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Two players. P and E. not knowing each others’ positions. move in a domain. 
Player P has a searchlight which he can flash at will and which then illuminates a 
certain area around P. The game ends when E is caught within this area, provided 
it is illuminated. If E is not in the illuminated area, then P has disclosed his position 
to E since E can observe the searchlight. if it is switched on, from everywhere. P 
wants to maximize and E wants to minimize the capture chance over a given time 
horizon. This paper provides a dynamic programming formulation of this game, 
which in its turn yields optimal strategies for the players. i.e., how to move and for 
P. in addition, at which time instants to flash. The game is considered on a finite 
state space and in discrete time. ( 1988 Academic Press. Inc 

1. INTRODUCTION AND PROBLEM STATEMENT 

The game to be discussed belongs to the class of two person zero-sum 
dynamic games of the pursuit-vasion type. Two players, called P and E, 
move in a certain domain and are unaware of each others’ positions unless 
P flashes a searchlight which illuminates an area of known shape around 
this player and which discloses P’s position to E. Termination of the game 
occurs if P flashes his searchlight and E finds himself trapped within the 
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area illuminated. Flashing the searchlight has two aspects; it is the only 
way for P to terminate the game and it discloses P’s position to E. This 
latter aspect may be used by E in order to minimize the capture chance 
later on during the game (if he is not captured immediately) since P may 
flash again. 

It is easy to understand that both players will use probabilistic strategies 
for their dynamic behaviour in the domain since a pure strategy by one 
player would certainly lead to a loss for him (if initially the players know 
each others’ positions and if P would have an optimal pure strategy, E can 
calculate this strategy also and therefore avoid P; if E would use an 
optimal pure strategy, then P can calculate this strategy also and certainly 
capture E if the time horizon is sufficiently long). Conceptually it is very 
difficult to define mixed or behavioural strategies for games which proceed 
continuously in time. Therefore the problem has been investigated for a 
finite state space, i.e., the players move in a network with a finite number of 
nodes, and for the discrete time case. It is possible that both players occupy 
the same node in the network at the same time without realizing this. Only 
if P flashes at such an instant do the players become aware of this 
coincidence. 

In this paper we confine ourselves to a specific network; the nodes are 
positioned on the circumference of a circle and each node has two adjacent 
nodes; one to the right and one to the left. During each time step each 
player can stay where he is, move one node to the left or one to the right. 
Conceptually, generalizations to other networks are not difficult; the 
notation, however, would become more cumbersome. At each time step P 
has the option whether to flash or not. The ‘illuminated area consists of 
three nodes; the node at which P is situated, the one to the left and the one 
to the right. Given a finite time horizon, P wants to maximize and E wants 
to minimize the capture probability during this time interval. 

A practical motivation for this game might be the following. E is a 
smuggler who wants to steer his boat to the shore and P is a police boat. 
For obvious reasons E wants to avoid P and therefore he performs his 
practices only during the night and that is exactly why the police boat will 
use a searchlight. 

A variation of this game has been described in [ 11. In [l] both players 
had a searchlight and both tried to capture the other player before they 
were captured themselves. A serious limiation of [l] was that both players 
could use their searchlights only once. Finding the optimal strategies boiled 
down to the solution of a hierarchical linear programming problem, i.e., 
the outcome of one linear programming problem was used as an entry to 
another linear programming problem. It was shown that the same solution 
method could be used for a different problem where P had two flashes at 
his disposal and E none. The current paper can thus be viewed as a 
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generalization of this latter problem. In order to find the solution one must 
now solve a series of hierarchical nonlinear programming problems which 
are a consequence of the dynamic programming approach. 

2. THE BASIC GAME: P HAS ONE FLASH AT HIS DISPOSAL 

The basic game which is a building block for the general game is for- 
mulated as follows. Initially P and E know each others’ positions on the 
circle; P is at node p and E is at node e; p, eE (1, . . . . n}, where n is the 
number of nodes on the circumference of the circle. The numbering of the 
nodes is in chronological order; node n is again adjacent to node 1. Player 
P can use his searchlight only once during the time interval t = 1, 
t = 2, .,.) t = r, the final time T is fixed and known to both players. Once 
the time proceeds the players do not get to know about their opponent’s 
new positions (unless P flashes). It has been shown in [l] that the optimal 
strategies of the basic game can be found from the matrix game 

The meaning of the various symbols introduced is as follows. The symbol ’ 
denotes transpose. At each instant of time E can choose from three options 
(move to one of the two adjacent nodes or stay where he is) and therefore 
his number of pure strategies is 3 T. Each component of the vector y, 
denotes the probability with respect to which such a pure strategy will be 
chosen. The set S,r is the simplex to which the 3’-vector y, belongs; all 
components are nonnegative and add up to one. The components of the 
vector xp indicate P’s pure strategies, determined by when and where to 
flash. Vector xp has d, components. For T< [n/2] it has been shown in 
[ 1 ] that d, = T2 + 2T. The set S,, denotes the simplex from which xp must 
be chosen. The elements of the matrix Ap,e,T are either one (if for the 
particular strategies capture takes place) or zero (if no capture takes place). 
The first index of A refers to P’s initial position, the second index to E’s 
initial position, and the third index refers to the number of time steps 
during which the flash will take place. 

It has been shown in [l] that, if the saddle-point value of (1) is 
indicated by Jp,‘,, T, 

Jp,~.,~Jp.e,2~~~~~Jp,e,~n;2,=Jp.~.~ni21+,=Jp,e.~n,21+2=~~~~ 

p,eE (1, . . . . n>. 

Therefore one can restrict oneself to a time horizon of [n/2] steps in order 
to solve the game. The idea behind the proof is that in [n/2] steps each 
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player can reach any point of the circle, with an arbitrary underlying 
probability distribution. 

For later reference the matrix Ai,,,T is introduced which has the same 
size as matrix A,,., T and is constructed in the same way except for the fact 
that for A;,,, T capture is defined to take place only if the positions of P and 
E coincide during the flash (i.e., the illuminated area is P’s position only 
and does not include the adjacent nodes). 

Consider the following generalization of the basic game in that at t = 0 E 
still knows where P is (at node p), but P only knows the probability dis- 
tribution of E’s position. The probability for E to be (at t = 0) at node e is 
Li,. If L’ = (11, ) . ..) u,), then UE S,. The vector u is assumed to be known to 
both P and E. Of course E knows his own position at t = 0. This game can 
again be formulated as a matrix game 

(2) 

THEOREM 1. The minmax problem (2) can he solved by means of the 
following linear programming problem: 

(.i,;, .‘., Pa 

3r 

C (jl)j= 5 (J,)j? 

/=I ,=l 

1 < (1, 1, . . . . 1); 

i=2 n; , ..., 

(Pi!, 3 0, i= 1 I ..., n;j= 1, 2, . . . . 3T; 

max $ (Y,),. 
J=l 

Proof: Obviously E wants to minimize m E R, subject to 

(Y; 3 . . . . YL) 

(3) 

dm(1, 1, . . . . l), Ye E S3T9 e=l n. , ..., 
(4) 

The index of the largest component of the vector on the left-hand side of 
(4) determines the optimal x,-strategy for P; P will use the pure strategy 
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which corresponds to this index and the outcome of the game equals the 
value of this largest component. Player E wants to minimize this largest 
component. By defining jC =)1,/m, the statement of the theorem is readily 
obtained. A tacit assumption made in this proof is that the minimizing m is 
positive. This is not a serious restriction, however; see for instance [Z] for 
the modification required in this case. 1 

The maximal value of the criterion in the linear programming problem 
above equals the inverse of the saddle-point value of (2) which is denoted 
byfp,,,.; 

.f,.,,,(t’) = min 
I’,,. e = I. II 

max 1 zl,,~$A~,~ ,,,. Y/, , 
Yp L (, 1 

with t = T. The first index off‘refers to P’s initial position, the second index 
to the number of flashes available to P, and the third index to the time 
horizon. The expected outcome of the game for P is fp.,,T(v). The outcome 
for E is ~,f’ A,,,, Txr, where e denotes E’s initial position and the starred 
vectors are the minmax arguments of (5). 

THEOREM 2. The function jj,, ,, J c ), u E S,, , us u function of v, is convex. 

Proqf If one solves for the minimal j,,-values in (2) expressing them as 
functions of x,,, the result can be written as 

which is symbolically written as 

For each s the function C ZI,~~.~ is linear with respect to v. The maximum 
of a set of linear functions, indexed by x, is obviously convex. 1 

EXAMPLE. f (r ) = min,., 1 ~? max, [v,y’,A,x+v~y~A~~], where 



SEARCHLIGHT GAME 471 

Solving for the minimizing y,, , J,2,-values as functions of x and substituting 
those into f( v), one obtains 

1 
-y, > O<s,<$; 

minCc,?,;A,s+(l-~~,)?,~A,.u]= u,+.Y,-22/1,.~,, $6x, <g; 
L’,. 12 

(1 -X,)(4-30,), ;<x, 6 1. 

For each X, the functions on the right-hand side are linear in u. For 
0 d 11, d 4 the maximum with respect to X, is achieved for x, = : which leads 
to f’(~) = $ - $,I,. For i d 11, < 1 the maximum is achieved for x = t which 
leads to ,f(o) = 4. The function f(,l) is piecewise linear, continuous, and 
convex. 

If initially the players are placed, independently of each other, on the 
circumference of the circle according to the uniform distribution, then 
0,=1/n, i=l,..., II. There is no unique time instant at which P should 
switch on his searchlight. In fact, he can flash at any time instant 
t E { 1, . . . . T), since at each t the players are still distributed according to a 
uniform distribution. The capture chance therefore equals 3/n, where 3 is 
the size of the illuminated area and n the size of the state space. Hence 

fp,,,r(l/n ,..., l/n)= l/n min max =3/n. 
.I;,. <’ = I. n Yp 

&$A,,,+, 
i, 1 

3. P MUST FLASH Two TIMES 

As in the previous section, two different games will be distinguished. 
First the case is considered where initially the players are situated on the 
circle according to a uniform distribution, independently of each other. In 
the second case this is not true; there initially P is at position p and E is 
distributed according to the probability vector UES,. Both p and u are 
known to the players, but only E knows his own position e. In both cases it 
is assumed that P must flash two times, and not that P may flash two times 
maximally. The latter case will be dealt with in Section 5. 

Case 1. It is no restriction to assume that P flashes for the first time at 
t = 1, at his position indicated by p. The nodes p - 1, p, and p + 1 are 
illuminated and the capture chance is 3/n. If E is not caught at the first 
flash, then P assumes a uniform distribution for E on the remaining nodes 
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1 , . . . . p - 2, p + 2, . . . . n, each with probability l/(n - 3). The remaining game 
to be solved by the players is 

min max c Y~,,,,T ~-yp 7 .F, . . .Ip ? cp e=l...,p-2 1 Y/7 + 2, .., ?‘n 
e=p+2. ..n 

the outcome of which can be written as 

where the zeroes are the (p - 1 )st, pth, and (p + 1)st arguments. The 
summation e = 1 , . . . . p - 2, p + 2, . . . . n used in the above formula only makes 
sense, strictly speaking, for p = 3, . . . . n - 2. What is meant is 

c ’ 
c=l. ..n 

rap-I,p.+lmodulot~ 

which makes sense for any p E (1, . . . . n). This convention is also used in the 
remainder of the paper. The total capture probability is 

which is independent of p, due to the symmetry of the nodes on the circle 
and due to the initial uniform distributions. 

Case 2. Since P must flash twice, the first flash must take place at 
t E ( 1, . . . . T- 11. This flash can take place at t = T- 1 at the latest. 
Therefore we must, for E, consider 3Tp ’ different pure strategies and this 
for each of the initial positions ( 1, . . . . n ). It is assumed that E may play a 
mixed strategy and the probabilities for the n * 3’-’ different strategies are 
indicated by 

Ye:m,. .mr-,; YY = ( )‘e; L. L 5 L’e: L. ., L. M 1 I’e; L, .., L, R 3 ..) ?.‘Y; R. . . . . R) E &‘- ‘. 

(6) 

The index m, describes E’s move at time t (Left, Middle, or Right node). 
Index e is E’s position at t = 0. 

P’s probabilities for possible strategies up to and including the first flash 
are enumerated according to x~,~,,, where the first index refers to P’s initial 
node (at t = 0), the second index to the node at which P is situated when 
he switches on the searchlight, and the third index j E { 1, . . . . T- 1) denotes 
the time at which this occurs. We write 

(7) 
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The quantity u’~,~,, is introduced to denote the probability that E will be at 
node e at time I conditioned on P’s knowledge. Therefore u’~,~,, equals the 
sum of a subset of elements out of { yiZm,, ,,,, mT-, , i = 1, . . . . n; mj = L, A4 
or R}, divided by n. Obviously 

c bl’p. P. / = 1, I= 1, . . . . T- 1; (8) 
P = I. n 

where vi corresponds to E’s initial distribution u = (ur , . . . . a,), AZ , , was 
introduced in Section 2, and where upI I denotes the .x,-vector v&h all 
elements being zero except for the element indexed by p, i, I (see (7)), which 
equals one. 

The capture chance when P flashes for the first time, which could be any 
time instant between 1 and T- 1, is 

,$, piY:A 
T-l n 

p.r.T-l-~p= c c .Yp.y.,(M’p,y~,.I+M.p,y.,+U.p,y+,,I). (10) 
/=I y=l 

If E is not caught during the first flash, the probability that E will be 
caught during the second flash is, provided both P and E play optimally 
from the time instant of the first flash (which took place at time I and 
node q) onwards, is 

u'P.I./ w P.Y-291 

,= I ,..., y-2,r=y+2 . . n M’p,z.l ’ “” same denominator ’ 

‘t’p.y+2./ U’p.n.1 

> ’ same denominator ’ ..” same denominator . (11) 

The total capture probability, with respect to both flashes, is 
T--I n 

( 
T-l ,1 

+ l- c c ~~P.Y./(Wp,y~I.,+~‘p,y.l+~‘p.y+*.,) 
/=l y=l > 

( 

T-1 ,I 

x cc 
xp’y”f4’1’Tp’ /=I q=, ( TiCi=1 ,.., q-:ll::2 ,,,,,* U’p,j,,’ 

‘*‘p y ~ 2 / , 3 

“” same denominator’ 0, 0, 0, 

M’p.y+2./ M’p n I 9 1 

’ same denominator ’ “” same denominator ’ (12) 
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This expression must be maximized with respect to x,, and minimized with 
respect to I’, , . . . . .rn and the resulting outcome is denoted by 

,r,,,,.(~)= min max (12). 
II. ..I’,, VP 

(13) 

Expression ( 13) is the first step of the dynamic programming approach, 
working backwards in time from one to two flashes. The value function is 
indicated by the function ,A the state for the dynamic programming 
approach is (p, ~1). In order to solve (13) the total time horizon must be 
known, however, as well as the number of flashes. The latter quantities can 
be viewed as parameters of the system under consideration. Equation ( 12) 
can be simplified slightly to 

! 
T-l II 

x ,:, ,T, C,=l ,....y 

Xfq.l.T-,(H.p .,.,, . . . . M‘p,q-2,/, 09 0, 0, I(‘p,q + 2., , . . . . wp,nJ I). (14) 

An important question is whether the saddle point as expressed by (13) 
does exist. We would like to show that (12), or (14), is concave in x,, and 
convex in (I , . . . . . y,,). Though this is very likely to be true-the results of 
the following two lemma’s point already in this direction-a general proof 
is not currently available. 

LEMMA 1. ET~pre.wion ( 12 ) is convex in ( y , , . . . . y, ) if 

(i) x, is a pure strategy: 

(ii) .Y ,.,,,=l/(n*(T-1)) e=l,..., n; t=l,..., T-l. 

Proof (i) The first term in ( 12) is linear in u’~,~,, and therefore linear in 
(y,, . . . . yn). Hence only the convexity of the second term still needs to be 
shown. If all Y . ,,,,rterms are zero except one, say x,,,,~, then this second 
term becomes 

(l-i)1 r,t- I.m - “‘r.,,.,n - Lt’r..s+ hl) 

Xf*.l.T-“r ( C,=l. .,,2’,“:2 . ..., 111’,,,,,,‘“’ > 

=.f,.,.T- m(“.,.,.mr-., u’,,., 2.m. O, 0. 0. U’,,,+~,,,I, . . . . bt’,,,.,,,) 
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which is convex in its arguments (see Theorem 2). Since the arguments are 
linear in the components of (y,, . . . . ~a,), f,, ,, TP m is also convex in (y,, . . . . I’,) 
which concludes part (i) of the lemma. 

(ii) As in part (i), the first term in (12) is linear in M’~,~./ and only 
the convexity of the second term still needs to be shown. With 
.Y,,~,,= l/(n * (T- 1)) this second term becomes 

Because of the symmetry of the nodes along the circle circumference, and 
because of the definition off,, ,, f in (5) 

where the L’,~ are nonnegative coefficients. Since w’~,~., is linear in the 
elements of ( Jsl, . . . . .I’,,), also with nonnegative coefftcients, it now easily 
follows that 

i .f;.,..-A “. ) 
y=l 

is convex in the coefftcients of (.I’, , . . . . y,,), which proves 
the lemma. B 

LEMM 2. E,upression ( 12) is linear, and therefore 
H‘p. (1. I = (l/n), e = 1, . . . . n. 

the second part of 

concave, in xp if 

Proof: The first term in (12) is linear in I~,~,,. The second term can be 
written as 

cc > 1-t 7f’ Ii Xp.qJ) 
/= 1 y=l 

( 

T-1 n 

x ,;, c f *~mLl y,I.T-I -A 
l/=1 ( n-3 

1 1 
- 0, 0, 0, - 

1 
‘- n - 3 ’ 

- n - 3 ’ -” n - 3 >> 

= (1 -i)( Y i x,.,.,r,.l~T-,)~ /=I y-1 

which proves the lemma. l 
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It must be remarked that it is may be not possible to choose (y, , . . . . y,) 
in such a way that We,.., = l/n for all indices p, e, 1. However, whenever it is 
possible, Lemma 2 shows the concavity. Also, 

f,,,,,-, (-& > ...? -&, 0, 0, 0, -&, . . . . '> n-3 

with the zeroes as the (q - 1 )st, q th, and (q + 1)st elements, is independent 
of q, but this fact is not needed in the proof of the lemma. 

It may very well be possible that the moment of the first flash is not a 
random variable, but instead a deterministic one. If this could be shown 
many formulas above could be simplified since a mixing with respect to 
time (the running index I) would not be necessary anymore. 

4. THE GENERAL CASE: P MUST FLASH K TIMES 

Initially P is at node p and E is distributed according to a probability 
vector u E S,. Both p and u are known to the players, as well as the number 
of flashes K and the time horizon T 2 K. Player P also knows his own 
initial position e. 

It follows directly from Section 3 that fp,Jo), the saddle-point value if 
there are t steps and k flashes to go and the initial situations of P and E are 
indicated by p and u, respectively, is recursively determined by increasing k, 

W p.qi2.1 WP,“,I 

’ same denominator ’ “” same denominator ’ 

t = k, . . . . T; p = 1, . . . . n, 
where 

” 

W p.r.1 = 1 U,y:A~,i,r~/~1Up.r./. 
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It is conjectured that for given n, T, p, and u, f,,,..(u), as a function of K, 
has only one maximum. If K is close to zero or K is close to T, fp.K, T( u) will 
be small. For K N T/n or slightly greater, f&. r(u), as a function of K, will 
be maximal. 

It is also conjectured that the expression between square brackets in (15) 
is convex in (J, , . . . . y,,) and concave in I~. In addition it is conjectured that 
&JL~) is convex in u. If one would assume the convexity off& ,,,(u), 
p = 1, . . . . n, t = k - 1) . ..) T, then the reasoning of Lemmas 1 and 2 applies in 
order to show that the above-mentioned expression in square brackets is 
indeed convex/concave in some specific cases. 

5. P HAS K FLASHES AT HIS DISPOSAL 

The problem to be considered is the same as in Section 4, with one 
exception and that is that P does not have to flash K times; K only denotes 
the maximum number of flashes that K has at his disposal. If the saddle- 
point value is now indicated by g,,,, r(u), p rovided it exists, it is recursively 
determined by 

u’p. I.1 
xi =,,.., yp2,i=q+?. .,,,, ,,ll-nLl”“‘same~~~~~(nator 

M’p.y+ 2./ w’P. n. I 

’ same denominator ’ “” same denominator ’ 

t = k, . . . . T; p = 1, . . . . n, 
where now 

” 

~‘p,r./= c w:A:,,.,~p,r,~~ 
I= I 

0, 0, 0, 

(16) 

The essential difference of (16) as compared to (15) is that the next flash 
may take place at the last time instant t = T and therefore the size of the 
strategy spaces must be adjusted accordingly. As long as E is not caught, 
k < K and t < T, there will always be another flash since that yields another 
nonnegative probability of capture. 
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6. CONCLUSIONS 

We have discussed a discrete-time game with dynamic information in a 
finite state-space. For reasons of simplicity we have considered the state- 
space consisting of n elements which are positioned around the circum- 
ference of a circle. Extensions of the state-space to more general networks 
of nodes are possible and the techniques developed in this paper seem to be 
extendable to those more general (finite) state-spaces, though the notation 
will become more complicated. Two players move in the state-space, in 
discrete time, and one of the players, P, can terminate the game by 
catching the other player, E, in his searchlight. Switching on the 
searchlight, however, also discloses P’s position to E; who, if not caught at 
the same moment, can use this information during the remainder of the 
game. 

Dynamic programming equations have been derived for this game. The 
“state” for these equations turns out to be P’s initial position, the dis- 
tribution of E with respect to the nodes as viewed by P, the number of 
flashes still available, and the number of time steps to go. One step in the 
dynamic programming formulation corresponds to going from one time 
instant at which the light was switched on to the next time instant at which 
the light was switched on. These time instants are in principle stochastic 
events, determined by the dynamic programming equations. The total time 
duration of the game is a parameter in the dynamic programming 
equations. This is not standard since one does not simply work backward 
in time, but one has to know the initial time. Existence questions as to 
whether a solution to the dynamic programming equations exists have 
been discussed. The proof for a general existence seems to be difficult and 
only some limited results were shown to hold true. 

A possible extension of the game discussed is the following one. Both 
players have a flashlight at their disposal which they may switch on any 
moment they like. Each player tries to capture the other one before he is 
caught himself. This would be a generalization of the game considered in 
[ 11 where each player could switch on his searchlight only once. 
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