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Quadratic Gaussian Noncooperative Games 1 

M. T u  2 A N D  G. P. P A P A V A S S I L O P O U L O S  3 

Communicated by Y. C. Ho 

Abstract. In this paper, we study the impact of informativeness on the 
performance of linear quadratic Gaussian Nash and Stackelberg games. 
We first show that, in two-person static Nash games, if one of the players 
acquires more information, then this extra information is beneficial to 
him, provided that it is orthogonal to both players' information. A 
special case is that when one of the players is informationally stronger 
than the other, then any new information is beneficial to him. We then 
show that a similar result holds for dynamic Nash games. In the dynamic 
games, the players use strategies that are linear functions of the current 
estimates of the state, generated by two Kalman filters. The same 
properties are proved to hold in static and feedback Stackelberg games 
as well. 

Key Words. Nash games, Stackelberg games, information structure, 
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I. Introduction 

In  mul t i -pe r son  con t ro l  and  game  p rob l ems ,  the  i n fo rma t ion  s t ructure  
o f  the dec i s ion  makers  p lays  an  i m p o r t a n t  role  which  makes  such p r o b l e m s  
in teres t ing  and  cha l leng ing  bo th  concep tua l ly  and  ma themat i ca l ly .  Gen-  
era l ly  speaking ,  the impac t  o f  i n fo rma t ion  s t ructure  on such p r o b l e m s  has 
been  s tud ied  in three  aspects ,  namely ,  in te rac t ions  with 

(i) cont ro l  (e.g., Refs. 1-5),  which  focuses  a t t en t ion  on  the exis tence,  
un iqueness ,  and  l inear i ty  o f  the  so lu t ions  u n d e r  different  i n fo rma t ion  struc- 
tures;  
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(ii) incentives (e.g., Refs. 6-9), which focuses attention on the ability 
one decision maker has in influencing the other decision makers under 
different information structures; 

(iii) performance (e.g., Refs. 10-13), which focuses attention on the 
impact of informativeness on the performance under different information 
structures. 

The research in the first two areas has been relatively more fruitful 
than the third one, in the sense that general and assertive results are derived. 
In contrast, we have few general results in the third area, although several 
examples show that the impact of such interactions could be drastic. In this 
paper, we study this very aspect, i.e., the interactions between information 
structure and performance (to which we also refer as informational proper- 
ties), for linear quadratic Gaussian (LQG) noncooperative games and, in 
particular, Nash and Stackelberg games. 

In a previous paper (Ref. 10), the informational properties of a class 
of  LQG Nash games were studied. A particular feature of the information 
structure of the game considered in Ref. 10 is that all the players have 
access to the same information source at all times, i.e., the information is 
public. This means that whenever a change is made in the information, each 
and every player's information is equally changed. In this paper, we consider 
two-person games, and each player has his own private information such 
that, whenever a change is made to one of the player's information, the 
other player's information remains the same. 

There are several examples in the literature cited above which study 
the impact of  changes in private information on the players' performance. 
Among these, Ref. 13 studies a two-person LQG static Nash game. It is 
shown for that example that, on the one hand, if one of the players improves 
his own information by acquiring his opponent 's  information (while his 
opponent 's  information does not change), then he ends up with a higher 
Nash cost (Case B of  Ref. 13); on the other hand, if he improves his own 
information by getting an extra measurement not from his opponent,  then 
he incurs lower Nash cost (Case D of  Ref. 13). Such seemingly counterintui- 
tive phenomena have not been fully analyzed, and a more important issue 
of what kind of private information is truly beneficial has not been clarified. 
In this paper, we partially answer this question by providing sufficient 
conditions; i.e., we prove that, in two-person LQG Nash and Stackelberg 
games, if one of the players acquires more information, then this extra 
information is beneficial to him provided that such information is orthogonat 
to both players' information. A special case is that, when one of  the players 
is informationally stronger than the other (i.e., he knows all his opponent 's  
information), then any new information is beneficial to him. 
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The structure of the paper is as follows. In Section 2, we study static 
Nash games and give sufficient conditions where more information is 
beneficial. In Section 3, we formulate an N-stage dynamic Nash game where 
one of the players' information is nested in the other's. At each stage k, 
player 1 is allowed to use a function of estimates :~l(k) and :~3(k) of the 
state x(k), while player 2 is allowed to use a function of  Rl(k) only, where 
~l(k) and ~3(k) are generated through two Kalman filters that use linear, 
noise-corrupted measurements of x(k), and ~3(k) is a refinement of  ~l(k). 
In this setup, the Nash solution exists, is unique, and is linear in ~ ( k )  and 
~3(k) under certain invertibility assumptions on some matrices. A nice 
feature of  the solution is that a sort of  separation principle (of  estimation 
and control) holds and the estimation error is independent of  the controls. 
In Section 4, we study the informational properties of  the game formulated 
in Section 3. We prove that better information for player 1 alone is beneficial 
to himself. In Section 5, we extend the results obtained in Nash games to 
Stackelberg games. In Section 6, two examples are provided to illustrate 
the informational properties discussed in the previous sections. Finally, in 
Section 7, we present our concluding remarks. 

2. S o m e  Informat iona l  Propert ies  of  L Q G  Stat ic  N a s h  Games  

Consider a two-person static Nash game. The cost functional of  player 
i, i = 1, 2, is denoted by 

J i ( ~ 1 , 7 2 )  T T 1 T =E[x  Pi ui+~ui u~+uTQius], ui=yi(yi), 

j # ¢  ¢ j = 1 , 2 ,  (1) 

where x~  R" is a Gaussian random vector, x - N ( 0 ,  ~) ,  ui~ R I' is the 
control variable of  player /, and Pi, Q; are real matrices of  appropriate 
dimensions, y~, i = 1, 2, being the information available to player ¢ is given 
by 

Yi = Hix + wi. (2) 

Hi is an m~ x n real matrix and wi E R 'n, is a Gaussian random vector, which 
is independent of  x. The control law y~ is chosen from F~, which consists 
of  all the measurable functions from R m, to R t, such that Yi(Yl) is a 
second-order random vector. A pair (y* ,  3'2*) is called a Nash solution of 
the game if it satisfies the following two inequalities: 

J~(T*, T*)-< JI(T1, 3'*), (3a) 

s2(~*, :,*)- J2(~*, ~2), (3b) 
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for every Yl ~ Fa and '~2 E I" 2 . 3/i* is called a Nash strategy of player i. A 
necessary and sufficient condition characterizing a Nash solution of  the 
above game was given in Theorem 1 of Ref. 2, which we state below as a 
lemma. 

Lemma 2.1. A pair (y~*, 3'2*) is a Nash solution of the game described 
above if and only if the following two equalities hold: 

y*(y~)=-P~E[xly,]-Q~E[7*(ys)IY,] ,  j ~  i, i , j =  1, 2. (4) 

The question of existence and uniqueness of  the Nash solution has 
also been studied in Ref. 3, where it was shown that almost always there 
exists a unique solution which has to be an affine function of the information. 

By using Lemma 2.1, we will show, for certain information structures, 
how the Nash solution is affected by the information available to the players, 
and hence how the Nash performance is affected. We need the following 
definition of orthogonality and a lemma which consists of  several well- 
known facts in estimation theory (see, e.g., Ref. 14). 

Definition 2.1. Two zero-mean Gaussian random vectors zl and 2 2 are 
said to be orthogonal (denoted by zl ± z2) if E[z l z f ]  = O. 

Lemma 2.2. Let zi, i = 1, 2, 3, be zero-mean Gaussian random vectors. 

Then, 

(i) {z, - E[z,  ]z2]} ± z2; 
(ii) E [ 2 . I J Z 2 ]  = Cz2, where C is a real matrix. 

If, in addition, z2 ± z3, then 
(iii) E[z21z3]=O; 
(iv) E[z,  lz2,2.3]= EEzllz2]+ EEzllz3] • 

Denote an extra measurement  by Ye, 

ye= H~x + we, (5) 

where He is an me x n real matrix and we is a Gaussian random vector; 
we ~ N(O, 2,e) and is independent of x. We consider the following two 
conditions: 

(C1) Ye±yi ,  i = l , 2 ;  
(C2) Y2 = My1, where M is an m 2 × ml matrix. 
Notice that Condition C2 has nothing to do with Ye; it simply means 

that the information provided by Y2 is contained in that provided by yl.  

Lemma 2.3. Under either Condition C1 or C2, 

{E[x ly~ ,ye] -E[XJy l ]}  ± yi, i = 1 , 2 .  
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Proof. The following equation holds: 

E[xly~,ye]-E[xlyl]=E[xIyl ,ye]-E[E[xly~,ye]ly~].  (6) 

Thus, by Lemma 2.2(i), 

{E[xly~,ye]-E[xty~]} ± y~. 

Under Condition C2, 

{E[xlyl,  y~]-E[xlyl]} ± y2. 

Under Condition C1, Lemma 2.2(iv) and (ii) imply that 

E[xlyl,  y~] - E[xlyl] = E[xlyl]+ E[xlYe] - E[xly~] 

= E[xly~] = Cye. (7) 

The result holds, since ye ± yi, i = 1, 2. [] 

Remark 2.1. C1 and C2 are, in general, different conditions; however, 
by acquiring y~, the increment of  player l 's  information is {E[x lye, Y~]- 
E[Xlyl]}, which is always orthogonal to Yl. It is in this sense that C2 
satisfies C1. 

Theorem 2.1. Let condition C1 or C2 hold. Then, the following ~s 
true: If there exists a Nash solution under the information pattern where 
player 1 knows Yl and player 2 knows Y2, then there exists a Nash solution 
under the information pattern where player 1 knows {y~, y~} and player 2 
knows y: ,  and vice versa. Furthermore, the Nash strategy ~2 remains the 
same under both information patterns. For the case where Condition C2 
holds, a Nash solution exists and is unique if and only if the matrix ! - Q2Q1 
is invertible. 

Proof. Lemma 2.1 implies that, when player 1 knows yl and player 
2 knows Y2, a Nash solution (~/I(Yl), 3':(Y2)) exists if and only if 

Y2(Y2) = Q2QI E[ E["/2(y2) l ye] I Y2] 

+ Q2P1E[E[XIyl] lye]- P2E[xIy2]. (8) 

When player 1 knows {Yl, Ye} and player 2 knows Y2, a Nash solution 
(Y~(Y~, ye), Y2(Y2)) exists if and only if 

Ye(Y2) = Q2Q,E[E[y2(Y2)ly,, y~] ly2] 
+ Q2PIE[E[x [Yl, Ye] [Y~] - P2E[x [Y2]- (9) 
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Let Condition C1 hold. Then, Eq. (9) reduces to (8), by Lemma 2.2(iii)-(iv) 
and the fact that Y2(Y:) is affine in Y2. Let Condition C2 hold. Then, both 
Eqs. (8) and (9) reduce to 

Y2(Y2) = Q2Q1 y2(y2) + Q2P, E Ix lYE] -- P2E [x l Y2]. (10) 

Hence, if a Nash solution exists in one of  the information patterns, it exists 
in the other, and Y2 is the same in both information patterns. Furthermore, 
when Condition C2 holds, a unique Nash solution exists if and only if 
I -  Q2Q1 is invertible. [] 

Theorem 2.2. Let Condition C1 or C2 hold. Then, the Nash cost 
incurred to player 1, when the information available to player 1 is {yl, Ye} 
and to player 2 is y: ,  is less than or equal to the Nash cost incurred to him 
when the information available to player 1 is y~ and to player 2 is Y2. 

Proof. Let (y*,  y*) denote the Nash solution when player 1 knows 
Yl and player 2 knows Y2; and let (y~, y~) denote the Nash solution when 
player 1 knows {Yt, Ye} and player 2 knows Y2- Then, by Theorem 2.1, 

J~(y~ y~) = min Jl(Yl, Y~) = min _, JI(Yl, Y*) 
" T l (y l ,ye)~F [ YI~,Yl,Ye)EIt 

-< min J l ( y l , r * ) : J ~ ( r * , y * ) ,  (11) 
3'l(Yl)~Ft 

where F~ consists of all the measurable functions from R ml+m~ tO R tl. 
[] 

Remark 2.2. Although we proved Theorem 2.1 (and hence Theorem 
2.2) for Conditions C1 and C2 separately, recall from Remark 2.1 that C2 
satisfies C1 in the sense of Lemma 2.3. 

Remark 2.3. Notice that Theorems 2.1 and 2.2 hold regardless of  the 
functional form of  the costs (1), as tong as they are quadratic, and all the 
results obtained go through even if we do not assume that x is of  zero 
mean. This is easy to verify. 

3. Formulation of an LQG Dynamic Nash Game and Its Solution 

Consider a two-person, N-stage Nash game where the state of  the 
system x(- ) evolves according to 

x(k+l)=Ax(k)+BlUl(k)+B2u2(k)+w(k), x(O) = Xo, (12) 
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where k e 0 = {0, 1 , . . . ,  N -  1}, x(k)  c R", and u~(k) c R j, denotes the con- 
trol variable of player i, i = 1, 2, at stage k. Xo and {w(k), k ~ 0} are indepen- 
dent Gaussian random vectors, Xo ~ N(go, f~o), w(. ) ~ N(0, R). 

At each stage k, the measurements yi(k) ~ R",, i = 1, 2, are given by 

y,(k) = Hix(k)  + vi(k), (13) 

where {v~(k),k~O, i=1 ,2}  are independent Gaussian random vectors, 
v i ( . ) - N ( 0 ,  El). v~'s are also independent of x0 and {w(k), k~ 01}. The 
information available to the players is not y~(k)'s, but ~l(k), ~3(k), the 
estimates of x(k )  given by two Kalman filters: 

~ ( k )  = 2~(k/k - 1) + G~(k)[y,(k) - H~:~,(k/k - 1)], (14a) 

. ~ , ( k + l / k ) = A : ~ , ( k ) + B , u , ( k ) + B 2 u e ( k ) , ~ , ( O / - 1 ) = ~ o ,  (14b) 

G~( k) = E ~ ( k / k -  1)HT( H~Y. i (k /k -  1)HT+X;)- ' ,  (14c) 

X~(k + 1/k)  = A [ I -  G~(k)H~]Y~(k/k-  1)A r + R, 

]~(0 / -1)  = ~q0, (14d) 

Y.~( k ) = [I - G~( k ) H~]]~j( k / k - 1), (14e) 

where i = 1, 3 and 

143 ~= [ HT, HI] ~, (15) 

y3(') ~[yT('), Yf ( ' ) ] r ,  (16) 

E3 A diag[El, E2]. (17) 

~ ( k +  1/k)  is the one-step prediction estimate, and Zi(k) and E~(k+ 1/k)  
are the error covariance matrices associated with ~i(k) and ~,(k+ 1/k),  
respectively, 

~,~(k) = E{[x (k )  - ~ ( k ) ] [x ( k )  - ~(k)]T}, (18) 

~,~(k+ l / k )  = E { [ x ( k +  1) - ~ ( k +  1 /k ) ] [x ( k+  1) - ~ ( k +  1/k)]r}. 
(19) 

The information structure is defined as follows: At each stage k, player 1 
knows 

I , (k)  A {~l(k), ~3(k)}, 

while player 2 knows 

I2(k) & {9,(k)}. 

This information structure can be justified by considering that there are two 
referees 1 and 3, who compute respectively 9~(k) and 93(k); referee 1 gives 
9a(k) to both players, and referee 3 gives 93(k) to player 1 only. 
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The cost of player i is Ji _.a J~(0), where J~(k) denotes the cost to go of 
player i at stage k and is defined by 

N - - 1  

[xT(n)Pix(n) + u~(n)u,(n) + uT(n)Qiuj(n)] J,( k ) = E °E=k 

+xT(N)Pix(N)} ,  j # i, i,j = 1, 2, (20) 

where Pi, Q~ >-O. ui(k) is chosen as y~(Ii(k)) and the y~'s are measurable 
functions, y ~ : R " x R " ~ R  ~ and y~:R"--)R ~, with the property that 
y~(Ii(k)) is a second-order random vector. Let 

g, & {7 °, Yl, • • •, Y~-~}, i = 1, 2. (21) 

A pair {g*, g*} is called a Nash solution of the game if 

Ja(g*, g*2) <- Jl(gl ,  g~*), for every admissible g~, (22a) 

J2(g*, g*) -< J2(g*, g2), for every admissible g2- (22b) 

Before we give the Nash solution of the game, we need the following 
lemma which shows orthogonality in the information structure; the proof 
is given in Appendix A, Section 8. 

Lemma 3.1. (i) E[:~3(k)l:~l(k)]=:~l(k). Let ~4(k)=:~3(k)-.~t(k). 
Then, (ii) ~4(k) 3_ ~,(k). 

Notice that, by Lemma 3.1, the information structure Ii(k) can 
equivalently be considered as Ii(k)= {Rl(k), ~4(k)}, which consists of two 
orthogonal elements. 

The Nash solution of the game described above is provided in the 
following theorem, the proof of which is given in Appendix B, Section 9. 

Theorem 3.1. Consider the equations 

L,(k) = P, + A T[(I + B,BT LI(k + 1) + B2B~L2(k + 1))-'] T 

X [L,(k + 1) + L~(k+ 1)B,BTL,(k+ 1) 

+ L~(k + t)BjQIBTL~(k + 1)] 

x [I + Ba BTL1(k + 1 ) + B2B~L2(k + 1)]-aA, 

L,(N) = P~, j # i, i,j = 1, 2, 

(23a) 

(23b) 
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which evolve backward in time. We assume that the inverse of  (1+  
B~BrL~(k) + B2BTL2(k)) exists for every k e 0. Then: 

(i) There exists a unique Nash solution to the game, which is the 
following: 

(24) u*(k) = ,y~(I,(k)) = Fn(k)R,(k) + F14(k)x4(k), 

u*2(k) = *yk(I2(k)) = F2(k)~l(k), 

(ii) 

where 

where 

(25) 

F~,(k) = - B T L , ( k +  1)[I + B~BTLI(k + 1)+ B2BTL2(k+ 1)]- 'A, 
(26) 

F14(k) = - B T L , ( k + I ) [ I + B , B r L I ( k +  1)]- 'A, (27) 

V2(k) = -BTL2(k  + 1)[I + BIBTL,(k + 1)+ B2BTL2(k + 1)]- 'A. 
(2s) 

The cost to go of player i at stage k is 

J,(k) = E[x3*r (k)Li(k)x3(k)]* + Ki(k), (29) 

K~(k) = tr{ArL,(k + 1)A - L~4(k) + P~]£3(k) 

+ L~(k+ 1)[R - £ 3 ( k  + 1)] + L~4(k)£,(k)} + K,(k + 1), 

Ki(N)  = tr{P~£3(N)}, 

L,4(k) = Ar[ ( I  + B ,BrL , (k  + 1))- ' ]  T 

x [Ll(k  + 1)+ t , ( k +  1)B, BTLI(k+ 1)] 

x [ I +  B~BTL,(k+ 1 ) ] - ' A -  L,(k)+ P,, 

L24(k ) = A T [ ( / +  B~Br~Lt(k+ 1))-t] T 

x [Lz(k + 1) + L~(k+ 1)B~Q2BTLI(k+ 1)] 

x [I + B, BrL , ( k  + 1 ) ] - ' A -  L2(k) + P2- 

(30a) 

(30b) 

(31) 

Remark 3.1. Notice that the control laws Fn(k),  F14(k), and F2(k) 
in the above theorem are independent of  the observation noise in the 
measurements (13); i.e., a sort of separation principle holds under such 
information structure. Also, we can see from the Kalman filter equations 
(14) that the estimation error Y.i(k), i = 1, 3, is independent of  the controls. 

(32) 
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Remark 3.2. The nonsingularity condition of the matrix I +  
B1BTLI(k)+B2B2BfL2(k)  and the boundedness condition of L~(k), the 
solution of the coupled Riccati equations (23), were discussed in Theorem 
2.2 and Remark 2 of Ref. 10. 

4. Some Informational Properties of LQG Dynamic Nash Games 

In this section, we first give the definition of "better information for 
player 1 alone," and then derive sufficient conditions that such better 
information would benefit each player. 

Consider Information I and II. In Information I, the estimates ;~l(k) 
and ;~(k) are generated through the past controls and the measurements 

y I ( ' ) = H I x ( ' ) + v I ( ' ) ,  v ~  N(0, El), i -  1,2, (33) 

with corresponding estimation error E~(k) and Y3~(k). In Information II, 
the estimates ~ l (k )  and 2~(k) are generated through the past controls and 
the measurements 

y~'(" ) = HlIx( • ) + v'i'(" ), / ,~I  - -  N(0, ~ ) ,  i = 1, 2, (34) 

with corresponding estimation error Y~llI(k) and Z~I(k). 

Definition 4.1. We say that Information I provides better information 
for player 1 alone than Information II if 

~'~(k) = E~l~(k), 2£~(k)<_Y)3'(k), for every k~ 0, 

Y~(k) ~ E~I(k), for at least one k ~ 0. 

An obvious fact about the definition given above is that all the improve- 
ment is in the part of 24(" ), player l 's private information, while there is 
no improvement in the part of ~a (.) ,  the public information of both players. 

Let Jl(k)  and K~(k), i -- 1, 2, be defined as in (29) and (30), correspond- 
ing to Information I, and 

Urn(k) = E [ ~ ( k ) ~ r ( k ) ] ,  j = 1, 3. 

Similarly, we define J~i'(k) and K~i'(k), i =  1, 2, and ~ ' ( k ) ,  j = 1, 3, for 
Information II. We need the following lemma to prove the next theorem, 
the proof of which can be found in Ref. 10. 

Lemma 4.1. Let X, Y ~ R n×", X --- 0, and Y be a nonzero, nonnegative 
definite matrix. Then, tr{XY}-> 0. 

Theorem 4.1. The Nash solution given by Theorem 3.1 has the property 
that better information for player 1 alone lowers player i's cost if 

Pi+ATL, (k+I )A-L~(k ) -L ,4 (k )>-O,  for every k6 0. (35) 
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P r o o f .  From part (ii) of Theorem 3.1, 
^1 Jl(O) = E[~r(O)L,(O)~(O)] + K~(0) = tr{L~(0)~q3(0)} + K J(0). 

(36) 

From the recursive expression of  K~(. ) in (30), we obtain 
^ I  J~(0) = tr{Li(0)123(0) + [P~ + ATL~(1)A - L~4(0)]X~(0) 

+ Li(1)R + L~4(0)~',(0) 
N--1 

+ ~ [[P~+ATL,(k+I)A-L,(k)-L~4(k)]X~(k) 
k = |  

+ L~(k + 1)R + L~a(k)~]l(k)]}. (37) 

Similarly, 

= tr{ L,(0)I~'(0) + [P, + ATL,(1)A - LI4 (0 ) ]~ ' ( 0  ) J ~ l ( 0 )  

+ L,(1)R + Li4(0)~[I(0) 
N--1 

+ ~ [[Pi+ATL~(k+ 1)A-L~(k)-L~4(k)]X~I(k) 
k = l  

+ L~(k+ 1)R + L~4(k)~,I~'(k)]}. (38) 

By using the fact that 

f i~ ' (0)  - fi3~(0) = - ( X ~ ' ( 0 )  - X3~ ( ( 0 ) ) ,  (39 )  

we obtain 
N--1 

fl~I(0) - fl,(0) = ~ tr{[P~ + ATL,(k + 1)A - t~(k) - t~4(k)] 
k=0 

× [E~'(k) - E~(k)] + Li4(k)[~.l'(k) -- ~ ' l(k)]}.  (40) 

Suppose now that Information I provides better information for player 1 
alone than Information II. Then, Lemma 4.1 implies that JlI(0)---Jl(0), if 
(35) holds. [] 

Corollary 4.1. Better information for player 1 alone lowers player l 's 
Nash cost. 

Proof. Substituting (23) and (31) into (35), and letting i = 1, we obtain 

P, + ATL,(k + 1)A - L,(k) - L,4(k ) 

= ATLI(k + 1 ) A -  AT[(I + B,B~L,(k + 1))- ']  T 

x [L~(k + t) + L~(k+ 1)BIBr~LI(k+ 1)][I + B, BTLI(k + 1)]- 'A 

= UrVU>-O, (41) 
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where 

U = [ I +  B~BTLI(k+ 1)]- 'A, 

V=  L l ( k +  1)B, B T L , ( k +  1) 

+ L l ( k +  1)B1B~LI(k + 1)B~B~L~(k + 1) - 0 .  

Then, Theorem 4.1 implies the desired result. 

(42) 

(43) 

[] 

Remark 4.1. In Corollary 4.1, we see that better information for player 
1 alone is beneficial to him, and this fact is independent of the number of 
stages N and it is not necessary for the better information to be dynamically 
better (Ref. 10). In contrast with Theorem 5.1 of Ref. 10, the above two 
features reveal the essential difference between improving the players' 
private information and public information in a dynamic Nash game. 

5. Related Properties of Static and Feedback Stackelberg Games 

In this section, we extend the results obtained in Nash games to static 
and feedback Stackelberg games. The difference between a Stackelberg 
game and a Nash game lies partially in that the roles of the players are 
asymmetric in Stackelberg games, while they are symmetric in a Nash game. 
However, the Stackelberg solution of a static game is also a Nash solution 
of the same problem under explicit control sharing (Ref. 11) and a feedback 
Stackelberg solution of  an N-stage dynamic game is also a Nash solution 
of  a 2N-stage game (Ref. 15). Hence, we expect some different, as well as 
some similar, properties between Stackelberg and Nash games. 

Consider a two-person Stackelberg game. Let player 1 be the leader 
and player 2 be the follower. Their cost functionals are given by Jl(yl ,  3'2) 
and J2(3'1, 3"2), respectively, where 

Ji(3"l, y2)=E[½ufu i+lu fPiu~+uTQ~uj+ufS i lx+ufSux] ,  (44a) 

ui = 3'~(y~), j # i , i , j = l , 2 ,  (44b) 

where x ~ R  n is a Gaussian random vector, x - N ( O ,  Ft), u~ER z̀  is the 
control variable of player i and Pi, Qi, S,, S!j are real constant matrices of 
appropriate dimensions. The linear measurement of player i is given by 

y~ = H~x + wi. (45) 

Hi is an m~ x n real matrix and wi is a Gaussian random vector, wl ~ N(O, Z~), 
which is independent of  x. The control law % is chosen from F~, which 
consists of all the measurable functions mapping from R m, x R ~ such that 
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3"i(Yl) is a second-order random vector. A pair (3"*, 3'2*) is called a 
Stacketberg solution, with player 1 as the leader, if 3'* satisfies the following 
inequality: 

sup J1(3'1", 3'2)--- sup J1(3'1, 3'2), (46) 
"g2C R2('y 1 ~ ) "y2C R2(yl) 

for every 3'1 E F~ and 3'2* ~ R2(3'*), where R2(3'1) is called the rational reaction 
set of the follower to the strategy 3'1 announced by the leader and is defined 
by 

R2(3'1) = {~72~ r21J2(3'1, -?2)-< J2(3q, 3'2), for every 72 c r2}. (47) 

Notice that, if R~(3"1) is a singleton for each yl~F1, then (46) can 
equivalently be written as 

J1(3 '1*,  'Y2(3'1")) ~z J1(3"1,  "Y2(3'1)). ( 4 8 )  

It turns out that R2(3'1) is a singleton indeed (Ref. 16) and is given by 

T2(Y2) = -S22E[xlY2] - Q2E[ 3'1(yl) [ y2]. (49) 

A sufficient condition that a unique linear Stackelberg solution exists 
was given in ReL 16, which condition is determined by the matrices Pi and 
Qi, i = 1, 2, and has nothing to do with the information available to the 
players. We assume in the following derivations that a unique linear Stackel- 
berg solution exists under every information structure that we consider. The 
result of the following lemma is known, but we include a short proof for 
reasons of completeness. 

Lemma 5.1. The leader's cost decreases if he acquires an extra 
measurement ye. 

Proof. Let (3'*, 3"*) and (3'~, 7~) denote respectively the Stackelberg 
solution before and after the leader acquires Ye. After the leader acquires 
ye, he can choose a suboptimal strategy 3,S(yl,ye) = 3'*(yl). Then, the 
follower will react by choosing 3'S(y2) = 3'2"(Y2), and hence 

o o ~ S 
J I ( T I ( Y l ,  Ye), 3 '2(Y2))  - -  J , ( 3 ' l  ( Y l ,  Ye), 3'S(Y2) 

= J,(3q*(Y,), 3''2(Y2)). (50) 

[] 

The follower, who is in the lower level of a hierarchy, sees things 
differently from the leader, and knowing more is not necessarily beneficial 
to him. As in the Nash case, we prove in the following theorems that, if 
the follower acquires an extra measurement Ye which satisfies a certain 
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orthogonality condition or if the follower knows all that the leader knows, 
then the leader's strategy does not change, and such Ye is beneficial to the 
follower. As in Section 2, we consider the following conditions: 

(C1) Ye .1_ y~, i = 1, 2; 
(C2) Yl = My2, where M is an m, x m2 matrix. 

Theorem 5.1. If the follower acquires extra measurement Ye such that 
either one of Conditions C1, C2 holds, then the leader's strategy does not 
change. 

Proof. Let y*(y,),  yO(y,) denote the leader's strategy before and after 
the follower acquires ye, and let y2*(y2), y~(Y2, Y,) denote respectively the 
follower's reaction before and after he acquires y~. Then, by (49), 

y*2 (Y2) = - S22E[ x ly2]- Q2E[ yl(y,) lY2], (51) 

Y~(Y2, Y,) = -S22E[x  ly2, Ye] -- Q2E[ T,(yl) ly2, Y~]. (52) 

Under either one of  Conditions C1, C2, the following is true: 

E[  y,(y,)[Y2, Y~] = E[TI(Yl)[y2]. (53) 

Hence, (52) can be written as 

T~(Y2, Y,) = Y*(Y2) -- $22{E Ix [Y2, Ye ] -- E [X I y2] } 

= Y*(Yi, Y2) - $22y. (54) 

where 

fi a= E[xly2,  y~] _ E[x lY21, 
which by Lemma 2.3 is orthogonal to y, and Y2. The leader's strategy after 
the follower acquires y~ is the following [we omit the arguments in the 
strategies y~*(-) and 3'7(" ) for a while to avoid the tedious expressions]: 

° E{~y, y, + ~Y2 P172 + Y lrQ~ Y2 + y-~S~,x y , = a r g m i n  , r , o r  o o 

3q~Fl 

+ y~rS,zx } 

= arg min E{½y,ry, ~- ,~.*To ~ * - ~ .  - , . 2  - ~ '*  ~P, S22:¢ 
YleFi 

=arg  min E{½yrly, , , r  +5Y2 P, y2+ y ( Q , y * +  yTS , , x+  y*rS,2x} 
yl~I'l 

= ~1",  ( 5 5 )  

where we use the fact that fi ± {y,, y2} to get rid of the terms y*2Tpts22fi 
and TTQIS22) 3 in taking the expectation operations. [] 
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Theorem 5.2. If  the follower acquires extra measurement y~ such that 
either one of  the Conditions C1, C2 holds, then the follower can do better 
by incurring lower cost. 

Proofi The proof  is similar to Theorem 2.2, and hence is omitted. 
D 

Now, consider a feedback Stackelberg game with the same formulation 
as in the feedback Nash game of Section 3, except that we consider two 
cases which correspond to two different information structures. Let Ii(k) 
denote the information available to player i at stage k. Then, we consider 
two cases: 

Case A, IA(k) = {~l(k), ~3(k)}, IA(k) = {£1(k)}; 
Case B, I~(k) = {£1(k)}, I~(k) = {~l(k), ~3(k)}. 

Let us call player 1 the leader and player 2 the follower. A pair (g*, g*) is 
a feedback Stackelberg solution to the game if 

sup Ja (g l* ,  g:~k, T2 k) 
~ Rk(%, k) 

< sup Jl(g*lk, k , -- Yl, g2k, yk), for every admissible 71k, 

where 

Rk(y~) is called the rational reaction set of  the follower at stage k to the 
strategy yk announced by the leader and is defined by 

k -k  :~ k 
Rk(Yl) ={Y21J2(g,k, Yl, g*2k, 5'~) 

< J2(g*k, Y~;, g'k,  7zk), for every admissible y~}. 

The feedback Stackelberg solution for Cases A and B are provided in 
Appendix C, Section t0. 

Let Informations I and II be defined as in Section 3 and satisfy the 
conditions in Definition 4.1. Then, in Case A, Information I provides better 
information for the leader alone than Information II; in Case 8, Information 
I provides better information for the follower alone than Information II. 
We have the following theorem. 

Theorem 5.3. Under the information structure of Cases A and B, the 
feedback Stackelberg solution has respectively the following properties: 

(i) better information for the leader alone is beneficial to the leader; 
(ii) better information for the follower alone is beneficial to the 

follower. 
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Praof. One way of  proving this theorem is by using the connection 
of the feedback Stackelberg solution to the feedback Nash solution accord- 
ing to the procedure of Ref. 15, where it was proved that a feedback 
Stackelberg solution of  an N-stage dynamic game is also a feedback Nash 
solution of a 2N-stage dynamic game and the result is then implied by 
Corollary 4.1. An independent proof  of this theorem is provided in Appendix 
D, Section 11. [] 

Remark 5.1. A similar feedback Stackelberg game was studied in Ref. 
17, where the expressions of the solution obtained were so complicated that 
it was not possible to investigate its informational properties. The 
expressions of the solution could have been simplified if the authors of Ref. 
17 had observed the orthogonality in the information structure, i.e., Lemma 
3.1(ii). 

6. Examples 

Example 6.1. This example illustrates Theorem 2.1 and 2.2 under 
Condition C1. Consider a static Nash game where all the notations follow 
those defined in Section 2. The cost functionals are 

J I ( 'Yl ,  'Y2) = E [  (X + Ul + U2)2 + u2], 

J2(~1, ")/2) = E [ ( x +  u2+ u2)2+ u~]; 

player i has measurement y;, y~ = x + w~; x, wl, w2 are independent random 
variables with zero mean and unit variance. 

This example was previously considered in Ref. 13, and the Nash 
solution was given by 

T*(Y,) = -~Yl, Y2*(Y2) = -{-Y2, 

with corresponding Nash costs 

J~(y*, rE*) = J2(yl*, rE*) = 468/900. 

Now, if in addition to Y2, player 2 acquires an extra measurement Ye, what 
is the impact to his Nash cost? It was shown (Case B of Ref. 13) that, if 
ye = Y~, then player 2 incurs higher Nash cost. In the following, we will 
find an Ye such that Ye -1- { y a ,  Y2} and demonstrate that this ye lowers player 
2's Nash cost. 

Let Ye = x - Wl  - WE. Then, it is easy to check that y~ _1_ {YI, Y2}- Denote 
the Nash solution after player 2 acquires this Ye by (y~, y~). Then, by direct 
calculation, we obtain 

Y ~ ( Y l )  = - ½ Y ~ ,  

T2(Y2, Ye) = 1 1 o --3Y2 - gYe- 
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T h e  c o r r e s p o n d i n g  N a s h  s o l u t i o n  o f  p l a y e r  2 is J2(Y~, Y~) a n d  

-/2(Y~, Y~) = 3 1 8 / 9 0 0  < 4 6 8 / 9 0 0  = J2(Y*,  Y*). 

E x a m p l e  6.2. Th is  e x a m p l e  i l lus t ra tes  C o r o l l a r y  4.1. C o n s i d e r  a 

d y n a m i c  N a s h  g a m e  wi th  t he  g e n e r a l  f o r m u l a t i o n  g iven  in Sec t i ons  3 a n d  

4. W e  c h o o s e  

A = 0.5, 2o = 0, f~o = 10, 

Bi = P / =  R = 1, Qi = 20, i = 1, 2. 

T w o  k inds  o f  i n f o r m a t i o n  are  d e s c r i b e d  b e l o w .  

I n f o r m a t i o n  I, ~I1(- ), : ~ ( .  ) c o r r e s p o n d  to 

yl(.)=x(.)+ ~I(.), 
y I ( . )  = X ( ' ) +  ~'~( ' ) ,  

v l ("  ) ~ N ( 0 ,  1), i = 1, 2; 

Table 1. Costs of  player 1 in Example 6.2 under  different information 
versus different number  of  stages. 

N Information I Information II 

Benefit of player 1 
due to better information 

for him alone 

1 16.72872 16.98826 0.259544 
2 19.79963 20.12271 0.323073 
3 21.68059 22.06824 0.387644 
4 23.31423 23.76004 0.445805 
5 24.90147 25.40363 0.502162 
6 26.48017 27.03831 0.558140 
7 28.05730 28.67135 0.614047 
8 29.63415 30.30409 0.669940 
9 31.21094 31.93677 0.725830 

10 32.78773 33.56945 0.781720 
11 34.36451 35.20212 0.837610 
12 35.94123 36.83479 0.893500 
13 37.51808 38.46747 0.949390 
14 39.09486 40.10014 1.005280 
15 40.67164 41.73281 1.061170 
16 42.24843 43.36549 1.117060 
17 43.82521 44.99816 1.172950 
18 45.40199 46.63083 1.228840 
19 46.97877 48,26350 1.284730 
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Information II, ^H, xl ~'), ~ ( "  ) correspond to 

y [ I ( . )  = X ( ' ) +  vl l t (") ,  

y~( .  ) = 0. x( .  ) + ~ ' ( .  ), 

v l ' ( ' ) ~  N(0, 1), i =  1,2. 

It is easy to see that, for Information II, ~l~(k)= ~[~(k) at every stage 
k, and Information I provides better information for player 1 alone than 
Information II. We compute the Nash cost of player 1 for different number 
of stages, i.e., N from t to 19. Information I is more beneficial to player 1 
than Information II. The resulting costs are shown in Table 1. 

7. Conclusions 

In a general two-person LOG Nash game (static or dynamic), we 
proved that more or better information for one of the players alone is 
beneficial to him if he is informationally stronger than his opponent or if 
such information is orthogonal to both players' information. Such results 
are quite understandable. Since the Nash solution is an equilibrium solution 
with consistency constraints (Ref. 12), any unilateral improvement of infor- 
mation does not guarantee benefit to either party. A unilateral improvement 
of information does guarantee benefit to the one who has the improvement, 
however, if his opponent's strategy does not change by such improvement, 
such that he who has the improved information can use it to optimize his 
strategy without further constraints. In order that his opponent's strategy 
does not change, his opponent should be totally ignorant of this improved 
information, as implied by the orthogonality condition given by Lemma 
2.3. 4 Similar results hold in static and feedback Stackelberg games for both 
the leader and the follower. The leader in a static Stackelberg game can 
use any extra information to his benefit, however. 

As we noted before, the investigation of the informational property of 
the dynamic games is greatly simplified by the formulation where a sort of 
separation principle holds and the estimation error is independent of the 
controls. Without these nice properties, it would be difficult either in defining 

4 As a referee pointed out, another view to see the ideas behind the results is this. Consider 
two Nash games with two players. Player 2 in both games has the same information, while 
player 1 has different information. Assume that the Nash strategy of player 2 happens to he 
the same in both games. In this case, player l 's  optimization problem in the two different 
information structures can be considered as team problems. In a team problem, a player can 
never be worse off with more information. Therefore, the problem boils down to how to find 
conditions to make the above assumption true. 
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"better information for one player alone" or in solving for the solutions. 
Either one of the difficulties makes the problem extremely hard. An extension 
of the results obtained in this paper to N-person, N--- 3, Nash games can 
be carried out using similar arguments, and such results should constitute 
a fundamental step in designing information structures (Refs. 18-20) for 
large-scale systems. 

8. Appendix A: Proof of Lemma 3.1 

Consider the following state equation and measurements: 

~(k + 1) = A:~(k) + w(k), ~(0) = Xo, (56) 

.~i(k) = H f i ( k )  + p,(k), i = 1, 2, (57) 

where Xo, {w(k)} and {~'i(k)} are defined as in Section 3. By comparing 
(56) with (12), we immediately have 

k - - 1  

x ( k ) = ~ ( k ) +  Y Ak-" - l [S lUa(n)+ S2u2(n)]. (58) 
n = 0  

Let 

~& E[~(k) I f f l (0 ) , . . . ,  ffa(k)], (59) 

x3(k) & E[2(k)137,(0),. . . ,  ill(k), 372(0),..., )72(k)]. (60) 

Then, xi(k), i = 1, 3, are given exactly by the Kalman filter equations (14), 
except that (14b) is replaced by 

x~(k + l / k )  = Axi (k ) .  (61) 
A A 

By the construction of ~i(k) and x~(k), i = 1, 3, it is easy to see that 

Y:i( k ) = ~ xi(k)  + Ck, (62) 

where 

k - 1  

Ck = E Ak-" - ' [B ,Ul (n)+B2u2(n)]  • 
n = 0  

Since x3(k) is a refinement of xl (k) ,  we obtain 

x,(k) = E[Y(k)137,(0),..., )7,(k)] 

= E[E[:~(k) I )7 , (0 ) , . . . ,  )7,(k), )72(0), 

. . . .  ;2(k)] bT,(0) , . . . ,  y,(k)]  

= E[~3(k)1)~,(0),... ,  fi,(k)]. 

(63) 

(64) 
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Hence, 

E[~c3(k)lxl(k)]= "* ^ E[E[x3(k)y , (O) , . . . ,  )T,(k)] [:~l(k)] 

= E[~Cl(k)lx,(k) ] -* = X l ( k  ). 

Eq. (62) indicates that 

(65) 

E[~3(k)]~,(k)] = E[Y3(k) + &k ] ~,(k) + ~bk] 

= E[x3(k)[x,(k)] + 6k = Y,(k) + Ok 

= 2~1(k). (66) 

By Lemma 2.2(i), ~3(k)-E[~3(k)]~l(k)]  is orthogonal to ~l(k), i.e., 
:~4( k ) .L ~l( k ). [] 

9. Appendix B: Proof of Theorem 3.1 

The proof is similar to that of Theorem 2.1 of Ref. 10. The difference 
is that here Ii(k) has an additional element ~4(k) which, being orthogonal 
to both players' public information ~l (k), does not give rise to major changes 
in the Nash solution. The problem will be solved by a dynamic programming 
approach. 

At stage N, 

J~( N)  = E[xT ( N)  P~x( N)  ] = E[ £ f  ( N)P~3( N)  ] + tr[ P~3( N)  ] 

A T ^ = E[x3 (N)L~(N)x3(N)] + Ki(N) ,  i = 1, 2, (67) 

where 

L i ( N ) ~  P~, K~(N)~tr[P~3(N)] .  

At stage N -  1, 

Jg(N - 1) = E [ x T ( N  - 1 ) P , x ( N -  1) 

+ur, ( N - 1 ) u ~ ( N - 1 )  

+ u f  ( N-1)Q~u~( N - 1 )  

+xT(N)P~x(N)] ,  j # i ,  i,j = 1, 2. (68) 

After receiving L ( N  - 1), player i's objective is to minimize . ~ ( N -  1) given 
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by 

Since 
( .yN- l ,  ,7~-1)  is chosen such that 

~ ( N  - 1) = E[J~(N-  1) l I , (N - 1)]. (69) 

. ~ ( N - 1 )  is convex in u~(N-1) ,  the Nash pair at stage N - I ,  

a T , ( N -  1) - 0, 

We then have 

i =  1, 2. (70) 

* T ~ - ' ( I I ( N - 1 ) ) = F H ( N - 1 ) ~ , ( N - 1 ) + F ~ , ( N - 1 ) ~ 4 ( N - 1 ) ,  
(71a) 

" 7 ~ - 1 ( I 2 ( N -  1)) = F 2 ( N -  1 ) ~ , ( N -  1), (71b) 

where FI~(N-1) ,  F14(N-1), F2(N-1)  are given by (26) through (28). 
Notice that (*y~-~,*T~ -~) given by (71) exists and is unique, if [ I +  
B1BTLI(N)+B2Bf(N)]  is nonsingular. Substituting (71) into (68), we 
obtain 

J~(N - 1) = E [ : ~ ( N -  1 ) L , ( N -  1)~3(N - 1)] + KI(N - 1), (72) 

where L i ( N - 1 )  and K i ( N - 1 )  are given by (23) and (30), respectively. As 
we can see, (72) and (67) are of the same form. In deriving the Nash pair 
('71N-2, ' 7 ~  -2) at stage N - 2 ,  we will repeat what we did at stage N - 1 .  
An inductive argument then proves the theorem. [] 

I0. Appendix C: Feedback Stackelberg Solution 

In this appendix, we derive the feedback Stackelberg solution. The 
problem was stated in Section 5. 

Theorem 10.1. There exists a unique solution to the feedback Stackel- 
berg game. 

(i) The solution for Case A is 

U*fA(k) = *y~A(IA(k)) = Fl,a(k):~l(k) + F~4a(k).~4(k), (73) 

U~a(k)=* k a T2A(I2 (k)) = F2~A(k):~l(k), (74) 
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where 

F1,A(k ) = --BTZA(k + 1)[I + B,BTZA(k + 1)]-aA, (75) 

rlaA(k ) = -BTL1A(k + 1)[1+ B,BTL,A(k + 1)]-aA, (76) 

F2,A(k) = -BTL2A(k + 1) 

X[I+B2BTL2A(k+I)]-I[I+BxBTZA(k+I)]-~A, (77) 

ZA(k) = [I + B2BTL2A(k)]-'~[L2A(k)B2QIBTL2A(k) + L,A(k)] 

x [I + B2B~LzA(k)] -~, 

L,A(k) = P, + FT~A(k)F~,A(k) + FTA(k)QIF2,A(k) 

+ (A+ B,F,,A(k) + B2F2,A(k)) T 

x L,A(k + 1)(A + B~FHA(k) + B2F2~A(k)), 

(78) 

(79a) 

(79b) LIA(N) = PI, 

L2a(k) = P2+ FTA(k)Q2F, IA(k) + FTA(k)F2,A(k) 

+ (A+ B,FHA(k) + B2F2,A(k)) w 

x L2a(k+ 1)(A+ B, Flla(k) + B2F21A(k)), (80a) 

x L2A(N) = P2. (80b) 

Their costs to go at stage k are respectively 

J1A(k) = E{x3^T (k)Laa(k)x3(k)}+~, K1A(k), (81) 

J2A(k) = E{RT4 (k)L2A(k)~a(k)} + K2A(k), (82) 

where 

K~A(k) = tr{[P~ + ATL~A(k + 1 ) A -  L~4a(k)]Z3(k) 

- L~A(k+ 1)Ea(k + 1) + L~4A(k)~,I(k) + L~A(k+ 1)R} 

+ KIA(k + 1), KIA(N) = tr{P~Z3(S)}, (83) 

KEA(k) --- tr{[P2 + ATL2A(k + 1)A - L24A(k)]Z3(k) 

- L2A(k+ 1)~£3(k + 1) + L24A(k)~,~(k) + L2A(k+ 1)g} 

+ K2A(k + 1), K2A(N) = tr{P2Z3(S)}, (84) 

L~4A(k) = P1 + FT4A(k)FI4a(k) 

+ (A+ B,F~4A(k))TL~A(k+ 1)(A+ B~F~4A(k)) - L,A(k),  
(85) 

Lz4A(k) = P2+ FTA(k)QzF14A(k) 

+ (A + BIF1,A(k))TLEA(k + 1)(A + B,F14A(k)) - L2A(k). 
(86) 
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(ii) 

where 

The solution for Case B is 

u*B( k ) = *y~B( I ~ ( k ) ) = Fl~B( k ):~,( k ), 

u*B( k ) = * y~B( I~ ( k ) ) = F2,B( k ):~,( k ) + F24B( k )~4( k ), 

F1,B(k ) = Fl,A(k), F2,B(k) = F21A(k), 

F24B(k ) = -BTL2B(k  + 1)[I + B2BTL2B(k + 1 )]-IA, 

L2B(k ) = L2A(k), L,B(k)  = L,A(k  ). 

Their costs to go at stage k are respectively 

J1B(k) = E { ~ ( k ) t l B ( k ) 2 3 ( k ) }  + Kl~(k) ,  

J2~(k) = E{:~r(k)L2B(k)~3(k)}+ K2B(k), 

where 

(87) 

(88) 

(89a) 

(89b) 

(89c) 

(90) 

(91) 

Proofl We will prove part (i) only. The proof for part (ii) is similar. 
Feedback Stackelberg strategies have the property that they are in static 

Stackelberg equilibrium at every stage of the problem. This property can 
be observed from its definition, and hence we can solve the problem by 
going backward (a dynamic programming type of approach). 

K,B( k ) = tr{[Pt + A TL,s( k + 1)A - L,4B( k ) ]Y~3( k ) 

- L1B(k + 1)E3(k + 1) + L , 4 B ( k ) ~ ( k )  + L1B(k + 1)R} 

+ K18(k + 1), K , B ( N )  = tr{P, E3(N)}, (92) 

K2B(k) = tr{[ P2 + A TL2B( k + 1)A - L24B( k ) ]~,3( k ) 

- L2~(k+ 1)Z3(k + 1)+ t24B(k)Z,(k)  + L2B(k+ 1)R} 

+ K2B(k + 1), K2B(N) = tr{Pff~3(N)}, (93) 

t~4B(k) = P~ + F2re~(k)Q,F24(k) 

+ (A + B2F24B(k))TL, B(k + 1)(A + B2F24R(k)) - L ,a(k) ,  
(94) 

t24a(k) = P2 + F~4~(k)F24~(k) 

+ ( A +  B2F24B)TL2B(k+ 1)(A+ B2F24B(k)) - L2B(k). 
(95) 
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is 

where 

At stage N (no more decisions to be made), the cost to go of player i 

J~( N)  = E[xT ( N)P~x( N) ] 

= E[2T(N)P~;3(N)] +tr{PiE3(N)} 

/ s  T 
= E[x3 (N)L~A(N)x3(N)] + K~A(N), (96) 

LiA(N) = Pi, KiA(N) = tr{PiE3(N)}. 

At stage N - I [ I A ( N  - 1) is available], player i's objective is to minimize 
]~(N - 1) given by 

. ~ ( N -  1) = E [ x ' r ( N -  1)P,x(N-  1) + u f ( N -  1)u~(N-  1) 

+ u f ( N  - 1)Qiu2(N- 1)+ xT(N)P~x(N)[I~(N- 1)]. 
(97) 

By applying the Kalman filter equations (19) and Lemma 3.1, we obtain 

J I (N  - 1) = uT(N -- 1 ) u l ( N -  1) + u f ( N  - 1) Qlu2(N - 1) 

+ (A)~3(N- 1) + BlU~(N- 1) + B2u2(N- 1)) T 

x LIA(N)(A,~3(N- 1) + B~u , (N-  1) + B2uz(N - 1)) 

+ 2?f(N - 1 )PI~3(N-  1)+ t r ( P 1 2 3 ( N -  1) 

+L~A(N)[~3 (N /N-1 ) -E3(N) ] }+K,A(N) ,  (98) 

Yz(N- 1) = E[(A:~3(N- 1) + B~u~(N - 1) + B2u2(N- 1)) T 

x L2A(N)(A.,~3(N- 1)+ B~u~(N- 1) 

+ Bzu2(N - 1)) ] I2(N - 1)] 

+ E [ u [ ( N  - 1) Qzu~(N - t) I IzA(N -- 1)] 

+ :~,(N - 1)P2:~(N - 1) 

+ t r{P~Zl (N-  1)+ L2A(N-  1 ) [E3(N/N-  1 ) -  E3(N)]} 

+ KzA(N). (99) 

To any strategy y~A-I [ I~(N-1) ]  announced by the leader, the follower's 
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rational reaction set is a singleton, i.e., 
N - 1  A Y2A (I2 ( N -  1)) = -B~L2A[I + B2Bf LEA(N)]-~A£~(N - 1) 

+BIE(y~-I(IA(N-1)IIA(N-1))] .  (100) 

Substituting u2(N-1) given by (100) into (98) and optimizing J~ (N-1)  
with respect to u~(N- 1), we obtain 

u*~(N- 1) = F, ,A(N-  1)~ , (N-  1) 

+ F,4A(N- 1)x4(N- 1), (101) 

where F~A(N-  1) and F~4A(N - 1) are given respectively by (75) and (76). 
Substituting (101) into (100), we obtain u*(N - 1) given by (74). Substituting 
u*(N-1)  and u*(N-1)  into J i (N-1 ) ,  we obtain (81) and (82) for k=  
N - 1. The proof of this feedback Stackelberg solution can then be concluded 
by an inductive argument. [] 

11. Appendix D: Proof of  Theorem 5.3 

We will prove part (i) only. The proof for part (ii) is similar. 
From Eqs. (81) and (83) of Appendix C, we obtain the cost for the 

leader in Case A, which is 

J 1 A ( O )  = tr{ L 1 A ( 0 ) ~ ( 0  ) -1- [Pi + ATLIA(1)A - L 1 4 A ( 0 ) ] • 3 ( 0  ) 

+ L,A(1)R --t- L,aA(0)~I(0 ) 

N - 1  
+ ~ [[P, + ATL,A(k+ 1)A-  L1A(k) - L14a(k)]E3(k) 

k := 1 

t ,A(k+  1)R + t14a(k)E,(k)]}. (102) + 

Let JIA(O) and J[~(0) correspond to Information I and II, respectively. Then, 
N--I 

II ] Jla(0) --J,A(O) = ~ tr{[P, + ATL~A(k + 1)A-  LEA(k) - LI4A(k)] 
k = O  

× [E3~'(k) - ~3~(k)] + L14A(k)[E~'(k) - ~[(k)]}. 
(103) 

If Information I provides better information for the leader alone than 
Information II, then Lemma 4.1 implies fll~(O)- J~a(O) if 

P~+ATLtA(k+I)A-L1A(k)-LI4A(k)~O, for every k~ 0. 



186 JOTA: VOL. 57, NO. 1, APRIL 1988 

Substituting Eqs. (79) and (85) of Appendix C into the left-hand side of 
the above equation, we obtain 

Pt + A TL1A( k + 1 ) A -  t l A ( k  ) - L14(k) 

= {BTL~A(k+ 1 ) [ I +  B~BTL~A(k+ 1)]-~A} r 

x [I  + B T L , A ( k +  1)B1]B~L,A(k+ 1)[ I  + BIBTLIA(k+  1)]-~A 

--> 0. (104) 

D 
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