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ITERATIVE TECHNIQUES FOR THE NASH SOLUTION IN QUADRATIC
GAMES WITH UNKNOWN PARAMETERS®

G. P. PAPAVASSILOPOULOSt

Abstract. We study adaptive schemes for repeated quadratic Nash games in a deterministic nd .,
stochastic framework. The convergence of the schemes is demonstrated under certain conditions.
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1. Introduction. The object of this paper is the study of a static quadratic Nash
game where the players do not have knowledge of the parameters involved in the
description of the cost of their opponents and of their opponent’s information. The .
game is played repeatedly and at each stage the players know the past actions of their
opponents. The only dynamics involved are in the accumulation of the information
on their opponent’s previous actions; apart from this dynamic aspect, the problem
considered is a repeated static game. We examine both the deterministic and stochastic
case, consider some adaptive schemes for updating the players decisions, and we show
convergence to the optimal decisions (in the mean square sense and with probability
one for the stochastic case), under some conditions. The scheme for the stochastic
case is actually a stochastic approximation algorithm of the Robbins-Monro type.

The underlying motivation for the present paper is to study situations of conflict
where the players do not know some of the parameters involved in the description of
the others’ cost functionals, or in the state equation. Such situations have been and
are being studied for the single player—i.e., control problem—case and come under
the name of Adaptive Control; the corresponding problems for situations of conflict,
i.e., Adaptive Games, has received very little attention up to now. The problem studied
here can be considered as a very simple type of adaptive game where the players adapt
their decisions as to converge in the limit to the solution of a static Nash game. It
should be noted that the strategies exhibited in this paper do not constitute a Nash
equilibrium pair for the construed dynamic—dynamic due to the dynamic informa-
tion—game; but similarly, the adaptive control strategy in the seif-tuning regulator
problem [5], converges in the limit to the optimal solution without being necessarily
optimal at each stage. Adaptive games are important for several reasons. For example,
when two players are involved in a situation of conflict, it is reasonable to assume that
each player knows his own objective, but not that of his opponent; in addition, he
might not know several of the parameters of the dynamic system which couples him
with the other. In decentralized control, we think of decentralization as a scheme
according to which each controller knows his own objective and information but not
those of the others. If each controller knew the objectives of the others—as is implicitly
assumed in many existing decentralized schemes—then the notion of decentralization
is weakened. Although considerable progress has been achieved for the centralized
controller, single objective adaptive control [4]-[6], the area of adaptive games is in
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822 G. P. PAPAVASSILOPOULOS

its infancy. The only work that the author is familiar with in this area is [7] and [8).
In [7], adaptive schemes based on self-tuning for stochastic Nash and Stackelberg
games are considered, where the players have the same information. (In the present
paper the information of the players is different.) In [8] two adaptive schemes are
studied for repeated Stackelberg games in a determinisitic framework.

The structure of the paper is as follows. In § 2 we consider the determinisitic case
and study three simple adaptive schemes. In § 3 we consider an adaptive scheme for
the stochastic case. The stochastic scheme is a Robbins-Monro type of stochastic
approximation algorithm. Although several resuits exist for such algorithms, many of
which can be used to provide convergence for the scheme considered here, the
conditions of convergence that they would obtain for our scheme are more stringent
than those that we prove here. In each section we provide several comments relating
the results with previous work, expand on their meaning and provide appropriate
motivation. Finally, we have a conclusions section.

2. Deterministic case. Let J,, J,:' R™ x R™- R be two functions defined by:
(1) Ji(uy, wp) =tuju+ uiRuy+uic,  i#j, Lj=1,2
where u,€ R™, R,, R, are real constant matrices and c,, ¢; are real constant vectors
of appropriate dimensions. A pair (u}, u¥) is a Nash equilibrium if it satisfies ([1], [2]):
(2 Ji(ut, u$) S Jy(u,, uf) Vi R™,
(3) Jo(ut, u3) = Jp(uf, u;) Vu,e R™,

or equivalently if

uy - {1 R _| &
. R eeme mely T 2]

J; and u; are the cost and the decision of player i

- Let'us assume that player i knows R; and ¢, but not R; and ¢ (j#i); then he
cannot solve (4) for ul. Consider also that this game is played repeatedly at times
t=1,2,3,-- -, that at time t, player i knows I;={u,,,***, 4, -y, U234, * *, U,_,} and
plays u, which is chosen as a function of I}, i.c.,

(5) ull=F;(I:vt)) i=112’ ‘=273v.."

The question is: For what F,, F; the recursion (5) will converge to a solution of (4).
Let us now examine three possible choices of F,, F;.
CasE 1.

(6) F(I,, t)=-Ru;,,—c, i=1,2, i#].

The meaning of (6) is that player 1 minimizes J,(u,, u;,-,), i.e., he reacts only to the
last announced decision of player 2. Recursion (5) assumes the form:

0 [)-[am)-(r[2] o) o2

Recursion (7) will converge to a solution of (4) for any initial condition (u,,, ¥, ,) if
and only if all the eigenvalues of the matrix R lie within the open disc of radius 1
centered at the point 1 in the complex plane, i.e.,

(8) [A(R)-1]<1

((8) is equivalent to |A(R;, kz)l < 1). Condition (8) also guarantees that (4) has a ynique
solution.
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i — 1-6
F(I,, )= -Rl[uj.t-l +0u, s+---+40 zuj.l] 'l‘_'_—',-l =Gy
(9

1>020, i=1,2, i#j

The meaning of (9) is that player 1 minimizes J, with respect to u,, with u, fixed to a
value that is a weighted average of u,,_,, - - -, u,, where more weight is put on the
recent values of u,. We assume that both players use the same 6. Recursion (9) can
be written equivalently:

(10) [“"].—.[“'-"‘]- ",’;,(R ["‘-"']+c), tz2.
. Uy, U3 -1 1-6 Uy -
Recursion (10) will converge to a solution of (4) for any initial condition (u, ,, u;,)
il and only if all the eigenvalues of the matrix R lie within the open disc of radius
(1-0)~" centered at the point (1—6)~" in the complex plane, i.c.,
1 1

11 . A(R)-——j<—.
(1) l ®-5l<m
ondition (11) also guarantees that (4) has a unique solution. (Notice that as - +co,
6'' >0 and thus (1- 8)R in (10) assumes the role of R in (7).) Obviously, for 6 =0,
(11) reduces to (8) and (10) to (7).
CaAsEe 3. '

1 . .
(12) FJ(I:, ‘)='Ri[uj.:-|+“j.¢—z+‘ ‘ "*'“;,1]:1"% i=1,2, i#j.
The meaning of (12) is that player 1 minimizes J, with respect to u,, with u, fixed to
the arithmetic mean of u,,_,, - -, ¥,,. Recursion (12) can be written equivalently:

(13) [""‘] = [“"“‘] -4 (R [“‘-"‘] +c), 1z2.

uy, Uyl 11 Uy -y
Recursion (13) will converge to a solution of (4), for any initial condition (u, ,, u,,)
if and only if all the eigenvalues of R has positive real parts, i.c.,

(14) Re A(R)>0

(for proof see Appendix A, Lemma A3). Condition (14) also guarantees that (4) has
a unique solution. Notice that as 6 » 1, (11) reduces to (14).

Remark 1. Obviously (8)=>(11)=>(14). If (8) holds, (7) converges faster than
(10) and if (11) holds, (10) converges faster than (13).

Remark 2. In all three cases we assumed that both players use the same scheme.
Nonetheless, it might happen that they use different ones. It is easy to verify that if
player 1 uses scheme 1 and player 2 uses scheme 2, the region of convergence is larger
than if both were using scheme 1 and worse than if both were using scheme 2. Similar
results holds for the other combinations.

Remark 3. If we consider (10) with 8> 1, i.e., more weight is assigned to the old
measurements, the scheme will not converge. This can be easily verified by considering
the scalar version of (10) with c=6:"

1-p u?! 1
u'=u,-| (l-r “‘ l_“'-l)’ “:3
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which for ¢ -+ +c behaves like

1- -
)’:‘-"'yl—l(l" #I-" ')
“

(since 0<u <1) and is easily seen to fail to converge. ]
Remark 4. Conditions (8), (11) and (14) can be expressed equivalently in terms
of the eigenvalues of R,R..

+
@

|

-
}
L3

FiG. 1

Condition (8) corresponds to |A(R,R,)| <1, i.e., inside the unit disc, (11) corresponds
to

' (1-o)l,\lxze_cos“—;l,\l"’—(1+o)<o,

A(RyRy) =|Ale”,

i.e., inside the curve C2 of Fig. 1. Condition (14) corresponds to eigenvalues of R,R;
being inside the parabola defined by

Rea+i(Ima)’ <1, A=A(R,Ry).

Remark 5. 1If (8) (or equivalently |A (R, R,)| < 1) holds, the solution of (4) is called
in game theory a stable equilibrium, and the game is called stable [1]. The reason is
that if player i deviates from u?, then player j(j # i) responds according to scheme
(6) and to that player i responds according to scheme (6) and so on and eventually
they both converge back to (u}, uf). Obviously the notion of stable equilibrium depends
on the reaction scheme that the players employ. If schemes (9) or (12) are used as
reaction schemes, we have an enlarged class of stable games.

Remark 6. Since the scheme of Case 3 (12) has the best convergence region out
of the three schemes, in the next section we will deal with the stochastic analogue of
(12). -

Remark 7. All three schemes considered can actually be viewed as schemes for
solving Ru+ ¢ =0 (see (4)), by using an iteration of the form:

(15) Ups1 = ll,,"D,,[Rll,.“’f]
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where D, has to have the structure

D, o
Dn= [ 0 Di]'
(Iterative solutions of linear equations is a vast subject, see for e.g. [16].) Scheme (13)
employed: D, =(1/n)]. We can create new schemes which converge under weaker
conditions than (14) by allowing D, =(1/n)D’ where D', D are properly chosen
‘constant matrices. For example, if R,, R, are scalars, (14) is equivalent to 1> r,r,; but
if we use Di=(1/n)d; in (15), the convergence condition becomes

SY(H B =

dl+d2>0, d|d2(l—f|rz)>o,

which is equivalent to:

and can always be satisfied for some d,, d, as long as 1# r,r,. Notice that 1 r,r, is
the necessary and sufficient condition for solvability of (4) for any ¢

Remark 8. Another way of going about the problem of this section is to consider
that at each stage, .each player uses a certain scheme to estimate the R and C of his
opponent and then calculates his action by solving (4) wherein he employs the estimates
of the R and ¢ of his opponent. In such a scheme, each player should know at each
stage not only the previous actions of his opponent—as in our scheme—but also the
rationale according to which his opponent calculates his actions. This is necessary in
order just to estimate his opponent’s parameters at each stage. Nonetheless, such an
additional knowledge can be permitted and the convergence of the resulting scheme
studied. Finally, it should be noted that the problem considered here and the schemes
proposed, besides having their own merit, provide a certain motivation for the scheme
considered for the stochastic case of the next section.

3. The stochastic case. Let x be a Gaussian random vector in R" with zero mean
and unit covariance matrix. Let

(16) yi=Cx, i=1,2

represent the measurements of the two players, where C,, C, are fixed real matrices
of dimensions n, X n, n; x n respectively. Let T, be the set of all measurable y,: R - R™
functions with E[%,(y;)" 7:(y:)] < +c0. Set u; = y,(;) and let

17 Ji(v1, v2) = E(3uiu;+ u;Ru; + uSx), i%j, §j=1,2

represent the costs of the two players. Ry, R, S,, S, are fixed real matrices of appropriate
dimensions. A pair (v, y¥) e, xT, is called a Nash equilibrium if it satisfies

Lyt ¥ =J(, v?) Vre
Lyt ¥y =)y}, v:) VyeT,

For background concerning the formulation of the stochastic Nash game see [18]. (18)
is equivalent to (see [2], [3]):

(19a) ‘)’f()’l)+le[‘Yz*(Yz)l}’I]"‘SlE[xl.)'l]=°,
(19b) ¥ (y2) + REL¥T (y)y2) + S E[x|y,] = 0.

It is known (see [3]) that if no eigenvalue of R, R, equals the inverse of any arbitrary
but finite product of powers of the squares of the canonical correlation coefficients of

(18)
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yu, ya (i.e., of oy, o3, - « -), then (19) has a unique solution which as to be linear in the
information. The set of values where the eigenvalues of R,R; should not lie is a
countable isolated set of points in [1, +) and thus it is generically true that (19)
- admits a unique solution which has to be linear in the information. We can assume
| without loss of generality (see [3, Lemma 1]) that
o, 0 :

m=n,C,C = In.n,. C,Ci= Inzxnp G C:= 02,

(20) 0 o,:

. yxm
1200Z203Z0,20
and then y¥(y.) = Ly, where L,, L, are the solutions to the system:
Li+R,L,C,C1+5,C =
L+ R,L,C.C;+S,C;=0.

Let us assume that player i knows R, S, C, butnot R;, S, C,, i # j; then he cannot
solve (21) for L. Consider also that this game is played repcatcdly at times t=
1,2,3,-- -, that at time ¢ playcr i knows

(21)

(22) I: = {ul.h Cee Uy Ma,t tt  Ugny Yine t t ty Yia)
where y, is the measurement of player i at time + We assume that
(23) : YuT= Cfxl

where the x,’s are independent Gaussian vectors with zero mean and unit covariance.
At time ¢, player 1 employs the following scheme for finding u,,:

1
(24) u,+R, ( 1 Zl uZ.ky'l.k) Nt 8,Cin, =0.
A justification of this scheme is the following: at time ¢ player 1 has to solve (19a) for
u,, and thus he has to calculate E{u, |y}, E[x|y:.). If u,, is linear in y,, then u,,, Yu
are jointly Gaussian and thus

(25) E{u; yi]= E[w,00EDndi) ' yie

Player 1 approximates E[u,y},] by 1/(t—1)%,7, (x24¥11); a motivation for this
approximation is the following: If player 1 knew all the parameters of (16), (17), he
would then solve equanon (19) at state ¢, employing (23); due to the independence of
the xs, 1/(1-1) Z kel (usyix) would provide a reasonable approximation of
E[uyly,,), since u,, would be independent of u,, y;, I# k By overlooking the lack
of independence of uy, on uy, y,, I# k, he still employs the above approximation,
hoping that things will work out. The convergence results of Theorems 1’ and 2’ provide
a posterior justification for the reasonableness of this approximation.

By our assumption (20) E[y,yi.]J=1 and E[x]y,,]= S, C}y:~ (24) yields that u,
is linear in y,, i.e., u;, = L,;, where L,, satisfies

. 1
(26) L|:+R| [——kZ “lﬁ.ylk]+slcl"o
=1

A similar equation is satisfied by L,,, if we consider that u,, is calculated by an equation
corresponding to (24) and wu,,= L,y,. The equations for L,, L,, can be written
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recursively as:.

1

(27a) L,=L,,, “1-1 [(Lie-1+ R Ly o1 Y201 ¥iai + 5, C,
1

(27b) Lz. = Lz,;-: “I—:'l' [Lz.l—l + RzLi.n—n)’n.u-l)"z.:-l + Szcﬂ-

Recursion (27) is the recursion that we intend to study and show that under some
conditions converges to the solution of (21) in the q.m. sense and w.p.1. The initial
condition Ly,, L, of (27) is taken to be an arbitrary pair of real constant matrices and
we are interested in convergence for any initial condition. The recursion (27) defines
a Markovian stochastic process (L,,, L,,) and is obviously a stochastic approximation
algorithm of the Robbins-Monro type [9] for solving (21). Recursion (27) is a stochastxc
analogue of the scheme of Case 3 of the deterministic case.

Let us now study the convergence of (27). Let us call [, m,, ¢, d, the ith columns
of L,, L,, S,C}, S,C; respectively, i.e.,

L,=[l,: "v’n.t]y Ly=[m,,-- ',mn,l]v

(28)

S|C;=[C|," 'ycn|]9 SZC;=[d2" ° °tdn1]'
Let '
(29) T = E[L,], m;, = E[m,).

Using (20) and the fact that L,, depends on y,,, ey Yu-1 Y2ty Y2.u-1, We obtain
from (27):

- 1 -
(30a) Tu = Ly ’T:_l'[l'u-l'*"’iRnﬁ’u-l"’ ¢l i=1,---,m
1
(30b) m,= ﬁlu-] -;:_l'[’ﬁ‘u-l'*'aikzri.l—l +di]v i= 1’ e,y
and
1 - .
(30c) My = Mgy -t_-: (A, +di], i=m+1,--, N

Recursion (30c) converges for any initial condition (see Lemma A3). Recurs:ons (30a)
and (30b) can be written as

oo [e]-lan]-E (on Az )+ ED

and using Lemma A3 yields that (31) converges for any initial condition if and only if

I oR,
(32) Re A ([G'.Rz I ]) >0.

It is easy to see that if (32) holds for o, then it holds for any o, 0 S0, = 0,. We
thus have proven the following theorem.

THEOREM 1'. The means of L,,, L,, as defined by the recursion (27) converge to a
solution of (21) for any initial condition, if and only if

g I &R,
(33) RCA([U,RZ I ])>0.
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It is easy to see that if (33) holds then (21) has a unique solution. If we want (27)
to converge to a solution of (21) not only for any initial condition, but also for any
pair of measurements, i.e., any C,, C,, we have to consider o, =1 in (33) which is
exactly the condition for convergence of Case 3 of the deterministic case.

Next we will show that L,,, L,, converge to a solution of (21) in the mean square
sense, under condition (33). For simplicity and w.l.o.g. we will assume S§,C;=0,
S$,C3=0. We can write (27) componcm—wnse in tems of [, m, and then form the
pdeUCls Ilrljn '9.’ "1 » My umln lv.’ “l nl and ’flmmu '—l » My ] =
1,-- -, n,. These products satisfy recursions thal can be casily calculated. and taking
expectations of which result in a recursion which gives the evolution of E(I,l},),
E(m,m,), E(l,mj},) in terms of E(l,-,l},-,), E(my_,, m;._\) E(l,-,m],_,). Before
writing down this recursion we introduce some notation:

(343) . A:;= [Ilﬂ] i,j=l,"’,"|,
(34b) © My=E[mm], ij=1,---,n,
(34C) K:]=E[Ium}'l]' i=ls...1nh j=l."',nz,
AL Al KL K]
. I o
: \ :
:||! A:l|ll| : Kn.l K:v. ny
(35) N=|-———remmm e T -------------- .
(K:l)' e (K:-...)' : " :.n,
M ! . .
(Kl u; et (K:llllz)' : Mn:_. M;: ny J
[T 0 !oiR, 0 0 0]
! o2R,
| .
0o - 1o ouRy 0 0
(36) Q=] === o= mmoom oo oo oo
o R, 0 : 1
!
0 onR; 0
0 0 0
: S
1
| 0o .- 0, 1]
Then N, satisfies
37 N,=N,, ——[N Q' +QN-;]+( 1)z-‘f(N. -

where £(-) denotes a linear time invariant function of its argument. (For details of
this derivation, see Appendix B.)

Using Lemma A4 we conclude that N, goes to zero for any initial condition if
and only if the matrix Q has eigenvalues with positive real parts which is easily seen
to be equivalent to (33). We thus have proven.

THEOREM 2'. L,, L,, as defined by recursion (27) converge to a solution of (21)
for any initial condition, in the mean square sense, if and only if (33) holds.
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Next, we will show that (L,, L;,) converges under (33) for any initial condition

to the solution of (21) with probability 1 (i.c., a.s. convergence). We again assume for

simplicity and w.l.o.g. that §,C} =0, 5;C;=0. We will use the theorem in Paragraph

3of [11] (or {13, Lemma 3.5]) which we restate here and which is an casy Wﬂsequenie

of the martingale convergence theorem of Doob.

Lemma 1. Let {V,} be a sequence of random variables such that E( V\) exists. Ley

A be a real number and suppose V,= A. Furthermore, assume that Yo, E( E[V,, -

V|V, - -+, V.]") converges. Then the sequence {V,} converges with probability 1. '

(Recall that if x is a random variable: x* =4(|x|+x).) Let xp=(l, -, I

my,,---,m,,). We will prove that x, converges to 0 w.p.l. or equivalently thha';
V.=lix,||* does. Let A=0. From (27) we can easily obtain (see Appendix C)

a
lE[VH-I— VIIVI’ Tt Vl]l§7 Vl
for some positive number « and thus

E(Viu-ViV,,- -+, V] =

~iQ

\£
In order to fulfill the assumption of Lemma 1, it suffices to show that

(38) T 2E(V) <+,

r=1 !

E[V,]=tr N, holds, and thus it suffices to show that

(39) : v EN o,
tm}
From (37) we obtain
(40) Me=N-o| £ 2]-[ £ %] ove(f 1),
tm] - ke=} k=]

If we assume that Q has eigenvalues.with real parts (40) can be solved for ¥, _, (Ny/k)
to yield '

[] EL‘— , [ ES)
k§| k -2 (Nl+h Nlokg‘ kz -

Since N, converges, it is bounded and so is T,_, (Ni/k?). Thus T,., (N./k) is
uniformly bounded and thus (39) and (38) are bounded. We thus conclude that
lIx, I = V, converges with probability 1. |}x,||* converges to 0 in the mean square sense
by Theorem 2’ and thus in probability and thus it has a subsequence converging to
zero with probability one {17, Thms. 2, 5, 3, p. 93]. Since we just showed that ||x, ||
converges with probability one, this limit has to be zero. Let us now summarize the
results of this section in a theorem.

THEOREM. L,,, L,, as defined by recursion (27) converge to a solution of (21) for
any initial condition, in the mean square sense and with probability one if and only if

I o,R,])
ch([a.Rz 1 >0

(under this condition (21) admits a unique solution).
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Remark 1. N, (37), goes to zero but it does not have to converge monotonically.

Remark 2. One can construct the stochastic analogues of the deterministic schemes
of Cases 1 and 2, if a different—appropriate—approximation is used for E[u,,]y,,] in
(25). Alittle reflection, though, will persuade the reader that these schemes will converge
under conditions more stringent than (33).

Remark 3. For a repeated Stackelberg game one can consider schemes similar to
those considered here, if one assumes that the Leader does not know the parameters
involved in the Follower's cost. An idea of this sort was recently studied in a determinis-
tic framework in [8].

Remark 4. It should be clear from (30) and (37) that the rate of convergence of
the means and the covarianccs of I, m;, depend on the eigenvalues of the matrices in
(32)foro,=1, 0y, - -, g, or equivalently of Q. Actually, a recursion of the form (A1)
with A = Re (1) > 0 goes to zero like (n‘)' (see [12]). Thus if A, denotes the real part
of the cngcnvalucs of Q m=1,---, n,+n,and A=min Re(A,,) the mean converges
no slower than ( t‘) ', the covariances no slower than (1**)~", the third moments no
slower than (')} and so on. Thus if one were to consider whether ¢’[L,, L,,]
converges weakly to a Gaussian random variable as ¢+, 6 should be chosen equal
to A so that the second moments converge to a nonzero constant, but then automatically
all the moments will also do so. Thus in general one cannot have asymptotic normality
of n’[L,, L,,] for some 6>0. As a matter of fact, Theorem (1) of [12] cannot be
applied since its assumption (A4) fails for the stochastic approximation algorithm
(27), considered here, as should be expected from the above remarks. Finally, it should
be pomtcd out that the fact that the rate of convergence of the algorithm is given by

»and 1~ for the first and second moments, is a useful fact when xmplcmcntmg it,
in deciding when to stop, what is the probability of error when stoppmg in a finite
number of iterations, etc.

Remark 5. Stochastic approximation has been an object of mtensnvc study (see
[9]-[15]). Several of the results available can be used to prove convergence of the
iteration (27) but they demand conditions stronger than (33), or they are not applicable
to it. For example, in [9] it is required that in the scheme x,.y =X, =(1/n)y,, y. is
uniformly bounded. Assumptions III and IV of {10] do not hold for (27). In proving
asymptotic normality [12], he uses Assumption (A4) which does not hold for (27).
Assumptions AS, A5’ of [11] do not hold for our scheme. Lemma 3.1 and Theorem
4.3 of [13] can be applied to (27) but result in more stringent conditions than (33).
The convergence analysis of {15] demands boundness of the second term in (27) which
is not applicable to our case. Assumption iii in {14, Problem 1, p. 92] does not hold
for (27).

4. Coanclusions. There are several directions in which this research can be con-
tinued. One of them is the corresponding problem for the Stackelberg game (see
Remark 3 in § 3). The dynamic case where the players are also coupled through the
evolution of a discrete time equation is obviously important and useful. We hope that
the analysis presented here will be helpful in such further research.

Appendix A.
LEMMA Al Corgsider the scalar recursion

(Al) xn+l=(l__%) Xy n=lv2’3"

‘where A and x, are complex numbers. Then x, -0 for any x, if and only if Re (1)>0.
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(Ifwesett,=1+---4+1/n, we see that (A1) is a discrete approximation of ¥ = —\x and
thus Re (A) >0 is expected in order to have asymptotic stability of (A1).)
LEMMA A2. Consider the scalar recursion

(A2) x,.,.=(l--é+0(lz)) X n=1,23,---
n n

where x and x, are complex numbers. Then x, -0 for any x, if and only if Re (A)>0.

Proof. It is an immediate consequence of Lemma Al since A/n dominates
o(1i/n?). 0O
LeMMA A3. Consider the recursion

(A3) vx,,ﬂ=(l—lA+O(lz))x,., n=1,23,---
n n

where A is a real square matrix and x, is a vector. Then x, -0 Jor any x, if and only if
Re A(A)>0.

Proof. We bring A to its Jordan form and apply Lemma A2. It is helpful to notice
that if P is a real symmetric matrix

1
Xne1 PXpoy= x4 Px, - x,[PA+ A’'Plx, +x",0 (;'l—z) X,

and thus if A has Re A(A)>0, we can find a positive definite P so that A'P+ PA> 0.
Therefore if n is sufficiently large

% x,{PA+A’P]lx, > x',0 (;l;) X,

and thus x.,, Px, < x}, Px, and consequently x, is bounded. This justifies the fact that
the 1/n term dominates in (A3). O
LeMMa A4. Consider the recursion

(A4 Nei=N,={[NQ'+QNJ+1 £(N),  1=1,2,--
: 2

where N,, Q are square matrices. N, - 0 for any initial condition if and only if Re A(Q) > 0.
Proof. Let x, be the vector composed of the columns of N. We can write the
recursion equivalently as

| S 1
Xr1 =X, —"' Ax, +F 2£(x,).

It can be checked that Re A(A4)>0 if and only if Re A(Q)>0 and thus Lemma A3
can be applied. 0

It should be pointed out that if x, evolves as in (A1), and A is real, x, behaves
like n™ (sec 12, (2.3)). If A is complex, then (A2) implies that |x,* behaves like n-2
and thus |x,| behaves like n™*, i.c., n™*. Consequently x,., in (A3) behaves like n~*
where X =min Re A (A) and N, in (A4) behaves like 2 where X =min Re A(Q).

*

Appendix B. Let [, m,, ¢, d; be as in (28). For convenience, let

Yi- o 4
(B1) Yuar=| % |, Y21 =
Y, 2,
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Equation (27) can be written as

1 ot .
(32) I“=’<“_|-'T[It,_|+y‘R| Z iji',_|+c.-], l=]’~ . ."l'
1 .
(B3) mu -1 P l [mu—l+le2 Z }';,'—|+d-]' 1= 1; S, M.
j=1

For convenience, let us drop the subscript ¢t —1 from [,_,, m,-,. From (B2), (B3), we
obtain: .

I,',IJ", = 151; ———

— [2151;.+ ¥ ')f zdmR}, + y.R, .f' zm i+ e} + c,.l;]
-l -

l ’ "1 ’ ’ "g [ "3 ? ’
+('—_-ﬁ-z- [l,lj +y lzl zlmiR}+ y,R, .Z. zzmlj+ yyR, UE . zizzmymiR}
(B4) : ) n n
: +yR L zmejty; T ozemiR +icitcli+ec |,

k=1 =}
i'j= 1 STy "h

m,m;, = mm;— ‘l [2m,mj+z, Z y,mI,Rz+zR, z nhmj+md; +dm,]

1 ‘ bl . "y
+'("___15'z' [mimj' +2; '2| ymliR:+ 2R, t).'.. yhimj+zz,R, “Z . yoddiRS
(BS) ﬂ| "
+zR;, ¥ whdj+z ¥ ydliRy+mdj+dm+ d,d,’],
k=1 =1

i’j=lv“'in2t

. l ﬂ' l, .
Lmj, = lim; e [ZI,m, +3 Z yliR3+y.R, Z Zmem;+1d;+ c,mj]

1 o B
+(l—l)2 [l,m +z Z yldiR;+ y.R, Z zxmum;+ yz,R, Z 2". 2wy iR}

(B6)
"y
+yR, kZ‘ nmdj+2 .Z. yeliRy+1Idj+cmj+ C.d,’-],

i=1l,-- ., j=1,:+- n,

Let Ay, My, Kj; be defined as in (34), let ¢, d; = 0 for simplicity and w.l.0.g.. We mke
expectauon in (B4)-(B6) and drop for convenience the superscript ¢—1 from Aj
M, Ky in the right-hand side. (When taking expectations, we use the fact t.hat
L, m}" are independent of y, .-, Y2,-1.) We obtain:

[] 1 ’ ’
A". = Aij —T_—l[2A§+¢T}KﬁR‘+U‘R|(K1j) ]

+(‘_ll)2 A!I+VIKIIR’I+0'4R1(K¢,')'
(B7) .
oo;R\(M;+ M;)R;, ifi#j
+la ™ ’
R'(Z Mu+E(y?2f)M;.-) oifi%j
h=1
« ki .

i‘j=ls“-’"|'
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M:1=M¢i [ZMu"'”KiiR""a'R (K-J)]"' l)szz(/\u s)
(B8)
Lj=1,--*,mando,=0 ifi>n,,
o;=0 ifj>n,
' 1
L=K;- [2Ku+a,A,,R2+ o.R, M,,]+ peTE Zy(Ap My, K;'s),
(39) ’ i=li”':n|, o"=0ifi>ﬂl,

ji=1l---,m, o0;=0ifj>n,.
Defining N, and Q as in (35), (36) we see that (B7)-(B9) can be written in compact
form as in (37).

Appendix C. Let x,=(li;,- -+, I}, ., mi,, - -+, my ). Using (27) or the equivalent
(B2), (B3) we have

(c1) Xie1 =X, —% [R(y1n y2)x:]

where the definition of R(y;s y2:).= ﬁ is obvious from (B2), (B3). From (C1) we obtain
) PO R 7 S 1.4

It holds |

(e R EA LT EN RN EA
= ELEUlxnl* = U=l Ixal, - - - By, - < -0 %),
E[x:Rx[Ixl? - - -, Ix)?]= E[E[xiRx|Ix [ - -, |x 0 Yx - < -, %]
| - =E[E[xiRxlx, - -, xlx, - xdliall - - o el
= E[x.E[R/|x, - -, xJx|lx - -, 1=, 1%
= E[x{Ryx||x [ - - -, I %),

(C3)

(C4a)

since R, depends only on y,, y;, which are independent of x,,- - -, x, and where R,
is«a constant matrix defined by

(Cab) E[R(yin y2)]1=R,.

Similarly

(Cdc) E[x.RRx|[x 7 - - - 1xI’) = E[xiRx | [x: %, - - -, Bxl”]
where R, is a constant matrix defined by

(Cs) E[R'(¥1.0 ¥y2.)R(y10 y2)]= R

From (C3)-(CS) we obtam
E[“x,ﬂ“z—ﬂx, 2”lxlﬂz ‘ '.IIX«IIZ]

= E [X; (:--‘- R‘+Ti Rz) x'l“xlllzo Tty “x'“z]’

(Ce)
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It holds
2 1
[(or)) -%15-;R.+F stgz

for some positive constant a and thus

1
[E [I: (-% Rl"‘? RZ) X, "x!nzo STt ﬂxlnz]
(C8) .
a a
s7 E(llx P =02 - - -, Bxl?) ==l i

Let V,=]|x,}|*; then from (C6) and (C7) we obtain

(o) BV ViV VS
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