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A Markov Chain Game with Dynamic Information 1 

G .  J. O L S D E R  2 A N D  G. P. P A P A V A S S I L O P O U L O S  3 

Communicated by Y. C. Ho 

Abstract. Two players, not knowing each other's position, move in a 
domain and can flash a searchlight. The game terminates when one 
player is caught within the area illuminated by the flash of the other. 
However, if this first player is not in this area, then the other player 
has disclosed his position to the former one, who may be able to exploit 
this information. The game is considered on a finite state space and in 
discrete time. 

Key Words. Markov games, zero-sum games, incomplete information, 
pursuit-evasion, mixed strategies. 

1. Introduction 

The game to be discussed belongs to the class of  two-person zero-sum 
games. The players move in a certain d o m a i n  and  are unaware  of  each 
other 's  posi t ions unless a player  flashes a searchlight that i l luminates  an 

area of known  shape a round  this player. By flashing his searchlight, a player  

discloses his posi t ion to the other player,  wherever the players are. Termina-  
t ion of  the game can occur  only  if a player  flashes his searchlight a nd  the 

other  player  finds himself  t rapped within the area i l luminated.  Both players 
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want to catch the other player in their searchlight before they are caught 
themselves. Therefore, flashing has two aspects; in order for a player to 
win, he must flash; if, however, during such a flash the other player is not 
caught, the flashing player is in a more vulnerable position, because he has 
betrayed his location to the other player. The idea of  this game is described 
in Ref. 1. 

The game described above can be interpreted as a duel, such as for 
instance described in Ref. 2. In a duel, two combatants are each armed 
with a certain number of  bullets (the flashes in our case) and slowly advance 
toward each other. If a combatant fires a bullet, the probability of success 
(i.e., hitting the opponent) increases if the distance between the two com- 
batants decreases. If  the bullets are noisy (i.e., a combatant hears the firing 
of  a bullet by his opponent)  and if this combatant is not hit, he can use 
this information (fewer bullets left with the opponent)  to his advantage. 
Such information is called dynamic, since it depends on the actions of  the 
players. A feature that makes the game in this paper different is that, in 
addition to the flashing times, the strategies that decide on their own motion 
must also be determined. 

It is easy to understand that both players will exploit probabilistic 
strategies, since a pure optimal strategy by one player would certainly lead 
to a loss for him if the other player would know this optimal strategy. 
Conceptually, it is very complicated to define mixed and /o r  behavioral 
strategies for games that proceed continuously in time (see Ref. 3, Section 
5.4). Therefore, the problem has been investigated for a finite state space 
(i.e., the players move on a network with a finite number of nodes) and for 
the discrete-time case. 

Thus, the realm of  Markov chain games has been entered (for a survey, 
see Ref. 4). For such games, both a normal and an extensive form description 
can be given; they are equivalent and the former is more amenable for 
obtaining numerical results. See also Ref. 5, where a specific Markov chain 
game has been solved and where the players use mixed strategies. A slightly 
different pursuit evasion game is given in Ref. 6. Both papers deal with a 
maneuvering evader, while being fired upon by the pursuer. 

The problem treated in this paper bears also some relationship to the 
so-called bomber-versus-battleship game, as originally described in Ref. 7. 
In Ref. 6, more references with respect to this game are given. In this game, 
a battleship is floating around on a set of integers, albeit to take one step 
in either direction in each time unit. The sole aim of the battleship is to 
avoid a bomber, equipped with only one bomb, which is hovering over it, 
but suffers from the fact that the bomb takes two time units to drop. Dropping 
the bomb (when and where) coincides with switching on the searchlight in 
the current game. 
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Explicit results have been obtained when the players are confined to 
the circumference of a circle and, during each time step, each player can 
either move to one of the two adjacent nodes or stay where he is. Specific 
results depend on the number of nodes and the shape of the area illuminated 
(which may be different for the two players). In essence, finding the saddle- 
point strategies boils down to the solution of  a two-level linear programming 
problem. 

In Section 2, the exact problem statement will be given. In the first 
part of Section 3, a simplified version of  the game is considered; the two 
players know each other's initial positions and only one player can flash 
(once). Here, it will be shown that mixed and behavioral strategies coincide. 
In the second part of  Section 3, there is again only one player who can 
flash once; he knows the initial position of  the other player, whereas now 
this latter player does not know the initial position of  the player with the 
flash option. Though in principle the game may last an infinitely long time, 
it will be shown that, for the solution, a finite-horizon version suffices. In 
Section 4, the solution will be given for the case that both players have one 
flash at their disposal and do not know each other's initial positions. Some 
numerical examples are provided. In Section 5, players with different shapes 
of  their flashing area are considered, which leads to an additional matrix 
game to be solved. Also, a minor variation of  the game described in Section 
4 is considered. The variation is that one player has two flash options and 
the other one has none. Lastly, in Section 6, some possible extensions, 
conjectures, and limitations will be discussed. 

2. Problem Statement 

Let us consider n positions arranged on a circle, enumerated by 
1, 2 , . . . ,  n, as in Fig. 1. A pursuer P is at position i ~ S = {1 . . . .  , n}, and 
an evader V is at position j ~ S. At the initial instant of  time, t = 0, they do 
not know each other's position, but each one knows his own. Therefore, 
each player assumes a uniform distribution with respect to the initial position 
of the other player. At each instant of time, they can move one position to 
the left or the right or stay where they are. The time is discrete, t = 1, 2, 3 , . . . .  

Each one of them has a flashlight that he can flash only once, at some 
time t = 1, 2, 3 , . . . .  The flashing illuminates the position of the player who 
flashes, as well as the positions to his left and right. If  at the time P (or 
V) flashes, V (or P)  is within the illuminated area, then he is caught and 
the game terminates; if V is not caught, and has not yet flashed his light, 
then the game terminates when he also flashes. 
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1 

Fig. 1. State space. 

Let us point out that, if P flashes at some instant of time, before V 
does, and V is not caught, then P has revealed his position to V, who saw 
where P was when he flashed, whereas P knows only that V is in some of 
the remaining n - 3  positions. At this instant of time, the information pattern 
of both P and V, concerning each other's position, changes; thus, we are 
dealing with a problem with dynamic information. Or, to put it in another 
way, each player receives information about the position of his opponent  
only when he or his opponent  flashes his light; thus, there is a learning 
aspect with respect to the flashing, but not with respect to the motion of  
the players. 

3. Solution of Two Simplified Versions of the Problem 

In this section, two simple versions of  the general problem are solved. 
The combination of these two versions will provide the solution to the 
general problem, and that solution is given in Section 4. 

Case 1. Both P and V know each other's initial position; V has no 
flash. 

Here, the situation is exactly as before, but V has no flash and both 
P and V know each other's initial positions. If  the motion of P is completely 
deterministic, then V can always avoid capture; correspondingly, P can 
capture V if V's motion is deterministic. Thus, an equilibrium solution in 
pure strategies does not exist, and we will consider that P and V move 
according to some randomized decision schemes. 

P 's  decision of when and where to flash is also considered to be the 
result of  a randomized decision scheme. 



JOTA: VOL. 59, NO• 3, DECEMBER 1988 471 

Let A denote  an 

An h12 0 0 0 0 
"~21 hZ2 A23 0 0 0 
0 A32 A33 A34 0 0 

0 A43 A44 A45 0 

n x n Markovian  matrix o f  the following structure: 
• . . 0 i~1, n 

o o 
o o 
o o 

~ n - - l , n - - I  An-l,~ 

hn ,  n--1 "~nn 

A =  0 

0 0 . . . . . . . . .  0 h.-l• .-2 
h~.l 0 . . . . . . . . .  0 0 

Au-->O , ~ asj = 1, 
J 

h o = O  , i f i = 2 , 3 , . . . , n - l a n d [ j - i [ > l ,  

h 13 . . . . .  h t,,,-1 = h,,2 . . . . .  h . . . .  2 = O. 

, ( l a )  

( lb )  

(lc) 
(ld) 

The mot ion  o f  V is described as follows. Let V be at posi t ion i at t = 0, 
and let 

ei = ( 0 , . . .  ,0,  1, 0 , . . . ,  0 ) r  ~R  ". 

ith posi t ion 

At times t = 0 ,  1, 2 , . . . ,  the evader  V chooses matrices A~, A2, A3,... o f  
the type (1), so that the probabil i ty o f  being at any posit ion in S, at time 
t, is given by the row vector  

e r A~ A 2 . . .  At.  (2) 

Actually, only the row i o f  A1 and rows i -  1, i, and i +  1 o f  A2, and so on, 
need to be considered.  

The mot ion  o f  P as well as his decision o f  whether  to flash or  not  and 
where and when are described as follows• At time t = 0, P is at posi t ion j. 
Cons ider  matrices P1, P2, .  • • o f  the type (1). The mot ion  of  P is described 
by the ana logue  o f  (2): 

e r Pt P :  " ' "  P,. (3) 

At time t, P may  decide to flash at any o f  the posit ions where he may be, 
so that, at t ime t, he also has a vector ( P , I , . . . ,  P,,,), where P,k is chosen  
as a funct ion o f  the previous decisions o f  P ;  P,k is zero if posit ion k is not  
accessible for  him at t ime t, given that he was at posi t ion j at t = 0. It  holds 
that  

P,k = 1, P,k>-O. 
t,k 

A little reflection will persuade the reader  that  P can dispense with 
deciding on both  P~, P2, ..  • and P,k and consider  only a probabil i ty vector  
{q.}: 

[q~'] .  
qi, -> O. Y~ q.  = 1, q, = , (4a) 

,.i 1. q . ,  
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q, = 0, if position i is not accessible at t, 
if P is at j at t = 0; (4b) 

i.e., q, = probability with which P will be at time t at position i and flash 
there. This is essentially due to the open-loop character of  P's information, 
since his knowledge concerning V's position is not altered by any informa- 
tion about V's actual motion. 

As an example of the q, 's  in (4a), let e~ = (1, 0 , . . . ,  0); i.e., P starts at 
time t = 0 at ~osition 1. Then, 

q l l  

q21 

0 

0 

0 
• , q 2  = 

0 

0 

q l  

0 

q n ~ t  

Let II be the n × n matrix 

1 1 0 0 

0 1 1 1 

0 0 1 t 
17= 

q12] 
q22 

q32 I 

° i 0 

0 

° I qn-l,2 

• q . , 2  -I 

q3 

ql3] 
q23 

q33 I 
! 

q43 i 
0 ,0 

o ! 

qn-2,3 [ 

q , -  1,3 [ 
I 

. q . , 3  _! 

(4c) 

0 

0 

1 

0 0 

1 0 

• . .  0 1 

• . . . . .  0 

° . . . . .  0 

1 1 1 

0 1 1 

; (5) 

i.e., Ilij = 1 if position j is illuminated when P is at position i and flashes. 
Using (2), (4a), (4b), (5), we find that the probability of capture is 

eTAllIql + e f A ~ A 2 I I q 2  + . . .  + e r A a A 2  " " " &IIq,  + . . . .  (6) 

The summation stops at t = T for a finite time case, and extends to infinity 
for the infinite time one. 

Clearly, (qi, q2 , . . . )  lies in a multidimensional simplex, and so does 
(A1, A~A2,.. .),  as the following lemma demonstrates, enabling us to re- 
formulate (6) as a classical matrix game. 

Lemma 3.1. The set of  vectors 

{(e~A,, e r A , A 2 , . . . ,  e f A l A 2 " ' "  A,) r 

E R "  IA1 , . . . ,  A, of type (1)} (7) 

is a convex polyhedron in R" .  
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Proof.  Let 

e / ~ ,  = y , ,  

or equivalent ly,  

eTA, = )71, 

Let also 

e T A 1 A 2 = ~ 2 , . . . , e f A , A 2  " ' '  A,=f i , ,  

Y , A ,  = Y2, .  • • ,  Y , - , A ,  = Y,- 

eta , ,  = ; , ,  fi,~2 = fi2, . - - ,  fit--iA, = fi,- 

Let 0 < A  < 1. We will show that  there exists A~, A : , . . . ,  At, so that  

e.r,a, = Aft1 + (1 - A ))~1, 

(~Yl + (1 - A ) ~ , ) A 2  = Ay:  + (1 - Z )Y2, 

(8a) 

(8b) 

(/~fit-- 1 -[- (1 - - /~  )fit-1)At = h i l t  -t- (1 - A ))~,. ( 8 c )  

Obviously ,  

A1 = A A 1 + ( 1 - A ) ~ . I  

satisfies (8a). Assume  tha t  A 1 , . . . ,  Ag-1, have  been de te rmined  so as to 
satisfy the first k - 1 o f  Eqs. (8). We have to choose  Ak so as to satisfy the 
kth o f  Eqs. (8), i.e., 

(Ayk-, + (1 -- A))~k_,)Ak = Ayk-, Ak + (1 -- A)~k_,Ak. (9) 

Let 

:9k-, = ( a , , . . . ,  a , ) ,  fik-t = (b l ,  • . . ,  b , ) ,  

and  

Ak -- 

[ Aal/[Aai + (1 - A)bl] 

0 

0 

0 ] 
ha2/[ha2 + (1 - h)b2] . 0 Ak 

"Za~/[ha. + (1 - h)bn]  

( 1 - h ) b ~ / [ h a ~ + ( 1 -  h)bi]  in (10), where 0-</z--< 1. 
Obviously ,  Ak is o f  type (1) and  satisfies the kth of  Eqs. (8). The  

process  can  now be cont inued.  The  e lements  of  each A~, i = 1 , . . . ,  t, satisfy 

. .  0 ( ,0 )  
0 (1 - A )b . / [Aa .  + (1 - X)b~] 

I f  a i = b i = 0 ,  then use /z, 1 - / z  in place  of  A a f f [ A a i + ( 1 - A ) b i ] .  
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certain linear inequality constraints as indicated after formula (1). Since 
each Ai appears linearly in the vectors forming the set indicated by (7), it 
is clear not only that this set of  vectors spans a convex area, but also that 
this area is bounded by a finite number of  linear equality constraints. Thus, 
the set is a convex polyhedron. [] 

It is clear now that (6), at least for the finite summation case (i.e., finite 
game duration, t = 0, 1 , . . . ,  T) can be reduced to a classical matrix game. 
Namely, let 6 1 , . . . ,  6k be the extreme points of the polyhedron (7). Then, 
any element of (7) can be expressed as Ay, where 

A = [ t ~ l , . . . ,  ~k] , y = ( y l , . . . , y k )  T , yi>-O, ~ y , =  1, 

and thus (6) assumes the form 

y r a T ~  , Y~yi = Z  4i = 1, (11) 

where Ar  is the matrix resulting from the multiplication of  rows of  A with 
columns of  II and disregarding the qi,'s that are zero. As a matter of  fact, 
the same game (11) would result if one were to mix directly the pure 
strategies of  P and V, as a little reflection will convince the reader. In (11), 
V chooses y and minimizes; P chooses ~ and maximizes. The classical 
minimax theorem yields existence of solutions and uniqueness in value for 
this game. 

Let us consider the size of the matrix A r  in (11). After one time step, 
P can reach three positions; after two time steps, five positions; etc. Since 
he can flash at any of these time instants, his total number of strategies, if 
there are T time steps to go, is 3 + 5 + . . . + ( 2 T + l ) =  T2+2T. A tacit 
assumption here is that T -  < [n/2] .  For T -  > [n/2] ,  all points on the circle 
can be reached. Player V can choose from three directions during each 
time step, and his total number of  different strategies is therefore 3 r The 
size of  AT is 3 r ,  (TZ+ 2 T). The elements of  AT are either 0 (no capture) 
or 1 (capture). 

Example 3.1. Take n = 7 and T = 2. Then, A is a 9 × 8 matrix. Assume 
that initially P is two positions to the right of V. An optimal mixed strategy 
for V consists of the following maneuvers: two times left (probability 1/3); 
first left and then stay there (probability 1/3); and lastly two times right 
(probability 1/3). The directions left and right are defined for V (and P) 
with the nose toward the center of the circle. Only three pure strategies 
form part of  the optimal mixed strategy for V. Another way of  describing 
V's behavior is by means of  behavioral strategies; during the first time step, 
V moves to the right (probability 1/3) or to the left (probability 2/3). If, 
during the first time step, V moved to the right, then during the second 
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time step he will again move to the right (probability 1). If, during the first 
time step, V had moved to the left, then during the second time step he 
stays there (probability 1/2) or moves again to the left (probability 1/2). 
Whatever P does, the value of the game will not be more than 1/3. If  we 
change the initial positions somewhat, such that P is initially three instead 
of two positions to the right of V, then it turns out somewhat surprisingly 
that the value is 1/2 (P can now catch V by either moving along the left 
bound or by moving along the right bound, which apparently increases his 
changes). [] 

The solution of (11) can be obtained by solving the following linear 
programming (LP) problem (see Ref. 3): 

max(yTIK), subject to A r t y -  < I% Yi >-0, 

where l,, stands for a vector of rn elements that are all equal to one, T is 
the number of elements of ~, and the superscript T denotes transpose. The 
solution to this LP problem yields the mixed strategy of player P, normalized 
with respect to the saddle-point value of the game. The saddle-point value 
equals the maximum value v of the criterion of the LP problem. 

The dual problem, 

min(t~r/f), subject to A T ~ t > - - I K ,  t~i-->0, 

yields the optimal mixed strategy for player V, also normalized with respect 
to the saddle-point value v. 

For different T's, (11) has different solutions. It is our intention now 
to show that no time larger than [n/2] needs to be considered, since the 
solution for T = [n/2] provides the solutions for any arbitrarily large T. 

Lemma 3.2. The value .17" of (11) is an increasing function of T. 

Proof. Intuitively, one sees that, the larger the time interval, the better 
are the chances for P to capture V. More rigorously, consider the summation 
(6) up to time T. If P imposes on himself the restriction q T  = ( 0 , . . . ,  0 )  7, 

then V can exploit only A1,. • •, At-1 and the choice of Ar  is irrelevant. 
On the other hand, V cannot terminate effectively the game at T - 1  for 
arbitrary T, since no choice of AT nullifies the last term. [] 

Lemma 3.3. .11 <- J2 <-" " " -<- Jt,,/21 = JE, , /2>I  = JE,,/21+2 . . . .  

Proof. Continuing the rationale of the proof of Lemma 3.2, one sees 
that a choice by V of Ar  = I will result in 

e T A l l I q l  + ,  . . + e r A~ • . .  A T _ I I I q T _ I  + e r A~ • . .  A T _ l l I q , r  

= e T a , n q ,  + - - -  + e T A , ' "  A,-_,[q~-_, + q~]. (12) 
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qr can be added to qT-l, and (12) can be considered as the payoff of a 
T -  1 period game, if the addition of  qT to qr-1 does not alter the character 
of  qr-1, i.e., does not create nonzero components in qT-~ =qr+qr-~ in 
places where qr-~ has to have zeros [see (4a), (4c)]. This can happen only 
if T>-[n/2], i.e., the minimum time needed for P to go to any position on 
the circle, when he starts moving one step at a time at t = 0. Thus, if 
T - [ n / 2 ] ,  V can terminate effectively the game at time T, by choosing 

A[n/2]+I  = A[n/21+2 . . . . .  I,  

which is obviously to his interest given the increasing character of Jr. [] 

Remark 3.1. If  T is larger than [n/2] ,  it holds that Jr >-3/n, since P 
can flash randomly at some position, after time t-> [n/2]  has elapsed and 
V has spread himself uniformly on the circle. It is natural to expect that 
J~,,/2l will be greater than or equal to K/n ,  if K positions can be flashed 
instead of 3. For K = 1 [the II matrix of  (5) becomes the unit matrix], we 
have Jr,,~2] = I/n, as the following reasoning shows. 

Consider n = 4. For t = 0 and t = 1, the probabilities with which V 
moves are denoted by arrows on the outside of the circle, whereas in the 
inside of the circle the total probability of V being at the corresponding 
positions are given. The possible positions of  P at each time are marked 
by a star. Obviously, for the strategies of  V denoted in Fig. 2, P has no 
more than probability 1/4 of  capturing V, and one can easily construct 
other strategies with the same property. That the strategy of  V delineated 
in Fig. 2 corresponds to an equilibrium for J2, J3 , . .  • is easy to show. One 
can generalize this example for n > 3, by considering strategies of  V that 
essentially assign total probability 1/n of V being in any position accessible 
by P at any instant of time. It should be pointed out, that the case 1I = unit, 
i.e., that P can illuminate only his position and no adjacent ones, results 
in making P indifferent to knowing V's initial position, since he can get 
the same payoff 1/n by flashing randomly at some position after time 

P 

t=O 

OG O' 

t..2, I . ) '  
t=T t : 2  t=3 

Fig. 2. Mixed strategies of V. 
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T>-[n/2] has elapsed. On the other hand, if T~[n/2], V can escape 
obviously with probability 1, by going with probability 1 to the position(s) 
not accessible by P within this time. 

Case 2. P knows V's position; V does not know P's  position; V has 
no flash. 

Here, we examine the case where P knows V's initial position, whereas 
V does not know P's position, but only that P is not at the position of  V 
or the adjacent ones at t = 0. P is the only one who can flash. This situation 
arises by considering the general problem of  the first part of  this section, 
in which V flashes and fails before P flashes. Thus, P can use his flash 
knowing V's position (betrayed by V's own flashing). The time interval T 
is finite (the infinite time case can be reduced to the finite one by arguments 
essentially the same as those employed in Lemmas 3.2 and 3.3). 

Consider Fig. 3. The evader V is at position n - 1, knows that P is at 
position 1, or 2, o r . . . ,  or n - 3 .  The pursuer P knows that V is in position 
n - 1 at time V. V solves the following problem: 

rain max 3' AI,T~tl+ yrA2,rq2+''" 

1 T ~ q 
+n--3 y A n - 3 " r q n - 3  ' (13) 

...I  

where each yTA~T~I~ is exactly of  the type (11), with Air corresponding to 
time interval T, with initial positions i for P and n - 1 for V. The rationale 
of  V employing (13) is that, since P can be anywhere in 1 , 2 , . . . ,  n - 3 ,  
with equal probability 1 / (n - 3), a weighted sum of problems of type (11) 
needs to be solved. In (13), y is a probability vector and so is each qi. 
Clearly, ( ~ ,  - r  7" • . . ,  q n - 3 )  is not a probability vector, but obviously spans a 
convex polyhedron; thus, it can be expressed as EA, where E is the matrix 
whose columns are the extreme points of  this polyhedron and A is a 

3~~-~x~n -5 

'n n" n_1 n-2 
Fig. 3. Location of P and V. 
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probability vector of appropriate dimension. Thus, (13) is transformed easily 
to a classical matrix game. 

The transformation of  (13) to an LP problem is as follows: 
T2+ T 

min E (q,),, 
i=1 

s.t. [Al,r A2,r ' ' "  An-3,r] [121 q2 -->/(,,_3)(r2+2T) ' 

q - 3  

T2+2T T2+2T 
(~1), = Y. (g) i ,  j = 2 , . . . , n - 3 ,  

i=1 i=1 

(~j),->o. 

The solution to this LP problem, with both equality and inequality con- 
straints, equals the inverse of the saddle-point value of the game. Because 
of symmetry arguments on the circle, the number of elements in the vector 

t~ = (qT, T T 
• . - ,  qn-3) 

can be reduced by a factor of about 2. 
Another way of solving (13) is to solve first for ~,  i = 1 , . . . ,  n - 3 ,  as 

functions of  y (these functions are continuous and piecewise linear), then 
substitute these t~i(y) functions and minimize the resulting function with 
respect to y. This latter function is continuous, piecewise linear, and convex; 
hence the (or a) minimum exists. 

Let us call J r  the value of  the game formulated in (13). Obviously, it 
does not depend on the initial position of  V, and the coefficient 1/(n-3) 
in the weighted sum of (13) can be disregarded, since each position of  P 
at t -- 0 is assigned equal weight. A rationale similar to those used in Lemmas 
2 and 3 shows that 

J1 ~ J2 ~ ' ' ' ~  J[n/2J  = ~n/2]+1  = ,J[n/2]+2 . . . .  ; 

thus, only a finite number of  problems of  type (13) need to be considered. 
Before leaving this section, let us point out that, if y*, 4 " , . . . ,  q*-3 solves 
(13), then the payoff of  V is Jr ,  whereas the payoff of  P is y*rA~T~*, where 
j is the true position of  P known to him. Essentially, in this subsection we 
dealt with a nonzero sum game, because P and V have different information, 
but one of a very special type, since the information of V is included in 
that of P. 
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4. Solution of the Problem of Section 1 

We are now ready to address the main problem of this paper,  which 
was described in Sections 1 and 2. I f  both P and V flash at time t -- 1, then, 
because of  the assumed uniform distribution, the probability for V to capture 
P is 3 /n  and so is the probabili ty of  P to capture V. Thus, the payoff is 
3 / n - 3 / n  = 0. The reason why the probabili ty of  P being captured is 3 / n  
is that V has no information about  P ' s  initial and current position; thus, 
from V's point of  view, P can be anywhere with equal probability. Let us 
consider now that V flashes at time t --- 1 and P does not. Then, the payoff 
for V is 

( 3 / n ) - ( 1  - ( 3 /  n) )JT-1 

= (probability that V captures P)  

-(probability that V does not capture P) 

x (probability that P captures V 

during the remaining T - 1  period game). 

Similarly, if V flashes at time t = 2 and P does not flash at t = 1 or 2, the 
payoff for V is ( 3 / n ) - ( 1 - ( 3 / n ) ) • - 2 .  

In general, let 

cK = (3 /n)  - (t  - ( 3 /n ) ) J r -K ,  

and consider the matrix 

0 

--{3 t 

- - C  1 
M =  

- - C  l 

- - C  1 

Let 

e l  Cl Cl Cl 

0 C 2 C 2 C 2 

- - c  2 0 c 3 c 3 

--13 2 - - C  3 

--17 2 - - C  3 

K = 1 , 2 , 3 , . . . ,  T - l ,  (14) 

. . . . . .  C 1 

C2 

C3 

- - C T _  2 0 C T _  1 

--CT-2 --CT-1 0 

(15) 

s = (s , ,  s 2 , . . . ,  ST) r , r = (r, ,  r 2 , . . . ,  rT) T 

represent probability vectors, according to which P and V choose to flash 
at times t = 1, 2, . . . ,  T. Then, V is interested in maximizing, whereas P in 
minimizing r rMs;  i.e., 

min m a x ( r r M s ) .  (16) 
s r 

The solution of  the matrix game (16) provides the solution to our problem. 
The rationale for introducing (16) is the following. Let r, be the probability 
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that  V flashes at t ime t. Then,  his incurred payoff ,  given that  P flashes af ter  
him, is 

( 3 / n ) -  (1 - (3/n))JTT_,. 

This is incurred with probabi l i ty  equal to the p roduc t  o f  probabi l i t ies  that  
V flashes at t ime t and  P does not  flash before  t ime t, i.e., 

r,(1 - s , - s 2  . . . . .  s,) = r,(s,+,+. • "+sT).  

Using fo rmula  (14) and  a symmetr ica l  ra t ionale  with P flashing before  V, 
we arrive at (15), (16). 

Lemma 4.1. It  holds  that: 
(i) c~ <-c2<- . .  "<-=c-r_l=l/n; 
(ii) if  T>--[n/2], then 

e l  = C 2  = " " " = C T - [ n / 2 ]  ~ C T - - [ n / 2 ] +  1 ~ C T - [ n / 2 ] + 2  ~ " " " ~ C T - I  = 

f l / n ,  n->7,  

= ~ 1 / 4 ,  n = 6 ,  

] 2 / 5 ,  n = 5 ,  

1,5/8, n = 4 ;  

(iii) i f  T>-[n /2]  and  n - l l ,  then c1-<0. 

Proof.  (i) This is an immedia te  consequence  o f  (14) and the fact 
that  J1 --- J 2 - "  • • • 

(ii) A rat ionale  s imilar  to the one used in L e m m a  3.2 yields 

Thus,  

C 1 ~ C 2 ~ • • • ~ C T _ [ n / 2  ] ,  

Consider  now Fig. 3, and  assume that  V is at posi t ion n - 1, whereas  P is 
at one of  1 , 2 , . . . ,  n - 3 .  We will calculate J~ o f  Section 3. Let n->7.  We 
have only one step to go. Let V go to posi t ion n with probabi l i ty  a, to 
posi t ion n - 2 with probabi l i ty  b, and stay at posi t ion n - 1 with probabi l i ty  
1 - a -  b. I f  P is at posi t ion 1, he goes to posi t ion n and  flashes, thus 
captur ing  V with probabi l i ty  a + ( 1 - a -  b ) =  1 -  b. I f  he is at posi t ion 2, 
he goes to posi t ion 1 and  flashes, thus captur ing  V with probabi l i ty  a. I f  P 
is at posi t ion n - 4 ,  he goes to n - 3 ,  flashes, and captures  V with probabi l i ty  
b. I f  P is at n - 3, he goes to n - 2, flashes, and captures  V with probabi l i ty  
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b + (1 - a - b). Any other  posi t ion o f  P in 3, 4 , . . . ,  n - 5 yields zero probabil-  
ity o f  capture.  Thus, P captures V with probabil i ty 

1 ( l _ a _ b + a ) + n _ ~ a  
n - 3  - 

1 1 2 
+ b +  ( 1 - a - b + b ) =  . 

n - 3  n - 3  n - 3  

Thus,  

Cr_ l=(3 /n ) - (1 - (3 /n ) ) [2 / (n -3 ) ]= l /n ,  if n->7. 

I f  n----7, say n = 6, then the mot ion  o f  P is not  necessarily as described 
above. Let us consider  the cases n = 4, 5, 6 individually. First, let n = 4 and 
consider  Fig. 4. 

Let the motions  o f  P and  V be described probabilist ically as indicated. 
Then, 

• I1 = min max[/~l (a l  + 0/2) -~ ~2(0~2-~" a3)] 
oq /~i 

[lol o r°l 
= moin max[.,...] 1 'JL::J' 

/zl+/x2= 1, a l+a2+~3=  1, 

/~ > 0, a~-->0. 

4 2 

al  

12 

Fig. 4. Mixed strategies of P and V. 
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It is easy to see that 

# * l = l Z * = a * l = C t * 3 = l / 2 ,  t~* =0 ,  J l =  1/2. 

Thus, for n = 4, 

cr-1 = (3/4)(1 - (3/4))(1/2)  = 3 / 4 -  (1/4)(1/2) = 5/8. 

Similarly, one can examine the cases n = 5 and n = 6. For n = 5, c r - i  = 2/5; 
and, for n = 6, cr-1 = 1/4. 

(iii) Consider Fig. 3. We consider that, if  P is at any of the positions 
2, 3, n - 4 ,  n -  5, the pursuer P acts by flashing at the next instant of  time, 
yielding a probability of  capture 2 / ( n -  3), whereas for the other positions 
4, 5, 6, . . . ,  n - 6 ,  P waits for a sufficient time and then flashes randomly, 
so that, for these positions, the probabili ty of  capture is 3/n. Considering 
that there are n - 7  such positions, each one weighted by 1 / ( n  - 3 ) ,  we have 
that 

J r  >- 2 / ( n  - 3) + ( 3 / n ) [ ( n  - 7)/ (n  - 3)], 

since such a policy is obviously suboptimal for P. It is easy to see now that 

cl >-O¢:> J r  <- a / ( n - 3 ) .  

But, for n -> 11, it holds that 

3 / ( n  - 3) < 2 / ( n  - 3) + (3 /n) [ (n  - 7) / (n  - 3)]. 

Thus, if T is sufficiently large and n-> 11, c~ has to be negative. [] 

Use of  Lemma 4.1 enables one to see that the matrix game (16) has 
pure strategies solutions 

r* = s* = ( O , .  . . ,  O, 1 , 0 , . . . , 0 ) ,  

with the position of 1 determined by the first ci (starting from i = T -  1 and 
going, backward in time) which becomes negative, or equivalently by the 
first Ji, going forward in time, which becomes smaller than 3 / ( n - 3 ) .  For 
example, consider M to have the form 

oJ M =  + 0 + + , T = 5 .  

+ - 0 
+ 

Then, 

r* = s* = (0, O, 1, O, 0). 
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Notice that, for a given n and different T's, the distance of the r* = 1 from 
the last equation remains fixed, so that, independently of the duration of 
the game, the players will flash at a fixed time distance from the final time. 
If the game is of infinite duration, then they never flash, a fact that is in 
agreement with the fact that an infinite matrix M of  the form 

f 
0 -1 -1 -1 i ]  

M =  +1 0 -1  -1  
1 +1  0 

. 

does not have a saddle point (see Ref. 3, page 164). Of course, for particular 
cases where n <_ 10, one does not have the guarantee of  Lemma 4.1(iii) that 
cl will be negative, and one has to calculate the c~'s in order to find whether 
c~ changes sign. Clearly, if for some n and T, Cl > 0, then both players flash 
in the beginning. 

5. Non ident i ca l  P layers  

We now make two remarks with respect to games in which the players 
enter the game nonsymmetrically. 

Envisage the situation that the players have different flashing shapes. 
This is, for instance, the case if P can flash three positions and V can flash 
five positions. Then, the matrix M in (15) will become 

- d l  0 c2 • • • c2 

M = -d2  

0 cT-~ 

- 1 -d2  . . . .  d~-_t 0 

and it is no longer skew-symmetric. The elements -d~ are defined similarly 
to the c~ elements, the only difference being that a different flashing area 
has been used. Define ic to be the lowest index of  c such that c¢ is positive, 
and define id to be the lowest index of  f such that did is positive (or, 
equivalently, -did is negative). It follows easily that the matrix game corre- 
sponding to the current M does not have pure solutions if ic ~ id. It is easy 
to show that the optimal mixed strategies are a mixture of  the pure strategies 
corresponding to row or column numbers 

min(ic, in), min(ic, in)+ 1 . . . .  , max(it, id). 

These strategies can again be found by solving an LP problem. 
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Example 5.1. Consider n =7, P's flashing area is three positions 
(k = 3), one to the left and right and his own position, E's  flashing area is 
only his own position (k = 1). By solving problem (I3) for this problem, it 
was found that 

cl = c2 = c3 = 0.1428, 

d l =  -0.1428, d2 = -0.144, d3 = -0.0476. 

Therefore, the M matrix becomes 

[0.0000 0.1428 0.1428 0.1428] 

/0.1428 0.0000 0.1428 0.1428 / 

M = / 0 . 1 4 2 8  0.114 0.0000 0.1428/' 

[0.1428 0.114 0.0476 0.0000J 

and i~ = 1, id = 4. The value of this game related to the M matrix (the row 
chooser maximizes and the column-chooser minimizes) turns out to be 
0.0962. The optimal strategies are totally mixed and are given by 

0.326] 

0.326 [ 
s =  0.261/, 

0.087.] 

0.326] 

r = 10-2391 /0.109/. 
1_0.326.1 

The next game to be discussed, in which the players enter the game 
nonsymmetrically, is again along the circumference of a circle. During each 
time step, both P and V can go one position to the left, stay where they 
are, or go one position to the right. In this game, P has two flash options 
and V has none. Suppose that initially the players do not know each other's 
position (they assume a random distribution for each other's position). If 
at the first flash of P the other player has not been caught, then all that P 
knows is that V is situated at one of the remaining n - 3  points (if k = 3 )  
according to a uniform distribution. On the other hand, V then knows P's  
position. In order to decide on when to flash the searchlight for the second 
time, a minimax problem of the kind (13) must be solved again. 

6. Conclusions 

We have discussed a discrete-time game with dynamic information in 
a finite state space. We have considered in detail the state space consisting 
of n elements that are positioned around the circumference of a circle. Each 
state has thus two adjacent states. The two players move in the state space 
and can terminate the game by flashing the searchlight. A surprising result 
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of the analysis is that, provided that both players enter the game with the 
same capacities (i.e., the flashing areas of the players have identical shape), 
the time of flashing can be determined by means of a pure strategy. This 
time is determined by the size of the flashing area and the number of states. 
If the players have different flashing areas, then the best flashing time can 
be determined by means of a mixed strategy. 

Extensions of the state space are possible, and it seems that the 
techniques developed in the paper extend directly to connected networks, 
An obvious adjustment must then be made with respect to the weights 
1 / (n -3 )  in (13). These weights came from a uniform distribution. For a 
general network, one obtains these weights by solving a static game in which 
the players can position themselves arbitrarily on the network (hence, no 
restrictive dynamics). Also, different shapes of illumination do not seem to 
cause any difficulty; they can be attacked by the same methods. 

The techniques developed in the paper can be used directly for solving 
the dynamic game in which one player has two flashes at his disposal and 
the other has none. Extensions to more than two flashes are nontrivial, 
since, by having flashed all but the last time, a game of the kind described 
by 03) still has to be solved (to determine the time of the last flash), but 
now the weights are functions of the previous flash times. 

In order to solve the problem numerically, one must solve a series of 
linear programming (LP) problems that have been given explicitly in the 
text. The size of these LP problems increases drastically with the number 
of states n. We have not studied possible reductions in the size of these LP 
problems, due to redundancy and/or symmetries in the problem statement. 

The continuous-time, continuous-state-space version of the problem 
treated seems hard to tackle. One needs conceptual extensions of mixed 
and behavioral strategies as functions of a continuously evolving time. It 
seems, however, that the ratio k~ n (flashing area/total length or surface of 
the state space) and the maximum speeds are the crucial parameters. The 
ratio k /n  is also a crucial parameter in the current setup. If for instance 
k~ n decreases (and k is the same for both players), then the time of flashing 
will be closer to the end of the game (if one deals with a finite horizon). 
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