O, b 2 2 -  b21 > b12 - b l l  > 0). 

Fig. 6. 

qI 

I  w2:o 
o 

Case where a > O , / 3 > 0  and O < q * < l ,  O<p*< l .  
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In Fig. 7, the arrows indicate the direction of (2,~). The Jacobian of 
( is 

j=[(1-2p)(a'q+alz-a=) ap(1- -p )  ] + O(A,/x); 
/3q(1 -- q) (1 - 2q)(~p + b2~ - b=) 

at the point p = Pl - O, q = ql ~ O, the point of  intersection of  WI = W2 = O, 
the above Jacobian equals approximately 

j=[a12;a22 0 
b2, - b=j + ( 1 2 )  

Thus, the Jacobian has two negative eigenvalues, and (Pl,  ql) is locally 
asymptotically stable. Since there is no limit cycle, it is globally asymptoti- 
cally stable in (0, 1) x (0, 1). 

Case B. See Fig. 4. In this case, 

(a>O,q*> l,t~>O,O<p* <l 
<=> (a22 - a12 > a21 - all > 0, bll - b12 > 0, b22 - b21 > 0). 

The local stabiliy analysis is the same as for Fig. 3. 

Case C. See Figs. 5 and 8. In this case, 

(a>O,O<q* <l, Ct>O,O<p* <l) 
<::> (a22 > t7/12, a l l  > a21,  hi1 > b12, b 2 2 >  b21). 

The directions of  (2, ~) in the several areas are shown in Fig. 8. The pairs 
(Pl, q~), (P2, q2), which are close to the pure strategy solutions, are locally 
asymptotically stable, whereas (/5, 0), which is close to the mixed solution, 
in unstable since the Jacobian at/5, g/has a positive eigenvalue; see (12). 

Y 

1 

ql, 

0 

W I =0 
+ 

P X 

Fig. 7. Case where a > O,/3 > 0 and q* > 1, p* > 1. 
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Fig. 8. 

Y~'I wl~ ° 

ql + -2" f ,  i 

he/a, ' 

q l ~  i 1 o[ 'Pl ~ Pi, v I x 

Case where a>O,/3>0 and O<q*<l, 0<0"< 1. 

Case D. See Fig. 6. In this case, 

( a > O , O < q , < l ,  fl<O,O<p,<l)C=>(an>a21, btt < b12~ 
\ a 2 2 >  a12, b22 < b21 ]" 

There is a unique solution of W~=0, W2--0, which tends to (p*, q*) as 
/x, A -~ 0. In order to study the local stability properties of (/3, g/), we consider 
the Jacobian of W~, W2. For convenience, let A = it. It holds that 

OoWI(pCA),qCA),A)/O p oW, CPCA),qCA),A)/Oq] 
J = W2(p(A), q(A), A)/Op OW2(p(A), q(A), A)/oqm 

[o w , ( p ( ,  ), q(A ), A )lop 
O(A 2) + L0 W2(PCA), q(A), ,X)/Op 

fr 02WICP(A), qCA), A/OA Op 
+ Z ~Lo=w2cp(~ ), q(A), A)/OA Op 

\ 7 ] \ -0 -+£]  \Op Oq/kOA/ 
x {o.'r,w,,]{Op,+(o2W2,](Oq,) 

. \~p2 ]\--~] \OpOq/kOA] 

OWt(pCA ), q(X), A )/Oq] 
O W2(PCA ), q(A), A )/OqJ x=o 

O2W~(p(A ), q(A), A)/OZ Oq] 
O2W2Cp(A ), qCh ), A)/OA Oq] , = o  

oq op]\oA] 

op Oq]kaX] 

(o w, lfoqll 
oq 2 / ~ o * / l ~  

(ewq(oq'~ll 
\ Oq + ]\OA]JJ~=o 

(13) 

Since W~(p(A), q(A), A)--= O, we also have the relations 

(0 Wl/ Op )(Op / OA ) + (0 W~/ Oq)(Oq/ OA ) + 0 W1/ OA ~- O, 

(0 Wz/Op)(Op/OA ) + (0 W2/Oq)(Oq/OA ) + 0 Wz/OA ~- O. 

(14a) 

(lgb) 
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U s i n g  the  f ac t  t h a t  p ( 0 ) = p * ,  q ( 0 ) =  q*,  (13) a n d  (14) b e c o m e  

[OWl/Op OWJOq] 
J = l.OW2/Op OW2/OqJ 

= [flq.(Ol_q. ) o~(p*(~ - p * ) ]  

[-2[ ( a2:~- a-,,)q* + l - a=] 0 ] 
+ 3` 0 - 2 [ ( b 2 2 -  b ,2)p* + 1 - b = ) ]  

0 p*2(all - a12) + (1 - p * ) 2 ( a = -  a21) 1 
+3. {[q.2(bn_b2,,)+(l_q.)g(b=_b12) 0 .d  

-2o~ + [ - 2 o ~  [Oq(O)/OA]}+O(3`), +[;-2~] [°p(O)/ox] L-2/3 ;? (15) 
w h e r e  

0 o,,.(,-,,.,1ro,,(o,,o,,7 
bq*(1-q*) Oj[oq(O)/oaJ 

r P*2[(a' l  - a,Oq* + a,~2-1][1 - p * ] 2 [ ( a = -  a21)q* + t - a2_.)l ] 

+ I. q * 2 [ ( b .  - b 2 0 p *  + b2, - 1] + (1 - q*)2[(b22 - b~2)p* + 1 - b = ) ] J  

T h u s ,  t he  J a c o b i a n  is e q u a l  to 

f l q * ( 1 - q * )  + ~ 2  - / z 2 j  

w h e r e  

/ ~  = [(a22 - a21)q* + (1 - a22)][2 + (1 - 2p*)2/p*(1 - p * ) ]  > 0, 

/*2 = [ ( b 2 2 -  b~2)p* + (1 - b = ) ] [ 2  + (1 - 2 q * ) 2 / q * ( l  - q* ) ]  > 0, 

0"~ = - (ce/fi) {(1 - 2p*) (1  - 2q*)/[q*(1 - q*)]} 

x [ ( b =  - b12)p* + 1 - b22] + p * 2 [ a l l  - a~2] + (1 - p*)2[a22 - a2~J, 

o'~ = - (oL / /3 )  {(1 - 2p*)(1 - 2q*)/[p*(1 - p*)} 

x [ ( a =  - a21)q* + 1 - a = ]  + q*2(b~1 - b2~) + (1 - q * ) 2 [ b 2 2 -  bt,_], 

O~ m. a l  1 .-b a 2 2 -  a12 -- a21 

/3 = b n  + b = -  b 1 2 -  b21. 
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The eigenvalues of (17) are 

-x[0,, +f,2)/21 
+ {oe/3 + X (o/o'2 + 3o',) + A 2[(/z, - /x2)/2] 2} + o(A). (18) 

Thus, in order that p(A), q(a) be locally stable for a small, we need 

a/3 < 0, 

in which case the eigenvalues are complex with real part - a  (/~ +/*2)/2 + 
o (a )  and imaginary part j (x/( lat3J)+O(a)) .  For a sufficiently small, the 
solutions of  (10) will spiral toward p(a  ), q(;t ). The condition that ;t is small 
guarantees convergence, but makes it very slow. Actually, if ;t =/z = 0, then 
the solutions of (10) are the closed curves 

G(x, y) = Xb2'-ba(1 -X)b '2 -b"y%2-a '2 (1  --y) a''-a2' = const, 

which are closely followed by the solution of (10) as ;t,/x + 0. 
The above analysis proves the following lemma. 

Lemma2.1. L e t a 3  <0 .Then ,  forA sufficiently small, A >0 ,p(A) ,  q(A) 
is a locally asymptotic stable equilibrium point of  (10). 

Let us formalize the whole preceding discussion in the following 
theorem. 

Theorem 2.2. Let 1 > ao, b o. The following results hold: 

(i) If W~ = 0, W2 = 0 have a unique intersection, then it is a globally 
asymptotically stable equilibrium of (10) in (0, I) x (0, 1). 

(ii) If  a , / ,  are sufficiently small, then the differential equation (10) 
has as many equilibrium points as the solutions of the game (1); and, as 
A ~ 0 , / ,  + 0, these equilibrium points tend to the solutions of  the game (1). 

(iii) If the game (1) has three solutions, two pure and one mixed, 
then the equilibrium points of  (10) which tend to the pure solutions are 
locally asymptotically stable, whereas the equilibrium point of (10) which 
tends to the mixed solution is unstable. 

(iv) If  the game has a unique solution that is mixed, then the differen- 
tial equation (10) has a unique equilibrium point, for A,/x sufficiently small, 
which tends to the mixed solution of  (1) as A,I,-+0 and to which all 
trajectories of (10) spiral asymptotically in (0, 1)x (0, 1). The speed of 
convergence decreases linearly in A,/~ as A,/z ~0 ;  see (18). 

(v) If  the game has a unique solution that is pure, then the differential 
equation has a unique equilibrium point, for A,/, sufficiently small, which 
tends to the pure solution as A, t*-+0 and to which the trajectories of  (10) 
converge asymptotically as A, I* ~ 0. The speed of convergence is given by 
the eigenvalues of  (12). 
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3. The M x N Matrix Case 

The purpose of  this section is to provide some results and to delineate 
several issues associated with the M × N matrix case. Let A and B be two 
N x M  matrices with elements 0<-a~, bi~-< 1. If  the elements a~, bij are 
known, the players find x* ~ SM, y* ~ SN, 

SM = { ( x ~ , . . . , x ~ ) ' ~ R M :  xi>--O,  x l  + "  " " +  XM = t}, 

SN = { ( y ~ , . . . , y N ) ' e R  N:y~->0,) ' l+" " "+YN = 1}, 

which satisfy 

x*'Ay*>_xAy*, V x ~ S M ,  x ¢ x * ,  (19a) 

y*'Bx* >- yNx*,  Vy ~ SN, y ~ y*. (19b) 

If  the elements a~j, b o are unknown, a rationale similar to the one described 
in Section 2.1 results in the following updating scheme for player 1: 

p~(k + 1) =p~(k) + 0Al(I -p , (k ) ) ,  

pj(k+l)=p~,(k)-O,~,pj(k) ,  j ~ ,  

if  row i was chosen and success resulted, and 

p~(k + I) = p~(k) - O,~2p~(k), 

p j ( k+ l )=p j ( k ) -OA2[p i ( k ) / ( l~ I -1 ) ] ,  j e i ,  

if row i was chosen and failure resulted. 
A similar updating scheme exists for the q~(k ) , . . . ,  qN(k) of  player 2, 

with/x~,/~2, N assuming the roles of  A1, A2, M. 
It holds that 

E[p, (k  + 1) -p , ( k ) ]  l [p~(k),.  . . , PM (k) ]  
Lq~(k), , qN(k)J  

= 0A~(1 -p~(k))p~(k) ~, auqj(k ) - OAap~(k)p~(k) Y. (1 - ao )q j (k )  
J j 

- 0t~p~(k) Y. pj(k)[aj ,q~(k)+. .  "+ajNqN(k)] 
j ¢ i  

+ 0A2 E [ p j ( k ) / ( M -  1)]pj(k) 
j ~ i  

x [(1 - aj,)ql(k) + . . .  + (1 - ajN)qs(k)].  
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L e t  h 1 = 1, h 2 = h ;  let 

LPM(k) 

A -= 

a 

=Iql!k  1 
q(k) LqNik)J 

b, 

The associated differential equation [see (10)] is 

Yc, = ai(a,y - x rAy )  + [A/(M - 1)] 

f~, = y~(b,x - yVBx) + [ / z / ( g  - 1)] 

x {~ y2[1-b~x]- Ny~[1-b,x]}, 

It holds that 

(d/dt)(x~ +. . . + XM) = O, 

thus, starting with x(0), y(0) such that 

Y. x,(O) = 1, 2 y,(O) = 1, 

it will be 

2 x,(t) =-- 1, E y,(t) =- 1. 

i = l , . . . , M ,  

i = l , . . . , N .  

(d/dt)(y~ + . . .  + YN) = 0; 

(20) 

(21) 

+ 

is given by 

Jll 
J = L J21 

j l l = [ a ' Y ;  xrAy 

J121 , 
J::.l 

aM_~yO--xV Ay l  

x~(aMy -- ax y) x~(aMy -- a2y) 
x2(aMy -- aly) x2(aMy -- a2y) 

xM-l(aMy--aly) XM-I(aMy--a2y) 

• . .  xa(aMy--aM_ly) ] 
• ' '  x2(aMy--aM--ly) ] ,  

"'" x~- l (aMy-aM-ly)J  

It is also easily seen that, if x(O) E SM, y(O) ~ SN, then 

x(t)~SM, y(t)~SN, Vt>--0. 

Thus, we actually need to consider ( M - 1 ) x  ( N - 1 )  equations only. The 
Jacobian of the first M - 1 equations of (20) and of the first N - 1 equations 
of (21), with respect to x i , . . . ,  XM-1, Y l , . . . ,  YN-i, calculated at A =/z = 0, 
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x l ( a l - x r A ) L l  

J12 = x2( a2 - x T A ) L1 

XM-I( aM--I - x'r A)L1 

t 1 ~-~ [11 i1 
- - 1  - 1  - [N×(N--1)] 

J2~, J22 are given by similar formulas, where the roles of x~, a~, y, N, L 1 a r e  

assumed by Yi, bi, x, M, L2, respectively. 

Case 1. At a point (x*, y*) with 

Xl* = 1, x* . . . . .  x *  = O, 

y* = 1, y* . . . . .  y *  = 0, 

the Jacobian is given by 

J= I 
a M l  a l l  a M t - - a 2  ! 

a21 a l l  

0 

• . . a M l - - a M l , l  

o 

aM- - l , l  -- a l  I 0 r 
b~ , - bO N-_, ~ ' 

bi-l , t-  bll j 

b N l - b l  t b N l - b 2 1  • . . 

b21 - b n 

0 

which is invertible and has negative eigenvalues if 

all > a21, a31 , . . . ,  aM1, (22a) 

bll > b21, b31 . . . . .  bNl. (22b) 

We can thus conclude that, if (22) holds, then (x*,y*) is a pure Nash 
equilibrium of (19) and that, for A,/x sufficiently small, (20), (21) has an 
equilibrium point x(A,/z), y(A, ~),  by the implicit function theorem, which 
is a locally asymptotically stable equilibrium of (20), (21) and x(A,/x) ~ x*, 
y (A , / z )~y*  as A, /z~0.  

Case 2. At a point (x*, y*) where 

al y* . . . . .  amy*,  blx* . . . . .  bNX*, ~ x * =  1 , 2 y * =  1, 
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which is a mixed  solut ion o f  (19), the Jacob ian  is given by 

J =  
y*l ( bl - y*r B)L2 

yN--l(bN--I-y*'rB)L21 

x*(al - x*VA)L1 

X*-~(aM-.I -- x*VA)L1 

I f  it is singular,  then there  exist ( w a , . . . ,  wM), ( v l , . . . ,  vN) such that  

x*( al - x V A )w = x* (a2 - x*'rA) w 

. . . . .  x * - l ( a ~ - i  - x*rA)w = 0, (23a) 

wl +"  • • + WM = 0, (23b) 

( W l ,  . . . , W M _ I )  ~ ( 0 , . . .  , 0 ) ,  (23c) 

y*l ( bl - Y * r  B )v = y*( b2-  y*r B )v 

. . . . .  y*-~(bu-~ - y * r B ) v  = 0, (24a) 

vt +"  " • + vN = 0, (24b) 

( v , , . . . ,  v~¢_,) # ( 0 , . . . ,  0). (24c) 

I f  x* > 0 , . . . ,  x*~ > 0, (23) yields 

N 

alw = a2w . . . . .  aM-lW = E x*i alw = (1 -x*M)alw+ x~aMw, 
i=1 

and  thus 

a M W  = a l  Wo 

We conclude  that,  if  Xl* > 0 , . . . ,  x *  > 0, (23) is equivalent  to 

a l  w : a 2 w  = " . . = a M  w ,  

W I  -~- . , . -~- W M  = O,  

( w l  . . . .  , wM_0 ~ ( 0 , . . . ,  0); 

and similarly,  i f  y*  > 0 , . . . ,  y *  > 0, (24) is equivalent  to 

bl v = b2v . . . . .  bNv, 

V l + , - . + v N = O  ' 

(Vi , .  • . ,  VN-,) # ( 0 , . . . ,  0). 
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I f  such w and v exist, and if x* > 0, y* > 0 [i.e., (x*, y*) is strictly mixed], 
then (x*+ev, y*+6w) are also strictly mixed solutions of  (19) for e, 6 
sufficiently small. We thus conclude that, if (x*, y*), with x* > 0, y* > 0, is 
the unique strictly mixed solution of (19), then, for A,/x sufficiently small, 
(20), (27) has an equilibrium point x(A,/x), y(A,/x), by the implicit function 
theorem, with x(A,/x)-~x*, y(A,/~)-+y*, as A, /z~0 .  The local stability 
properties of  this point can be determined by a process analogous to that 
of  Section 2.1, but the notational burden is heavy. 

It should be evident by now that the study of  the differential equation 
(20), (21) should address the following issues. 

(i) The equilibrium points of (20), (21). In Cases 1 and 2, the 
conditions are local and pertain to either pure strategies where strict 
inequality holds in (19) or strictly mixed strategies which are unique. There 
are, of course, many other cases. 

(ii) The local stability properties of these equilibria. In case of 
nonuniqueness of equilibria, several will be unstable and several stable as 
the analysis of  the 2 x 2 case indicates. In the 2 x 2 case, it turned out that 
the equilibria which are close to the pre solutions are stable, whereas those 
which are close to the mixed ones are stable only if they are unique and 
no pure ones exist. Whether this generalizes to the M x N case is not clear. 

(iii) The structure of  the Jacobian in Case 2, as welt as the analysis 
of  the 2 x 2 case, indicates that the solution of (20), (21) will spiral toward 
the equilibrium, if a unique strictly mixed equilibrium exists. Further analy- 
sis is needed to verify that. 

(iv) The possibility of  limit cycles was easily ruled out in the 2 x 2 
case, by employing the criterion of Bendixson. There is no generalization 
of  this criterion for differential equations with dimension higher than two. 
Thus, the examination of  the possibility of  existence of  limit cycles or even 
of  chaotic behavior remains an open issue for the M x N case. 

4. Conclusions 

A learning algorithm for matrix Nash games where the matrices are 
unknown to both players was introduced and studied. A relatively complete 
analysis was presented for the 2 x 2 case. Important issues pertaining to the 
M x N case were also discussed. It is felt that further research is needed 
for the M x N case. 

Further research related to the subject matter of  this paper may include 
the following topics. 

(i) In the model considered, all the parameters were unknown to 
both players. It would be reasonable to assume that player 1 knows matrix 
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A but not B, whereas player 2 knows B but not A. Although the scheme 
examined here can be employed,  other schemes which are better should be 
sought. By better, we mean schemes that converge faster and /o r  require 
less computat ional  effort. 

(ii) The many-player  case can be considered. Here, problems similar 
to those delineated in Section 3 for the M x N two-player case will surface, 
since the associated differential equation will have dimension greater than 
two. 

(iii) Instead of the Nash equilibrium concept, the Stackelberg equi- 
librium concept can be considered. The updating formulas for p(k) ,  q(k) 
should then capture the rationale of the Stackelberg concept. 

(iv) Although the p (k) 's ,  q (k) 's  are'in the limit close to the equilibrium 
strategies of  the static game, they are not necessarily in near equilibrium 
for the constructed dynamic one. It would be important to find rules of  
updating the p(k) ' s ,  q(k) 's ,  so that they are in near equilibrium for the 
constructed dynamic game, whereas their limits are close to some Pareto 
solution of  the static one; see Ref. 4. 

(v) Finally, one may consider a finite state, finite action dynamic, 
infinite horizon, Nash or Stackelberg game with average or discounted costs, 
where the cost and transition matrix parameters are unknown to the players. 
Such problems were examined in Ref. 1 for the team case. 
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