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RABBIT AND HUNTER GAME: TWO DISCRETE
STOCHASTIC FORMULATIONS

P. BERNHARD, A.-L. CoLoMB and G. P. PAPAVASSILOPOULOST
INRIA, Sophia-Antipolis, Route des Lucioles, 06560 Valbonne, France

Abstract—We study stationary and non-stationary versions of the same game with different information
structures. In a discrete set up, we find algorithms to calculate value and saddle-point.

1. INTRODUCTION

This paper deals with different versions of the same basic game. The main difference comes with
the information structure. Here, the information available to each player is, apparently, the same
in all three versions of the game, but in the last version, this same piece of information is no longer
the complete state of the game, because a time delay has been added. The first and second versions
differ in that one is stationary, with expected capture time as payoff, the second finite time, with
probability of capture before game end as the payoff. This same difference is found in the treatment
of the Princess and Monster on the circle game by Foreman [1]. His derivation in[l] for the
stationary game relies on the hypothesis that a finite value exists for the game. Here, in a discrete
set up, we are able to show the existence of a value and saddle-point.

2. THE GENERAL SET UP

2.1. Dynamics

A rabbit R jumps back and forth along a finite wall, in a discrete world. It can therefore be in
a finite number, N, of locations and is allowed to jump at each instant of time, of a limited jump
size /. (We shall, for simplicity, cover mainly the cases where the jump is limited to one unit or
unlimited.)

Let x,ely={l,..., N} be the position of R. Let 4, € U,,(x,), where x + U_,(x) = I, be its jump
at time ¢, then the dynamics of the rabbit are simply

X, =X+ u,. (N

A hunter H watches the rabbit and is trying to shoot it. We shall assume he has an arbitrarily
large number of shots at its disposal. (Changing this to a given, finite number would only make
the computations heavier by introducing an extra state variable, except if that number were one.)

Let v,€ I, be the position at which H aims at time 7.

In Sections 3 and 4, we shall assume that the bullet reaches the wall in one step of time. That
is, a bullet hits the wall at z, at time ¢, with

o= &)
Capture is defined by
t=inf{r; x,=z,}. (3)

In the fifth section, we assume that the bullet takes several time steps to reach the wall. In
practice, we shall only detail the case with two time steps. It is clear how the method we shall use
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generalizes for more time steps. Using the same definition for z, and capture, (2) is now replaced
by

Yip1 =0,
4)

- —
Siel = Vi

2.2, Strategies

Although we have not yet completely described the payoff, there is no need to specialize in animal
psychology to guess that the rabbit R will strive to survive as long as possible, while the hunter
H will attempt to get his lunch ready. This will clearly involve mixed strategies that we introduce
now.

Let a mixed strategy for R at time ¢ be a probability distribution p, on U ,(x), i.e. a vector of
simplex Z,

p,(u):P(u,:u), P:ezu- (5)
Likewise, ¢, will be a mixed strategy for H at time 7, a vector of the simplex X,
q,(l’) = P(vt = L’), q.€ ZN (6)

Both players have infinite memory, but while H sees R and knows where he has shot in the past,
R does not know where H is shooting or has shot. (Otherwise, he would never get caught and would
not need mixed strategies!)

Let therefore

X, ={x X _1voooaXo)s Yi=1Vay 1., Yo} if appropriate. (7)

R must choose his mixed strategy p, as a function of X|; and so does H in Sections 3 and 4 [game
(2)]. while H has access to X, and Y, in Section 5 [game (4)]

Pi= (pl[Xr]v

(8)
q,= W:[Xra Yl]'

2.3. Pavoff

Replacing v and ¢ by mixed strategies like (5) or (6) in the game (2) [or (4)] makes x,, y, and
-, stochastic processes, and therefore ¢, in (3) a stopping time.

In Section 3, the payoff that H will try to minimize, while R maximizes it, will simply be R’s
life expectation E(t,). This game will be called the stationary game. We shall look at it only in
the complete information case (2) [and therefore no 7, in (8)].

In Sections 4 and 5, we shall assume a time T is given (and known of both players) when the
game warden is going to walk by forcing the hunter to leave (did we tell you he was a trespasser?).
The payoff then shall be the probability for the hunter to kill the rabbit (probability of capture)
P(t, < Ty and, of course, R is seeking to minimize it while H is striving to maximize it.

3. THE STATIONARY GAME

3.1. Problem statement
The motion of the rabbit is described probabilistically as a Markovian matrix P = p;, defined
by
def

p,=Pu=j—i/x,=i), p,=20, Y p,=1 iel,, jel,.

iely
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The hunter, knowing x,, chooses to shoot at any position in [ with a certain probability. So
the motion of the hunter is described probabilistically as a Markovian matrix Q = g,; defined by
ql‘jdzd P(e,=jlx,=i) q;20, Z g;=1 iely, jel,.

jely

Thus, if x, =i, the bullet will hit position j at time ¢ 4+ | with probability g¢;,.

It should be pointed out that we consider in this part of paper that p; and ¢,; are independent
of ¢, i.e. we study stationary strategies.

Stationary strategies are motivated for our problem partly because of the infinite time horizon
and partly because of their relative simplicity. We do not intend to imply that nonstationary ones
can be of no relevance to the infinite time horizon problem that we study.

Since the time interval considered here is infinite, the hunter can assure that he will kill the rabbit
with probability one by choosing ¢,, = 1/N, for all i and j in /,, a fact quite easy to demonsirate.
Thus, in the infinite time case, what appears to be the pertinent objective of the hunter is the
minimization of the average time within which the rabbit is killed. The rabbits’ objective is the
contrary so that the two players are engaged in a zero-sum dynamic game.

It should be notice that the average time of killing is a function of the initial position of the
rabbit, x,. Thus, if Z; denotes the average killing time if x, = i, we have a vector Z =(zZ,,...,Zy)
of payoff objectives where the ’ is the notation for the transpose.

Several questions can be posed concerning the situation described above.

First, for fixed P, what is the best Q and conversely, for fixed Q, what is the best P?

Do they exist and if yes, can one find them in a convenient manner?

If there are no restrictions on the choices of P and Q, does there exist a saddle-point solution?

If the matrix P is constrained to be of a certain form, for example p, =0if i —j[ >/ + 1 (i.e.
the rabbit can move at most / positions to the right or the left of its current position x, = i), does
a saddle point equilibrium exist and what is it?

It should be borne in mind, that in all the questions mentioned, we are interested in the whole
vector £ = (2, ..., Zy) and would like the optimal pairs pertaining to the questions posed above
to be optimal simultaneously for each component of Z.

In the next sections, we study some of these questions, in the context of a simple example, and,
in the later sections, we address them more generally. In the final conclusions section, we present
some further questions and problems intimately related to those studied here.

3.2. Introductory example
Let us consider [, = {1, 2} and the following matrices P and Q

P:( 1 O>. Q=<q|1 ‘112>.
l—a a 9n qn

Let P be fixed and thus we have a single objective problem, i.e. choose Q as to minimize the
average killing time. If x, = [, it will necessarily be that x,,, = [, so that the hunter obviously
chooses ¢q,, = 1, ¢, = 0. Therefore, the problem of the hunter is to choose g,;, g». Let us consider
the following two possible choices for Q

10 10
Q'=<1 0)’ QZ:(O 1)’

and study first the situation under Q = Q,. Let x,=2.

Under Q,, the hunter shoots always at position 1 if the rabbit is at position 2 (or position 1).
If z, denotes the time at which the rabbit is killed, given that it starts at time zero at position 2,
i.e. x, = 2, it holds for the following strategy (for 7 € {1, 2, 3, 4}, the rabbit chooses to go to position
2 with probability a, at time ¢t =5, it chooses to go to position 2 with probability 1 — a)

P(z;=5/x,=2,0 = Q,)=a*(1 —a).
In general, we have

Piz=t)=a""'"(1—a), for t=1,2,3,...
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and thus. the average time for killing the rabbit is

Iy=FE(z/v.0=0))
=3 1" '(1—-a)
i

—I‘/ if a<l.
| —
If « = 1, then the rabbit stays always at position 2, and is never killed: this is in agreement with
lim, (1 —a) '=+oC.
Let us now study the situation under Q = @, and x,=2. There are now only two possible
trajectories for the rabbit:
if the rabbit starts at x, = 2 and goes to position 2, it will be killed at time I and this happens
with probability «,
if the rabbit starts at x, = 2 and goes to position 1, it will be killed at time 2 and this happens
with probability 1 — a.

Thus
Plzo=1/x,=2,0=0,)=u,
Plzo=2/x,=2.0=0.)=1—u,
P(zo=1/x,=2.0=0,)=0 if >3,
and

tall

L =E(z/x=2,0=0Q,)=a+2(1 —a)=2—-a
One can draw Z, and Z, as a function of ¢ and the two curves intersect at a = (3 — V"'g);’l It is
clear that

and Q, is preferred over Q,,
and Q, is preferred over Q,.

if @ belongs to [0,a], Z, <
if @ belongs to [a, 1], Z. <

‘" flll

For 4 = a, both Q, and @, result in the same average killing time Z,(@) = Z,(a) = (1 + /5);2.

There are several interesting facts revealed by this simple example. One is that, although Q.
guarantees that the rabbit will be killed no later than time 2, whereas Q, allows the rabbit to be
alive after an arbitrarily large time, Q, is preferable if ¢ belongs to [0, &].

In the context of the example considered here with 7, = {1.2}, the reader can easily persuade
himself that a zero sum equilibrium cannot be formed by a pair of matrices P* and Q* which have
only zeros and ones. since, if, for example, the hunter shoots always at the position / when the
rabbit is at position j, the rabbit will always go from 7 to k£ # /. And so, it will never be killed.
Analogously can do the hunter and always kill the rabbit in the next instant of time, if P* is
composed of zeros and ones: thus, an equilibrium pair P*, 0* with zeros and ones cannot exist.

Using the results of the next sections, one can show that if the choices of P and Q are arbitrary.
there exists a unique zero sum equilibrium pair P*, O* with

/ 2
Fo Q%= 12 1,2
1/2 1,2
and the resulting average killing time Z,, if the rabbit starts at time 1t =0 at x, =4 /=12
= = "
I, =I,=2

Actually, this pair (P*, Q*), constitutes a zero-sum equilibrium for either one of the costs £(z;)
or E(z,).

Although it is reasonable to assume that @ is chosen arbitrarily by the hunter, i.e. that he can
shoot anywhere he wants, it might not be so for P, i.e. the rabbit might be restricted as to where
it can go within one instant of time, due for example to its finite speed. Thus, one may be interested
in investigating zero-sum equilibria subject to the constraint that P is of a certain form.
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Let us examine a situation of this type. Let it be that P is to be chosen of the form

1 0
l—a a)’
i.e. the rabbit can choose only a.
The hunter suffers no restriction as to his choice of Q, but it is obvious that he will choose ¢,, = I,
¢,» = 0. Thus, the hunter chooses
(e o)
l—-q q)

The average capture times can be calculated directly, or by using the more general results of the
next section to be

_T+4(1—a)
1+a(l -gq)
and it 1s easy to see that

a=

constitute the zero-sum equilibrium with resulting value for z,, (1 + \/g)/2, (i.e. the intersection
point of the two curves [a, z,(d)] appears, as may be expected).

Thus, we see that it is possible to have zero sum equilibria in cases where P is restricted, although
not every restriction of P will allow such an existence. The issue of study of zero-sum equilibria
under some restrictions on the choice of P is undertaken in paragraph 3.5.2.

3.3. Calculation of the average capture time

For a given pair of two N x N Markovian matrices P and Q, let z be the random variable that
the rabbit is killed at some time; it obviously depends on P and Q as well as on the initial value
of x,. It holds

N
Pz=t1+1/x,=1i)= Z Pz =1t/xy=j)p;(1 —q;), )
j=1

i.e. the probability that the rabbit is killed at time ¢ + 1, given that it started at x, =i, equals
the probability that it is not killed in going from x,=1i to some x, =; multiplied by the
probability that it is killed at time ¢ + 1 if it started at x, =/ at time ¢ = 1; the fact that
P(z=t+m/x,=j)=P(z =t/x,=j), which is due to the stationarity of P and @, is also used
with m =1 in deriving (9). Let

Pz=1t+1/x,=1)
Plz=1+1/x,=2)

Yiri1 = , €= € RN,
PG =1+ 1x,=N) '

and

Pudn  Puqn --- Pindin

PxQ def le.‘hl Pzzﬂz: pZN.qZN . L=P—PxQ.

Pvidm PnaGn2 - - - Pungnn

(9) can be written as
yl+I:Lyza t=l’2’3""5 }’|=(P*Q)e-

If some p,; =0, i.e. the rabbit does not ever go from position / to position j, the hunter can
obviously choose g;;= 0, since a shot at position j will be an obvious waste. Thus, without loss
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of generality, we assume that
p’.I=O:>qU.=(). (10)
Gregorskin’s theorem, applied to the matrix L, yields that all the eigenvalues 2 of L lic in the

disc

N
Z} Piidi;-

N
|Al < max Y p,(1 —g,)=1-min
j=1 o=

li

Under assumption (10), it holds that
Al <1 —min{p,;p, >0} <l,
1y

and thus, the matrix L has all its eigenvalues strictly within the unit disc of the complex plane.
This guarantees that y, tends to 0.e as 7 tends to + oc. So, the matrix inverses, series forms and
infinite series differentiations that will be used next, are valid. It holds

Pe<+)=yp+yty+

=w+Lly+Ly +-

=(—-L) 'y

—(I—P+PxQ) '(PxQe.
Since Pe =e, it holds

(I—P+PxQle=(PxQ) ie. (I—L)=y,,
and
Pz<+w)=e. (1

Since P(z = +a0) =0, we can calculate the average capture time Z by

+

HM\

X,

z =

y,=({I—L)"e

(=1

where (11) may be used in the last step. Thus
F=(U—L)y'le=(I-P+PxQ) e (12)

Formula (12) will be used repeatedly in the sequel.

3.4. The hunter’s problem

The hunter’s problem is to minimize = with respect to Q, P being fixed.
Here, we consider the problem
minZ=min(I -P+PxQ) e (13)
0 0

Notice that we are interested in (s that minimize all the components of Z simultaneously.

One way of going about this problem is the following. It is known that the inverse of an N x N
matrix A, assuming it exists, has (i, j )th elements (—1)'*/|4,|/|A4|, where |A] is the determinant of
A and |A4]; is the determinant of the minor of the (j, i) element of 4. Thus, it is easy to see that
although each component, say z,, of Z is a quotient of nonlinear functions of the g,s, these
nonlinear functions are multilinear in the sense that they are linear in each ¢,;, the rest of the
g, considered fixed. Thus, the extremal values of Z, can be achieved at a @, the elements of
which are zeros and ones. Consequently, one may minimize Z, by checking which ones of these
(N? in multitude) Qs results in the smallest value. If one is interested in minimizing all the
components of Z simultaneously, one may check whether this is possible by calculating Z for all
such Qs and find whether such solution exists and what it is. This procedure is quite cumbersome
and as it stands quite uninformative. If one considers in addition that such @'s cannot serve as pairs
of zero-sum equilibrium, one is bound to search for a different method for handling (13).
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Let us consider that a given choice Q results in Z and that another choice Q results in £. Thus,

~

(I—P+PxQ):=eand (I — P+ Px(0)%=e. We assume that (10) holds for both Q and .
Let £=2 46,6 e R". It holds

§=U—P+P+Q)'(PxQ—PxQ)

It is obvious that all the elements of P — P x Q and of P — P » ( are nonnegative and since it
holds

(U—P+P*0)'=(U—~(P—-P+xQ) '=I+(P—P+Q)+(P-P+QV+... (18

and similarly for ({ — P + P« Q).
Thus, if we want @ to be preferable over Q, it must be é <0, so we have

(PxQ —PxQ) <0. (15)

If, by a choice of O, we make the first component of (P +Q — P * 0)z negative and the other
components less or equal than zero, we have guaranteed that all the components of § will be less
or equal than zero. In addition, the first component of §, 8, will be strictly negative since the unit
matrix in the right-hand side of (14) guarantees that the first element of the first raw of

(I — P+ P * Q) is strictly positive. For example, if
Puzi=max{ P, cy,P1r72s > PININ )
we can choose the first raw of O by
4 ='“=41(I*l)=q‘l(l+l)="'241N=0a Gu=1,

and the other raws of 0 to be the same as those of Q, which results in

—puZ+ z P14y Z;

Jely

(P+Q~Px+Q) = 0 <0.

0
No reduction of value in going from (Q, Z) to some (Q, £) is possible by changing only the first
raw of Q if
PugnzZi+ F PwGNEN Z PuZis - PINENS
which is equivalent to
p,Z;=puZ, Vj I with p;#0 and p,#0.

The proof of the following theorem is a straightforward application of the ideas delineated
above.

Theorem 1

(1) There exists a Q that minimizes simultaneously all the components Z,....,Z, of Z.
(i) A Q is optimum if and only if

p”E,zp,-/E/, VI919[ Wllh pr'/;éoﬂ Pi/¢0~ (16)

where the ;5 are the solution of (13) for the aforementioned Q.
An algorithm for finding all the optimal Qs is the following

Step 1. Choose a Q = Q,, so that condition (10) is satisfied. Calculate
S=U—=P+Px0Q)'e. 3=0G,....Zu)"

Step 2: Calculate p, Z; for p, # 0.

Step 3: Find for each i/, the / for which

PyZ=max (PuZisPirZats e« » Pinin )
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Step 4: Choose @, such that ¢, = 1 for each i, where / is the / found for this / in the step 3.
Step 5: Set Q = Q,.

This algorithm will converge in a finite number of steps. It operates essentially on the extreme
points of the set of the N x N Markovian Qs and will converge much faster than the primitive
algorithm suggested in the paragraph 5. which checks N? possible Qs since it reduces simulta-
neously all the components of Z.

It 1s also clear that, as soon as an optimum has been found, all the other optima @ can
be generated as follows if @ is optimal consider for each i, the /s for which
PuZy=max (p,Zy, ..., Pinim) Where Z =(Z),,...,Zy, ) corresponds to the optimal Q* that has
been found. Any Q, which has at the ith raw g;; = 1 for any j for which the maximum of the p;;Z;s
for j =1 to N, is achieved, is also optimal.

The set of convex combinations of all these Qs iIs the solution set of problem (13). Finally, by
construction of the algorithm (/ — P + P = Q,) ' exists at each step k, i.e. (10) will be automatically
satisfied throughout the operation of the algorithm.

Example
Let
1/3 2/3 0
P={1/4 1/4 1/2].
1/5 2/5 2/5
Step 1: Let
1 0 0
g, =(0 1 0}
0 0 1
Then
3+ 3/17
I =({—P+PxQ) 'e={ 3+6/34
2+ 16/17

Using the criterion of the step 3, we choose

010 I+ 12
@.={0 0 1| whichyields z,={| 145/6
01 0 245/18
Notice that Z, is better than Z; componentwise.
Using again the criterion of the step 3, we choose
01 0 1+ 172
0,={0 0 1| whichyields Z,=| 1+5/6
0 0 1 2+1/30

Use of the criterion 3 shows that this is the optimal Z. It is worth noticing that in this example,
g;; equals one at the position of the raw-maxima of the p,s.

This is not in general true as other examples can demonstrate. As a maiter of fact, a simple
continuity argument can show that @, remains optimum if we perturb the last raw of P into
(1/5,2/5 +¢,2/5 — ¢) where ¢ >0, ¢ small, so that the optimal Q; for this new P will not have
g = 1, whereas py;, > py,, pi. [t is nonetheless reasonable to expect that large p,;s deserve large ¢, s,
so that a good initial choice of Q for starting the algorithm is obviously to choose g,;=1 for
py=max{pk=1..., N}
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Before leaving this section, it is worth pointing out an intuitive justification of the first part of
the theorem.

First, a simple continuity and compactness argument shows that there exist Qs which
minimize Z,.

Secondly, let us assume that Q, minimizes Z,, i = 1, ..., N at time ¢, the hunter shoots according
to the jth raw of Q;. If he fails to kill the rabbit, which now at time # + 1 is at x,,, = k, he uses
the kth raw of Q,, whereas common sense suggests that the kth raw of Q, is pertinent now.

The fact that there exists a Q that minimizes Z,, ..., Z, can also be justified by the fact that the
control of the hunter can be expected to be of the feedback type by which at position x, =/, the
ith raw of Q gives the optimal control.

3.5. The rabbit’s problem

The rabbit’s problem is to maximize Z with respect to P, Q being fixed.
Here we consider the problem

maxZ=max(I —P+PxQ) ‘e (17)
P P

Let P, correspond to Z, and P, correspond to z,. It holds
I—P+P*x0)zZ,=I—P,+P,xQ)z,=e.
Let 8 =%, —Z,. So, we have
§=(—P,+ P+ Q) '((P,— P))—(P,— P)*0)Z,,

where we assume that (10) holds for both P, and P,. Here, we are interested in increasing Z, i.e.
we would like to move from z, to z, with § = 0. We cannot increase ¢ if

N

(1 —g;) < Z. Zpl—qy), j=1,..., N, (18)
iz
or equivalently if
(1 —q;)=Z,(1 —qy), VYijk with p,#0 and p, #0. (19)
For example, if p,...., Py are not zero and p .. ..., py are zero, it should hold
2l =qu) =" =z —qy) (20)

The whole development of the previous section can also be carried out here in a completely
analogous fashion but we omit it for the sake of brevity. The only difference is that if P satisfies
(10). and (18) does not hold for some (i, /) and we update P accordingly to some P, which yields
a I, greater, there is no guarantee that P, satisfies also (10), so that some of the components of
Z, may be infinite.

3.5.1. The zero-sum case with unrestricted P. If p;;=1/N, for iand jin I, (13) yields that T = Ne
for any Q. Similarly, if g, = 1/N, for i and j in [, (13) yields that Z = Ne for any P.

Thus the pair (P*, 0*), such that for all j and jin Iy, p* = ¢} = 1/N, is a zero-sum equilibrium,
for each component of the vector Z. The averaging capture time at the equilibrium is N units of
time, i.e. it equals the dimension of P (and Q). The remaining question is whether there exists
another zero-sum equilibrium (P, Q). If it does, it will hold for all Q and all P

J(P.Q)=J(P.Q)=J(P.Q*)=Ne =J(P*.0) > J(P. Q) @
where J(P, Q) denotes Z =(I — P+ P x Q) 'e. The left-hand side of (21), in conjunction with the
condition (15) for optimality of Q = Q yields (P * Q* — P «x Q) >0 for any 0, ie.

But ¢} =1/Nand T p, =1, so (22) yields 1/N = p, G+ - +pw, for any Q and thus, for
any i.j, 1/N = p,; which implies p,,= |/N = p*,i.e. P* = P. Since () is an optimal response to P*.
it has to satisfy (20) with z, = N and thus Q@ = Q*. We have thus proven
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Theorem 2
If there is no restriction on P or Q, there exists a unique zero-sum equilibrium which is
I/N...1/N
Pr=Q*=( @ . | (23a)
I/N... /N
with optimal value for Z
N
k=10 (23b)
N

3.5.2. The zero-sum solution for a class of constrained Ps. In this section, we assume that P is
restricted so as to reflect the fact that the rabbit, due to its finite speed, cannot move further than
[ positions, i.e. we assume that p,; =0 1if |j —i|=2(/+ 1), / = 1, so we have

( P Pz oo Pty )
P P oo Puivny Puivy 0
P(/;m p(l;llﬁ..
P:‘- [)(/+2)2'..'-._ ’ (24)
- - C ) . Pivoow
0) P s
L e Pvo Py Pan J

Obviously, if a zero-sum equilibrium P* Q* exists, it will be ¢*=0if [i —j[ = (/ + 1). Let us
examine whether such an equilibrium with p¥ # 0, for i —j| <(/ + 1) exists. If it does, and the
associated optimal value is z* = (z¥, ..., z¥), it must hold

przf=pizE, li—jl<U+1), li—kl<(+1).

min[N.i + [} 1
p:'; = /<Z]* Z :) (253.)
k =max[l.i-1]“k

Also using (19), we obtain that

and thus

gy =1—(min[N,i+/]—-max[l,i—/]—1)p}, (25b)

where p* is defined by (25a).

We can write P* and Q* in a more compact form by introducing the following notation. Let
E be an N x N matrix with each (i, j) element equal to | if | —j| </ and 0 otherwise. E has the
same structure as P in (24) but with one’s in place of the p,s.

Let ¢ =(1...1) in R" and

z, 1/-F
S =El . p=FEe—e¢
DI 1/-%
Then
VE, () zE
P* = E . (26a)
(0) 1/, 0 l/o%
2o (0) Vet (0)
Q*=F — E . (26b)

(0) PaiZn 0 1jz%
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For the P*, Q*, z* to exist [since the choice Q as in (23a) is also admissible, we know that if
P* and Q* are optimal, (10) will be satisfied since the resulting z* has to be finite] and satisfy (13)
and (25), it must hold

(I ~P*+P*+xQ*)z*=e. 27
Substituting P* and Q* from (26) into (27) yields
1/, 0) 1/%,
¥ — Ee+[ : |=e (28)
(0) /Xy 1/Zy
Introducing for any i in I,
a=1/z2, (29)
denoted by (29), we can write (28) in the following equivalent form: let
a, Zl P
E{: =] ])=2Z(a) and Ee—e=p={ .
aN ZN pN
3
=——"— VYiel,. 30
i Z,‘ + p,‘ e N ( )

what we need to show is the existence of a nonzero solution of (30). To prove existence, we
introduce the function f from RY to R” such that, for any x in RY, we have f(x) =y with

~

5
=max| ¢, — |, Viel,,
yl [ E,+p,] N

where £ is defined by the first equality of (20) and ¢ in [0, 1] will be specified shortly. First, notice
that fis continuous and f([¢, 11*) <[, 1} by construction. Thus, by Brouwer’s fixed point theorem,
fhas a fixed point. But for our purpose, i.e. existence of a nonzero solution of (30), the fixed point
of f would be worthless if ¢ is such that, for some of the components of the fixed point of f, x = y,
we have x, = y, = € > [£,(0)]/(Z, + p,)- To exclude that this holds for the fixed point of £, for any
x;, we work as follows. If it holds for x;, it will be

f:/'(x) Cp;

Xi=y,=c = > £,(x).
But
€ o+
S(x)=Ex>E C|=eke=c(pte)=¢ : ,
¢ py+ N
and thus
p; 1
> A+ 1 R
Rl Uy )$(>pi+1
Thus, if € < 1/p,+ 1, it cannot be that the fixed point x = y of f satisfies
)3
Xi=y =€ ;——(—)f—)—.
pi+ Z(x)

To exclude that this happens for any component of the fixed point, it suffices to choose

1
(<
I+ max(p,,...,pn)

=7 (31)

With such an ¢, the fixed point of f serves also as a nonzero solution of (30).
Since any solution of (30) creates through (26), (29) a solution to the zero-sum game at hand
and since the value of this game is uniquely determined, we immediately conclude that (30) not

CAMWA 13 1.3—-0
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only has a solution, but a unique one. Also, this solution satisfies g, > ¢ for any ¢ <€ and thus
z¥ = 1/a; < l/¢, i.e. the average capture time at the zero-sum equilibrium is less or equal than 2/ + 1,
which is a much better bound than the already mentioned bound N, especially if N is much larger
than /.

Remark: notice that p=(,1+1,...,21—1,2L,2],...,2L, 20,21 —1,...,1) if N=2/+1,
p=LI+1,..., N-1,N—1,..., 1Y if N2+ 1 and thus € = (1 + 2/)~', correspondingly.

It is also clear that one can slightly modify the definition of £ as to define it only for x symmetrics,
i€ x; = Xy, X, = Xy_,,..., which will guarantee that the fixed point is symmetric and thus z¥ =z },
z¥=1z%_,, and so on, which will guarantee that the /th row of P* (or Q*) is the mirror image
ofits N —i+ 1 row.

Finally, since any solution of (30) provides the value vector of the zero-sum game at hand, which
1s uniquely determined one concludes that (30) has unique nonzero solution. The only thing missing
is an algorithm for finding the solution of (30), since the obviously suggested iteration x, , | = f(x;)
is not guaranteed to produce the solution even as one of its cluster points. In this paragraph, we
are going to remedy this weakness. Let us consider the function g from RY to R" defined by
g{x)=y with

e (7; 52 . viel,. (32)
It holds
pif(p+ 2, (X)) (0)
Ve(x)=E’ .
0) oo+ i‘w(x))2

Let us consider the iteration x,,, = g(x;). It holds
X — k= (VEED (i — X, ). (33a)

where %, is some vector in RY, for i=1,..., N. Since Vg(x) has nonnegative elements, if
X, = x, 1, it will be x,,, = x;. Thus, if we can find an initial point x, to start the iteration, with
g(x,) = x, and x, # 0 we are guaranteed to create an increasing sequence of vectors {x, } which
is obviously bounded in [0, 1] [see (32)] and thus we have guaranteed convergence of x, to
some x* #0 which solves x* =g(x*). We claim that any x,=ce, denoted by (33b), where

0<ec<é=1/(1 + max(p,,..., py)) performs this task. It holds
prt1
E(ce)=cEe=¢c(p +e)=c¢ : (33b)
prnt1
and thus
: c(p;+1)
=y with yp(ce)=—""—"".
glce) =y yi(ee) tcrt D)
It suffices
cp;+ 1) 1
— <. 34
PRIV ) R e B9

Thus, if ¢ <? and we start the iteration x,,,=g(x,) with any initial condition
x,=¢e,¢ <, #0, we will create an increasing sequence converging to a solution of (30).

Similarly, if we wish to have a decreasing sequence of x;s, it suffices that, at the first step,
g(xy) < x,. For example, if x, = a = pe for some p > 0, in order to have g(x,) < x,, it suffices that
Z00)/(pi+ Zi(xp)) < poor Ti(xg) < ppuf(1 —p) or w=(1+p,)"" for all is which is equivalent
to u=(1+H"" If we do not wish to choose x,=pe, since it holds that
T/E 4+ p) < (p,+ 1D/(2p;+ 1)(Z/Z + p) is an increasing function of X), it suffices to choose the
ith component of x, greater than (1 + p;)/(1 + 2p;). In conclusion, if
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| (1= p)/(1+2p))
a+h or ezxy= : , (35)

(1+ pa)/(1 +2p4)

the iteration x, , | = g(x, ) creates a decreasing sequence and thus {x,} converges. It is conceivable
that since {x,} is decreasing, it might converge to zero, in which case this iteration would not
provide a nonzero solution of (30). But, this can be excluded by showing that it is not possible
to have g(x) < x for x sufficiently close to zero. The proof is the following.

For x close to 0, it holds g;(x) = g,(0) + (Vg,(£))'x or

Xo=upe, lzupu>

Pl/(P1+‘21(x~l))2 0)
g(x) = Ex,
0 pN/(pN+2N(-£N))2
where ¥'isin [0, x], for i = 1, ..., N. If the algorithm with decreasing x,s converges to zero, it will
be
Pl/(Pl"‘i](fk))z (0)
g(x,) = Ex, < x. (36)
0 pul(pn+ En(ED))

It is clear from the form of g (32), that if x, =0 then x, _, =0 and thus, as long as x, # 0, it
will be x, # 0 for every k. Let d, = x/| x,|| and divide both sides of (36) by |x,|l to get

pi/(p+ £ (%)) 0)
0) Pnl(py+ ﬁ"N()?;(v))z
Since |6, 1| = 1, there is a subsequence of {,} which converges to some 8, |6 =1, 6 > 0. For
this subsequence, the corresponding subsequences of Xis go to zero for i =1,..., N, and thus
taking limits with respect to this subsequence in (37) yields
1/p, 0) P 0)
’ ES<d or Edé< d.
©  1py © o
Multiplying both sides with ¢’ and using (30) yields
AO+p,.... +p)0<(p1,...,px)0 o &+ - +0,<0.
But this cannot be for § =(d;,...,dy) =0 and ||| = 1. Thus, we conclude that any sequence

X1 = g(x,) with x,,, < x, cannot converge to zero.

We have thus established two algorithms, the one increasing, if x; is as in (33b) and the other
decreasing, if x, is as in (34) which provide in the limit the solution of (30). One can carry out the
first steps of these algorithms to create upper and lower bounds for the z;s.

Thus, starting with x, = (1 + 2/)'e, we calculate g(x,) = x, and q; is greater or equal to the
ith component of g(x,); starting with X, = (1 + 1), we calculate g(X,) = X, and q; is less or equal
to the ith component of g(x;). It turns out

Pi Pi
l+——(A+2)zz214+—-0+1).
1+pi( ) 1+p,-( )

For z,, this means

{
1+2l ———22z, 2 .
+21 kel 14/ (38)

For z,, somewhere in the middle, where p,, =2/, we have

]
1+2[>2z,> Pt
+2 =2z 1+21+2[+l 39
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The bounds (38) and (39) are in agreement with the fact that we expect the average capture times
for i close to 1 and N, to be smaller than those corresponding to /s far from 1 to N, since the closer
the rabbit starts to the barrier (i.e. i =1 or N) the more restricted its moves are.

Having established the existence of a solution of (30), it is trivial to show that the P* Q%
constructed as-in (26) provide a zero-sum solution to the game. By arguments similar to those used
in the part 3.5.1., one can show that it is unique.

Let us formally state the results of this part in the following theorem.

Theorem 2

The zero-sum game, with P restricted as in (24), admits a unique solution given by (26) where
the z¥s are found by solving (29) and (30). The solution can be found by finding the ;s that solve
(30), by using the iteration x, ., = g(x,), where g is given in (32) and x, is as in (35) or x, = ce,
where 0 < ¢ <¢, and ¢ is given in (31).

3.6. Interpretation of the solution
Having derived the optimal strategies, let us elaborate on their meaning. Before doing that, let
us find out where the rabbit spends most of its time. Since P* is clearly composed of a single ergodic
class, it holds
.
lim - ) Pf=ep’,

n-+x R "y
where u’ = u’'P is a probability vector. It can be verified that
1 a\ N N
h=y S =Y aX =) a.
ayZy - )

Let A = Q’u; u; denotes the probability with which the rabbit will be at position i, after the lapse
of a lot of time, assuming it is still alive, and 4; denotes the probability that the hunter will shoot
at position 7, i.e. 4 gives the distribution of the bullets as time goes to infinity. Let us proceed now
with some intuitive interpretations of what happens, by employing an example. Example: let N = 3,
! =1. Calculating the a;s, z;5. P, Q, u. A at the optimum yields

a,=a,=0.453, a,=0.375,

5 =2, =2207, z,=2.666.
T, =%,=0824. ¥,—1281,
0.55 0.45 0 045 055 0
P=10.355 029 0355), @=(029 042 0.29),
0 0.45 0.55 0 055 045
| 0.305 0.250
0.305 0.250

Thus, the average expected time for the rabbit to leave, increases, the further, the rabbit starts
at t+ = 0, from the boundary (z, > z,). The rabbit has a tendency to move to the boundary whereas
the hunter prefers to shoot more towards the middle. One can say, intuitively, that the hunter
exhibiting a tendency to shoot more towards the middle, forces the rabbit towards the boundary,
where the restricted moves of the rabbit make easier the hunters’ task. Nonetheless, things are
such that the rabbit ends up spending more time around the middle (since p, > u, = y;) where
his life expectation is higher (z, > z;, = z;) and actually that is where most of the bullets fall
(4, =0.499 > 1, = 1, =0.25). Thus, two different tendencies appear. At each instant of time (short
time horizon), the rabbit moves towards the boundary, forced by the hunter’s tendency to shoot
more in the middle. But in the long term horizon, the rabbit frequents more the middle where his
life expectation is higher and similarly the hunter ends up most of his bullets there.
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The stationary strategies applied to the finite horizon game.

It is worthy finding out in what situations, the stationary strategies are good for finite time
problems. This obviously concerns the magnitute of the time horizon.

It holds y,,,=(P — P *Q)y,y =(P*Q)e and

g 0) !
Pz<te)=y,++y=¢— (PxP)|e
0) Px
Thus
A,
P33
pr (0) R A
(P *xP)e = : <max<i2’,z’=l ..... N>e=9€
©  py Ay ’
pszzv
with
aji
A=E[ :
ay
Thus, if
P (0) !

(PxP)le<Bie
©)  py

and if § <1, 0 gives a rate of convergence of lim,,, P(z < te) = e. This can now be used as
follows. The stationary strategy applied to the finite time horizon problem with time horizon ¢,
will give a very good strategy for the hunter, who will kill the rabbit fast in average times Z,, ..., Z,.
and the killing will take place with probability 99% =1—¢, ¢ = 1072, if 0/ < 1072, i.c.

tf> m (40)

Let us show that 6 < 1, by calculating explicitly a § with § <8 < 1. We will need the following
fact

. . Xi+ o4+ xy G+ (N~ 1)

if <x<¢6,i=1,...,N,¢,>0, then (j)(x)(xl T ) GRS DR
The proof of this fact is as follows: if ¢ (x) achieves its maximum in the interior of the constraint

set, it will be x; = - = x, and the value of ¢ will be 1/N. Checking now the values of ¢ at the

boundary, it is easy to show that ¢ achieves its maximum by taking (N — 1) components of x to

equal the minimum value ¢, and only one component of x to equal the maximum value ¢,.
Using this fact and taking ¢, = 1/(2] + 1), ¢, = 1/(/ + 1), we can show that

A G+pd
2 (Gt pi)
Thus
A, €3+ pici 1 1
i 2P Gith ¢ = SGo=
PSP+ ™M YTy eTIA

We can now use the fact that, if 0 < 4, < 4, then

; €3+ A} - a4+ A4
"o+ Aoy 7 (6 + 4
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to show that
A, €3+ 21}
PP ] .
P S G T 20 )

=¢.

Letting ¢, = 1/(2] + 1), ;= 1/(/ + 1) in the preceding equality, we find
max (0B _p<a - 44+ 1607 + 1217+ 2 -
b ) S T ey 2 2+ 86+ 1

Thus
1
+ 8/7+ 6/ + 1
44+ 16013+ 1212+ 2/
is a number smaller than 1, (which is independent of N ) and can be used in (40), in place of

6 to provide lower bounds for the duration of the game, in order that the stationary strategies are
“good” for the finite time case. Notice, that for / large

1

fx——=x1-

I+
+l_

g =

] o

3

o

!

and thus

2 I
~—lIne.

2 2
log,e (1 — 1_2)

So that for large /, we have #,~/%/21n(]1 — p) where p is the desired probability of killing.

4. FIRST VERSION OF THE NON-STATIONARY GAME

Let @ and ¥ be given strategies. Let the payoff J(@, ¥) be the probability that R be killed at
time T or before knowing the initial state. Let the stopping time

= inf{z;1e{l,...,T} and x =z}
TTT Of Vee{l, ..., Tlx #z,.

We use the same payoff and stopping time in Sections 4 and 5.
We use dynamic programming to solve this game.

4.1. Set up
Let @, ¥ be given strategies. Let W(x, t) be the probability that R be killed at time 7 or before
when x, = x. We have

Wxn= 3 (p(u)q(u +x)+ Y p)g@)W(x +ut+ 1))-
ue Ugzq(x) velyivAx+u
R wants to minimize this probability and H to maximize. [saacs’ optimality principle gives us
the optimal value
V(x, t) = min max < Y, pwygu+x)+ Y p)g@IV(x +ut + 1)>,

peLy geIy \ue Uga(x) velyv#x+y

=min maxp’'B,,,(x)q.
peXy qely
where B, (x) is a matrix of dimension less or equal to N x (N + 1).
Therefore, we have to solve a matrix game at each stage of the dynamic programming algorithm.
The equivalence between solving such a problem and solving a linear programming problem gives
us the existence of a mixed saddle point for this game.
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4.2. Results and some properties

We show some properties of symmetry with respect to x, so we can study the game for x in
{1,...,N/2} if Nis even or x in {I,...,(N + 1)/2} if N is odd.

Typica! results are as follows for / = 1.

Leta=V(x—1,t+1),b=V(x,t +1)and ¢ = V(x + 1,¢ + 1). For the game value, we have

b(l—=c)+(1—5)

Ya-D=ToFa e
‘+(1fa)+(1f,,)+(1ic)

Vix,t)= l 7 l for x #!
I—a) (-5 (-0

and
1BV T-1)<1)2 Vx,
12<V(x, 1)< Vx and ¢t#7T 1,
Vix+ 1L,V nD<Vix+Lt—-D<sVix,t =1 V(x,1).

So that the table of Vs against x and ¢ can be easily computed. We give an example for ¥ = 12:

1 2 3 4 5 6

T-1 12 1/3 1/3 1/3 1/3 1/3
T -2 0.7140 0.6000 59 59 59 59
T—3 08330 0.7570 0.7140 0.7040 0.7040 0.7040
T —4 09000 0.8500 0.8200 0.8050 0.8050 0.8050
T—5 09400 09100 0.8800 0.8700 0.8688 0.8683
T—6 09640 09450 0.9260 0.9160 0.9127 09123

For the optimal strategies, we have

For R
1
P =
o= ——
+ l1—c¢
i
oIl =—7—
|+_l___£
1-b
For H

SN if v=1,
PHI () = < &X11(0) if v=2,
0 otherwise.
For R and x #1

‘DI*[X](—I)=-—]—_G .
: 1—b+l—c
1
PHx)0) = T 13
: 1—a+1—c
1
QX x](1) =
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For H and x # 1
1 —20Xx} v —x) if v=x—1,xx+1,
Y¥x](v) =

otherwise.

At x and ¢ fixed, the probability that R jumps in x + 1 is less than the probability that R stays
in x which is less than the probability that R jumps in x — 1.

QX x] (1) < PH[x](0) < DX[x](—1).
At x fixed, x # 1, the probability that R jumps in x — | decreases and the probability that R
jumps in x + 1 increases when ¢ increases.
Prx(-D) < ([x](—=1)
PHx]() = @} | [x](i).

The properties of (¥ #[x]),, are derived from the properties of (®*[x]) -

5. SECOND VERSION OF THE NON-STATIONARY GAME

5.1. Definitions

Let now the bullet take two time steps to reach the wall. The game is described by (1), (3)
and (4).

Let U = (4,...,u,) and V,=(v,,...,r,). We can remark that ¥,=V,_, and X, = (x,, U,_,).

The players’ information are given by

—for H, (X,, Y,) or (xo, U, \,V, |)forall tin {0,..., T},
—for R, (x,, vy, 29) for t =0 and X, or (x,, U, ) forall rin {1,...,T}.

R knows exactly x at each time ¢, so we can introduce a distribution law Q, on the space I, for
y. This law depends on

—the strategy of H at ¢ — 1, denoted by ¥,_,,
_Qt~ s

—the information of R at ¢+ — 1, x, ;.

0,(y) is the a posteriori probability that y, equals y. Let E be defined by

E={Q=(Q(O),---,Q(N))E[0,1]‘“'; ;‘:Q(y)=1,Q(0)=0 or Q(0)=1}-

At time ¢, the strategies of the two players are defined by
—R’s strategy depends on its state, x in /, and Q a distribution law in 1

(pl['Y’ Q] = Drs
—H’s strategy depends on R’s state, x in I, the control ¥, , that he has chosen at time ¢ — 1
or y in [y and Q a distribution law in 7,

¥.[x,y,Q0l=gq,.

Then, we can write explicitly the dependance between Q, and Q, ,

Ql(y)= Z Qrol(j)'Pr—l[x’ja Ql—l](y)s fOI' t/>'2s

Jely

and

Q1(¥) = ¥o[x0.0, Qo ](y) with Q,eE; Q,(0)=1,
denoted by Q,(y)=F(Q,_,¥,_)(»).

Let @ and ¥ be given strategies. Let W¢¥(x, y, z, Q, 1) be the probability for H that R be killed
at time T or before when x,=x, y,=y, z,=2z, Q,= Q. Now, we have
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Y 2 Olx, QM) [x, », QIW)WET (x + w0,y F(Q, ¥), 1 + 1)

ue U qg(x) vely

W (x, v, 2,0, 1) = if x#z and <1,
if x#z and t=1¢ (and then, ,=T),
1 if x=z (and then t,=1).

We remark that the first term of the right-hand side of the equality does not depend on z, so
we denote it by WT¥(z, y, Q, 1), furthermore by convention, we set W{¥(x,y, Q, 1) =0.

Let W$¥(x, O, t) be the probability for R to be killed at time T or before when x, = x. 0, = Q.
We have

W (x,0.0)= Y QU)W (x,3.0.1) for 131,

vely
and
W (xo, Q0. 0) = WT¥(x,,0,0Q0,0) for ¢=0.
We define
—the H cost function by
Vi, p, Q. 0)=max Y Y q@)®,[x, Qlw)V,(x +u, v, F(Q. ¥,), 1 + 1), (40
TEIN wel yix) vely
where

¥ [x.y, Q] = q* belongs to the set of arguments of the maximum sought, the function V. is
defined by

V.. Iy x E x{0,...,t} — B, B bounded

Vix,y,Q,t) if x#z and t<1,.
x, 3,0, t)y->V.(x,y,0,t1)=< 0 if x#z and =1,
1 if x=z,

—the R cost function by

Vix,0.00=3% Q(»)V(x,»,0,1)

vely
= min YO Y Y p@¥ixy. QW (x +u v, F(Q,¥), 1+ 1), (42)
PEZY yely ueU,q4lx) vely

where & [x, 0] = p* belongs to the set of arguments of the minimum sought.
Remark: The equality (42) is equivalent to this equality:

7(x,Q.)=min max Y Q(y) ¥ ¥ p@)g(y)@V.(x +uv,FQ, ¥),1+1).

pely el Iy yely ue Uy fhx) vely

Remark: Thus, we have V,(x,y,Q,t) = Wg’""(x, v,z,Q,t), V= W and ¥ = Wf"}.
Let Q* be a solution of (43):
0, (=Y Q¥ )¥.[x.»QN() for 121,
yely (43)
O+ )=¥lx,0,Q¥(-) with Q% such that QF0)=1.

Let ‘p?"(xo, Ut—l)= (ﬁt[x/a Q?"] and lllf(xo’ U,,], V1—1)= ‘17,[Xz,y,, Qr] for all X Y, in IN-
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5.2. Theorem

Theorem 3

If it exists Q* &* ¥* V from [3xEx{0,...,4} to B,, B, bounded, ¥ form
Iy x Ex{0,...,1} to B, B, bounded verifying the equalities (41)~(43) then

() J(*, ¥*) = V(x,,0,0%,0) = V(x,, 0. 0),
(i1) For all admissible strategies @ and ¥, we have the following inequalities

J(@* W) < J(@* W*) < J(P. ¥H).

Proof. First, notice that (41) implies that ¥V = W{'¥" and V' = W It follows the equality (i)
of the theorem.

Take now an arbitrary ¥. & and ¥ together generate trajectories (depending on w). Let {X,},

{A}_r,} {a} be such a trajectory. Also, let O, be generated by (43) along this trajectory (i.e. placing
¥ and not ¥ in the equation for Q,, ). Let  such that 1 <1,.
We have

E(ﬁ?(Wg")(.X',+],}’,+],Z,+1, Qr+l’ I+ l)/XI* Y/)

YO q@)8,x, 0]w) W (x, +u, v, v, F(Q, PO t+ 1)

ue Ugg) vely
if x,,, #z,, and <1,
0 if x, ., #z,,, and =1,
1 if x,.,=z,.
< W(x,. v, z,0,, 1) by definition of ¥.
Then
J(@,P)=E* (Wi (x,.v,.2,. 0, 1)]%0).
= E%(E W (x,y,0 2 O 1IX, 1Y) %),
with the increasing algebra property,
< W (x),0,0,0,,0) = W (x,,0, Dy, 0),
=J($, ¥).
So, we have J(@*, P) < J(®*, ¥*) for all admissible strategy y
Take now an arbitrary @. & and ¥ together shall generate trajectories. Let {X,}, {p,} be such

a trajectory. Let O, be generated by (43) along this trajectory. Then, (Q,) is the conditional
distribution law of y, knowing X,. Let ¢ such that ¢ < t,. By definition of W$¥, we have

WTW(sz+I-Q/+I~ t+D)=EW (x50 Qo+ D/X )

Then
EW(x, 0 Qryint + DIX) = E(EWT (X, 00000 Qrvr 8+ D/XL /XD,
=EW(x, 1, v11. Qi1 t + 1)/X,) since
(X)) = a(X, ;).
So, we have
EP" (W (x, 1. Qrars t + DIX)
=EP WP (v Qoo 1+ DIX),

=Y 0,0) Y I x.»0]0)WE(x +uv,p, FQ, ¥), t + 1),

vely ueUyylx) rely
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>Y 0.0) ¥ ¥ éix,0]@¥ [x.y 0]lw)

yely ue Uygx,) vely

x W (x,+ u, v, y, F(Q,, ¥,), t + 1), by definition of &,

=Y 0.(V)W#(x,y,0,1),

vely
= W3 (x, 0, 1)
Then
J@. %)= E¥ (W (x,. 0y 1))/x0),
=E¥( . E¥ W (x, 0, t)/X, 1) ... [x,) with the increasing
algebra property,
> EW$(x,, 0. 1,)/x0)
=J(®, ¥).

So, we have J(®*, ¥*) < J(®, ¥*) for all admissible strategy .

The set of inequations (41) and (42) is a saddle-point in p, ¢, with ¥ fixed in ¥, which must
coincide with the optimal ¢ in the saddle-point. The algorithm amounts therefore to solving what
is essentially a fixed point problem ¥ = ¢*(¥) at each point in the extended state space (x, Q. t).
This is a formidable computational problem for large values of N, but can be tackled for small
values. This is currently being attempted.
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