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Impact of explicit and implicit
control sharing on the performance
of two-person one-act LQG Nash
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A two-person one-act LQG Nash game is considered under three different information structures: explicit control sharing, implicit
control sharing and static information. The relations among the corresponding solutions and their impacts on the resulting costs are
studies.

1. Introduction

In game problems, the players have certain kinds of information; they make decisions based on this
information. We say that there is explicit control sharing (ECS) in a game if a player’s information
includes the previous control values of other players. Two previous works concerning the impact of ECS
on the optimal costs in Nash games were reported in [1] and [2]. In [1] a two-person LQG Nash game
was considered where the information structure is partially nested and each player acts once and it was
shown (theorem 2 of [1]) that the first player might do better if he reveals his control value to the
second player than he could do in a static information structure (SIS). It is known that in Nash games, if
there is ECS then in general there exist many solutions [8]. Uchida considered an example of a
two-person LQG Nash game [2] where the information is partially nested and each player acts once,
and showed that among the nonunique solutions under ECS, one of them is equivalent to the SIS
solution. Furthermore, it is claimed in [2] that this SIS solution gives a local minimum of the first
player’s cost among the linear class of the nonunique solutions. In other words, the first player might do
better at least locally in a SIS than if he reveals his control value to the second player. The claim which
Uchida did not prove and the result of Ho, Blau and Basar in [1] seem to contradict each other.

In this paper we consider a two-person LQG Nash game where the information is partially nested and
each player acts once. We study the impact that the first player, who reveals his control value explicitly
and implicitly to the second player, has on the first player’s Nash cost. By implicit control sharing (ICS)
we mean that player 2 has a noise-corrupted measurement which is affine in the system state and player
I’s control. Our aim is to relate the Nash solutions under ECS to those under ICS and give a full view of
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the impact of both ECS and ICS on player 1's Nash performance. The work of [1] and [2] are
re-examined and new insights are provided.

The study of the impact of available information on the costs of the players is important since it
provides means of creating incentives to the players in order to achieve desirable performance.
Although here we deal with a one-act game, it would be interesting to examine whether the main results
of the present paper generalize to a multistage problem.

2. Problem formulation

The two-person LQG Nash game considered here is similar to the one considered in [2] and is
described as follows: x, w, and w, are independent Gaussian random variables with zero mean and unit
variance. There are two players, denoted by 1 and 2. Their cost functionals are given respectively by J,
and J,, where

Ji(yy, v2) = Elgy(x + by, + bz“z)2 + ui + puu%} ) (1a)
Jo(vy, v = Elgy(x + by, + bz“z)2 + pZqul + ”g} . ‘ (1b)

. 41 9 P12 and p,, are non-negative real numbers, x is the system state, and u; is the control variable of
player i, i = 1, 2. Consider the measurements:

yi=hx+wy, 2)
Yg_"hzx"'wz, : 3
y2=yg+du1. “)

y; is chosen as y,(n Y where 1, =y, and 7, C {y,, y» ¥3 4;}. We will consider the following cases:
Case A: ICS 772 ¥ yz}
Case B: ECS ")2 ={y;, YZ’ uk
. Case C: SIS 55 ={y,, y3}-
y, is chosen from I';, where I'; consists of all measurable functions mapping R™ (m; = dim(»,)) to R such
that y,(n;) is a second order random variable. A pair (y?}, y%) is called a Nash solution to the game if it
satisfies the inequalities:

Tt v <J(v»v3), L1 y)<=L(O1.7), ®)

for all y,€ T, and vy, I, (%, v3) is called a Stackelberg solution with player 1 as the leader if y]
satisfies the following inequality:

sup Ji(vT, vD< sup Ji(y, 7y, (6a)

y2€R(71) v2€R2(71)

for every y, € I'; and y% € R,(y}), where R,(y,) is defined by

Rz()’n) = {ygE r, | 12(71’ 7?1) = -’2(‘)’1, ‘Yz)’ Vy, € Fz} . (6b)

In the case of ECS, the Stackelberg solution is a particular Nash solution. The Nash solutions of cases
A, B and C and the Stackelberg solution have been studied in [6]-{8] in a more general framework. The
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solutions exist under certain nonsingularity conditions. Here we state the solutions and for proofs we
refer to [6]-[8]. The impact of ICS and ECS is then considered by comparing the Nash costs J,(y,, y,) of
cases A and B (including the Stackelberg cost) with that of Case C.

2.1. Nash solution of Case A
Under the condition

1+ ‘hbf + ‘hb;'*’ {al@— Prg)bib, # 0 @

the unique Nash solution of Case A is given by

Yialy) =—{1+ ‘hbf + ‘hbg'*' {alg, - P1zqz)b1b2}_l{b1‘h +{a(qi— Pig)b} - hi(1+ hi)_l)ﬁ , (8a)

Yoay y2) =—(1+ %bi)—l%bz{bx')’m()’l) +[hy, + hy(y, - dy, ()] - (1+ h% + h%)_l} s ‘ (8b)
where

fa=—(1+ ‘hb%)_l‘hbzhzd(l + h% + hg)_l . ©) .

Notice that (y,,, ¥,4) depends on {,, which in turn depends on d. To different d’s, corresponds different
pairs (Yia, ¥24)s provided that (7) holds. Let us call M the class of all these solutions (y,,, ¥,4); for
varying values of d. :
2.2. Nash solution of Case B (linear class)
There exist uncountably many Nash solutions for Case B, with the linear ones given by:
Yis() = —{1 + qib1+ g:b3+ £(q, ~ Pgdbib ™ - {bigy + £(q:— Prg)bst - (1 + Ry, (10a)
V20 Y2 1) = =(1+ 426D @obolbyyis(y) + [Aays + hoyl(1+ T+ h) 1+ L= vis(r) (10b)
where ¢ is any real number such that
1+ q,b3 + q,b3+ £(q,— pago)b.b, # 0. (11)
Let us denote by L the class of all these linear solutions (y,, ¥,8);-

2.3. Stackelberg solution of Case B

The Stackelberg solution with player 1 as the leader is denoted by (s, ¥,) and is the following:

(718 ¥28) = (V1gs Y28) =155 (12)
where
{s=—-(1+ ‘hbg)_lqzblbz . (13)

2.4. Nash solution of Case C

The Nash solution of Case C is a special one of Case A with £, =0 in (8). It is also a special one of
Case B with { = 0 in (10). Notice that (7) and (11) are satisfied when ¢, = =0.
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3. An ordering of the Nash solutions

Two things are done in this section. First, it is shown that to every ICS Nash pair (with' some
particular d in (3)), there corresponds an ECS Nash pair (with some particular {) such that the two pairs
represent the same random variable pair, and vice versa. Secondly, we make an ordering of all the Nash
pairs in L and M.

Consider the Nash pair (10), with

{=La=-(1+ ‘hbg)_“hbzhzd(l + h%“' hg)—l . (14)
(Notice that (11) is satisfied.) A simple calculation shows that (y,,, ¥,4) and (¥, 7;p) are equivalent in

the sense that they represent the same random variable pair, or equivalently the same function of the
random variables x, w, and w,. Hence we write

(Y1a> Y2a)a = (V1 729);=1A . (15)

Furthermore, if g,h, # 0, then to each Nash pair in L with some particular ¢, there corresponds a Nash
pair in M with some particular d in (3), and vice versa. We thus have the following lemma.

Lemma 1. If q,h, # O then there is a one-to-one correspondence between M and L where

M = {(y,0 Y20), | d € R such that (7) holds}, ' (16)

L = {(vss 728, | { € R such that (11) holds}, | a7

and the correspondence is given by (15).

Substituting (y,s, ¥;8); Of (10) into (1a), we obtain J,(y,s, ¥;s) as a differentiable function with respect
to (w.r.t.) ¢ except possibly at some singular point g where

1+ ‘hb? + q2b§+ 8(q,~ Pa)bb,=0. (18)

By carrying out some calculations, we obtain the following derivative:

b3hi(q, — p1g,)'(1 + q,b3)
1+ h)[1+q,b7+ q,b3+ £(g,— pa)b,b,)

d
d_{ Ji(Y1p> ¥28) = { } (&) (19)

We assume, without loss of generality, that (g, ~ ppq,)b,b, is positive-valued (if not then either the
singular point g does not exist or Fig. 1 is flipped over the J, axis and looks like Fig. 2), in which case:

d >0, f{>{or{<g,
— Ji(Y18> ¥28)

a =0 L=y 20)

<0 ifg<{<{.

Since lim ., Ji(y1p, V28) = lim,_. Jy(v16, vze) exists, and lim .. J\(Y1g, ¥28) > Ji(Y18, V28);=¢s> the value
J (71> ¥28) versus ¢ can be plotted as in Fig. 1. Ji(y4, 724) Versus d is then plotted in Fig. 2 in view of
Lemma 1. Figs. 1 and 2 give a full view of the impact of ECS and ICS on player 1's Nash performance.
Several important features of this impact are summarized in the following theorem.
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Fig. 1. Impact of ECS: Ji(y1s, v28) as a function of { where {5 Fig. 2. Impact of ICS: Ji(y1a, ¥2a) as a function of d where
denotes the Stackelberg solution and 0 denotes the SIS Nash ds=(1+ h1+ h3)bi/h; and O denotes the SIS Nash solution.
solution.
Theorem 1.

(i) In L, the set of uncountably many linear Nash solutions under ECS, the unique local and global
minimum of J, is given by (y.p, Y28);-;s Which is the Stackelberg solution.
(ii) Under ECS, player 1 can do better than under SIS if

€45 0). ,
(iii) Under ICS, player 1 can do better than under SIS if
de€0,(1+h*+hd)b,/h,).

Remark 1. This theorem shows that Uchida’s claim, namely that the SIS solution is a local minimum of
J, in L, remark 3.3(i) of [2], is false.

Remark 2. This theorem indicates that the Stackelberg solution is more beneficial to player 1 as should
be expected in general than all the other Nash solutions under ECS and SIS. It is not difficult to see that
the Nash solution under ECS considered in theorem 2 of [1] is actually a Stackelberg solution.

Remark 3. This theorem and Fig. 1 give a general description of the impact of ECS on J; which includes
the result of theorem 2 of [1] as one particular impact out of uncountable ones.

Remark 4. The parameter d in (3) can be regarded as a measure of the strength with which player 1
communicates his control implicitly to player 2. It can be regarded also as an incentive mechanism in a
leader—follower situation, e.g. if the leader cannot communicate his control value to the follower free
from noise, then by designing d = (1 + h}+ h2)b,/h, in (3) and playing Nash (ICS), the leader can expect
the same performance as in a Stackelberg game where the follower has perfect knowledge of the
leader’s control value.

4. Comments

In this section we give comments concerning the impact of ECS on J,. In the first part we explain part
(i) of theorem 1, i.e. why a local minimum of J, among L is given by the Stackelberg solution instead of
the SIS solution as claimed by Uchida. In the second part we explain part (ii) of theorem 1, i.e. why
player 1 can do better in a continuous range of { under ECS than under SIS.

Since J;(v,, v,) is quadratic in vy, i,j=1,2, J(y,, y,) is differentiable w.r.t. ;. Furthermore, v, is
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differentiable w.r.t. y, since we take it to be linear in y,. By definition of a Nash solution (5), we have:

‘9]2(71’ 72)

=0, 21)
Y2 VpypeL
dJi(y1, v) _ aJ\(y1, v2) + aJi(y1 ¥2) . 97, -0 22)
dyi  ypyer 91V ver Y2 i guyet

For every (y,, v,) € L, the derivative of Ji(y,, y,) w.r.t. { can be written as:

dJi(ys, v2) _ aJ\(y1, 7)) . %_*_ aI\(y1, v (_‘2_')2_{_ 97 %) (23a)
d¢ 9, 74 3y, ol ay,
- (aJI(Yp ')’2)+ aJ (v 7o) . %) _%+ ACTRD) . _aﬁ (23b)
97, Y, dy,/ 9 37, 74
- aJl(‘Yl’ 72) . f?_lg (23(:)

v, 4

where we use (22) to obtain (23c). Let {* correspond to the pair (y,g, ¥,8);-; Which achieves a local
minimum of J; in L, then '

dJl(Yb 'Yz)

T =0. . (24)

I

Since dy,/d|;- # 0 in general, (23c) and (24) imply

aJ
eyl 25)
ay, -
(22) and (25) in turn imply
aJ
(Y1 YD) =0. (26)
Y,

I

Equations (21), (25) and (26) simply mean that with the constraint (21), J, is optimized w.r.t. both ¥y, and
v, at {*. By a well-known theorem in optimization theory (p. 224 of [3}), equations (21), (25) and (26)
are equivalent to saying that the following equations hold:

0 .
-87 Ji(ye v+ AG(y,, 72)]‘(- =0, i=1,2, 27
where
(v, v
Glyy vy = 22070 =0, (28)

s et

and A is a Lagrange multiplier. Equations (27) and (28) are the first-order necessary condition for the
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Stackelberg solution (6) to hold [4]. Since J, and J, are convex in y, and ¥, the first-order necessary
condition is also a sufficient condition for ¢* to be a Stackelberg solution.

It is remarkable that under ECS, although J,(y,s, 7;s) depends on the statistics of the observation
noise, its ordering for different ¢ is independent of the noise, as we can see from (20). Thus, in order to
explain the ordering of Ji(yg, ¥,5) for different {, one need consider only the deterministic game. In
Section 2, if there is no observation noise in (2)~4), then for any given u, the optimal value of u,
minimizing J, is determined uniquely by

yax, )= —(1+ qui)_1QZb2(blul +x). (29)

The locus of such points (u,, u,) given by (29) for all 4, € R is called the reaction curve of player 2. The
reaction curve of player 1 is similarly determined. Equicost contours of J; and J, and the reaction curves
of both players are plotted in Fig. 3 for some particular values for the parameters of the game. The
Nash solutions of Case B given by (10) now reduces to:

yi(x)=-{1+ ‘hbi + ‘hb% +(q,— Plzqz)blbz}“l{‘hb.x + (g, — Pna)bix, (30a)
yau(x, u)=—-(1+ qzbi)—lfhbz{bﬂm(x) +x}b+ (U, — 715(x)), (30b)

for all { € R such that (11) holds. Notice that at each solution point of (30), the value of u, given by
(30b) is equal to that determined by the strategy .

v, d,) =—-(1+ qzbi)"lqzbz(blul +x). : €3]

Equation (31) is the same as (29), which means that all the Nash solution pairs (y,g, ¥:); are on R,, the
reaction curve of player 2. Furthermore, since {u} given by (30a)for all { € R such that (11) holds, is
the real line, we conclude that R, comprises all the linear Nash solutions of Case B. Point C in Fig. 3
represents (¥ic, Yac) = (Y1ps Ya8);-0» the SIS solution where R, and R, intersect. Point S represents
(715 V2s) = (V18> V28);=(5» the Stackelberg solution, where R, is tangent to the contour of J, [1]. Fig. 3
shows clearly that point S gives a global minimum of J, on R, and point C is by no means a local
minimum of J; on R,. All the points between C and S on R, yield lower cost of J; than point C. Finally,

S Contours of
#\ decreasing

W R

R,

Fig. 3. Illustration of the impact of ECS on Ji. Ry reaction curve of player 2; Ry: reaction curve of player 1.
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we notice that while Fig. 3 provides an exact illustration of the impact of control sharing on J,, it does
not give a general description of the impact on J,. For example, while Fig. 3 indicates that point S
results in higher cost of J, than point C, things might go the other way around. For more detail we refer
to [5].
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