Impact of explicit and implicit control sharing on the performance of two-person one-act LQG Nash games*

M. TU** and G.P. PAPAVASSILOPOULOS
Department of Electrical Engineering - Systems, University of Southern California, Los Angeles, CA 90089, U.S.A.

Received

Revised 21 March 1984
Communicated by A.P. Sage

Abstract

A two-person one-act LQG Nash game is considered under three different information structures: explicit control sharing, implicit control sharing and static information. The relations among the corresponding solutions and their impacts on the resulting costs are studies.

1. Introduction

In game problems, the players have certain kinds of information; they make decisions based on this information. We say that there is explicit control sharing (ECS) in a game if a player's information includes the previous control values of other players. Two previous works concerning the impact of ECS on the optimal costs in Nash games were reported in [1] and [2]. In [1] a two-person LQG Nash game was considered where the information structure is partially nested and each player acts once and it was shown (theorem 2 of [1]) that the first player might do better if he reveals his control value to the second player than he could do in a static information structure (SIS). It is known that in Nash games, if there is ECS then in general there exist many solutions [8]. Uchida considered an example of a two-person LQG Nash game [2] where the information is partially nested and each player acts once, and showed that among the nonunique solutions under ECS, one of them is equivalent to the SIS solution. Furthermore, it is claimed in [2] that this SIS solution gives a local minimum of the first player's cost among the linear class of the nonunique solutions. In other words, the first player might do better at least locally in a SIS than if he reveals his control value to the second player. The claim which Uchida did not prove and the result of Ho, Blau and Basar in [1] seem to contradict each other.

In this paper we consider a two-person LQG Nash game where the information is partially nested and each player acts once. We study the impact that the first player, who reveals his control value explicitly and implicitly to the second player, has on the first player's Nash cost. By implicit control sharing (ICS) we mean that player 2 has a noise-corrupted measurement which is affine in the system state and player 1's control. Our aim is to relate the Nash solutions under ECS to those under ICS and give a full view of

[^0][^1]the impact of both ECS and ICS on player 1's Nash performance. The work of [1] and [2] are re-examined and new insights are provided.

The study of the impact of available information on the costs of the players is important since it provides means of creating incentives to the players in order to achieve desirable performance. Although here we deal with a one-act game, it would be interesting to examine whether the main results of the present paper generalize to a multistage problem.

2. Problem formulation

The two-person LQG Nash game considered here is similar to the one considered in [2] and is described as follows: \boldsymbol{x}, w_{1} and w_{2} are independent Gaussian random variables with zero mean and unit variance. There are two players, denoted by 1 and 2 . Their cost functionals are given respectively by J_{1} and J_{2}, where

$$
\begin{align*}
& J_{1}\left(\gamma_{1}, \gamma_{2}\right)=\mathrm{E}\left\{q_{1}\left(x+b_{1} u_{1}+b_{2} u_{2}\right)^{2}+u_{1}^{2}+p_{12} u_{2}^{2}\right\} \tag{1a}\\
& J_{2}\left(\gamma_{1}, \gamma_{2}\right)=\mathrm{E}\left\{q_{2}\left(x+b_{1} u_{1}+b_{2} u_{2}\right)^{2}+p_{21} u_{1}^{2}+u_{2}^{2}\right\} \tag{1b}
\end{align*}
$$

q_{1}, q_{2}, p_{12} and p_{21} are non-negative real numbers, x is the system state, and u_{i} is the control variable of player $i, i=1,2$. Consider the measurements:

$$
\begin{align*}
& y_{1}=h_{1} x+w_{1} \tag{2}\\
& y_{2}^{0}=h_{2} x+w_{2} \tag{3}\\
& y_{2}=y_{2}^{0}+\mathrm{d} u_{1} \tag{4}
\end{align*}
$$

u_{i} is chosen as $\gamma_{i}\left(\eta_{i}\right)$ where $\eta_{1}=y_{1}$ and $\eta_{2} \subset\left\{y_{1}, y_{2}, y_{2}^{0}, u_{1}\right\}$. We will consider the following cases:
Case A: ICS $\eta_{2}^{A}=\left\{y_{1}, y_{2}\right\}$;
Case B: ECS $\eta_{2}^{\mathrm{B}}=\left\{y_{1}, y_{2}^{0}, u_{1}\right\}$;
Case C: SIS $\eta_{2}^{\mathrm{C}}=\left\{y_{1}, y_{2}^{0}\right\}$.
γ_{i} is chosen from Γ_{i}, where Γ_{i} consists of all measurable functions mapping $\mathbb{R}^{m_{i}}\left(m_{i}=\operatorname{dim}\left(\eta_{i}\right)\right)$ to \mathbb{R} such that $\gamma_{i}\left(\eta_{i}\right)$ is a second-order random variable. A pair $\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)$ is called a Nash solution to the game if it satisfies the inequalities:

$$
\begin{equation*}
J_{1}\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right) \leqslant J_{1}\left(\gamma_{1}, \gamma_{2}^{*}\right), \quad J_{2}\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right) \leqslant J_{2}\left(\gamma_{1}^{*}, \gamma_{2}\right) \tag{5}
\end{equation*}
$$

for all $\gamma_{1} \in \Gamma_{1}$ and $\gamma_{2} \in \Gamma_{2} .\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)$ is called a Stackelberg solution with player 1 as the leader if γ_{1}^{*} satisfies the following inequality:

$$
\begin{equation*}
\sup _{\gamma_{2} \in R_{2}\left(\gamma_{1}\right)} J_{1}\left(\gamma_{1}^{*}, \gamma_{2}\right) \leqslant \sup _{\gamma_{2} \in R_{2}\left(\gamma_{1}\right)} J_{1}\left(\gamma_{1}, \gamma_{2}\right) \tag{6a}
\end{equation*}
$$

for every $\gamma_{1} \in \Gamma_{1}$ and $\gamma_{2}^{*} \in R_{2}\left(\gamma_{1}^{*}\right)$, where $R_{2}\left(\gamma_{1}\right)$ is defined by

$$
\begin{equation*}
R_{2}\left(\gamma_{1}\right)=\left\{\gamma_{2}^{0} \in \Gamma_{2} \mid J_{2}\left(\gamma_{1}, \gamma_{2}^{0}\right) \leqslant J_{2}\left(\gamma_{1}, \gamma_{2}\right), \quad \forall \gamma_{2} \in \Gamma_{2}\right\} \tag{6b}
\end{equation*}
$$

In the case of ECS, the Stackelberg solution is a particular Nash solution. The Nash solutions of cases A, B and C and the Stackelberg solution have been studied in [6]-[8] in a more general framework. The
solutions exist under certain nonsingularity conditions. Here we state the solutions and for proofs we refer to [6]-[8]. The impact of ICS and ECS is then considered by comparing the Nash costs $J_{1}\left(\gamma_{1}, \gamma_{2}\right)$ of cases A and B (including the Stackelberg cost) with that of Case C.

2.1. Nash solution of Case A

Under the condition

$$
\begin{equation*}
1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+\zeta_{\mathrm{A}}\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2} \neq 0 \tag{7}
\end{equation*}
$$

the unique Nash solution of Case A is given by

$$
\begin{align*}
& \gamma_{1 \mathrm{~A}}\left(y_{1}\right)=-\left\{1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+\zeta_{\mathrm{A}}\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2}\right\}^{-1}\left\{b_{1} q_{1}+\zeta_{\mathrm{A}}\left(q_{1}-p_{12} q_{2}\right) b_{2}\right\} \cdot h_{1}\left(1+h_{1}^{2}\right)^{-1} y_{1} \tag{8a}\\
& \gamma_{2 \mathrm{~A}}\left(y_{1}, y_{2}\right)=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2}\left\{b_{1} \gamma_{1 \mathrm{~A}}\left(y_{1}\right)+\left[h_{1} y_{1}+h_{2}\left(y_{2}-d \gamma_{1 \mathrm{~A}}\left(y_{1}\right)\right)\right] \cdot\left(1+h_{1}^{2}+h_{2}^{2}\right)^{-1}\right\} \tag{8b}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta_{\mathrm{A}}=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2} h_{2} d\left(1+h_{1}^{2}+h_{2}^{2}\right)^{-1} \tag{9}
\end{equation*}
$$

Notice that $\left(\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}\right)$ depends on ζ_{A}, which in turn depends on d. To different d 's, corresponds different pairs $\left(\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}\right)_{d}$ provided that (7) holds. Let us call M the class of all these solutions $\left(\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}\right)_{d}$ for varying values of d.

2.2. Nash solution of Case B (linear class)

There exist uncountably many Nash solutions for Case B, with the linear ones given by:

$$
\begin{align*}
& \gamma_{1 \mathrm{~B}}\left(y_{1}\right)=-\left\{1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+\zeta\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2}\right\}^{-1} \cdot\left\{b_{1} q_{1}+\zeta\left(q_{1}-p_{12} q_{2}\right) b_{2}\right\} \cdot h_{1}\left(1+h_{1}^{2}\right)^{-1} y_{1} \tag{10a}\\
& \gamma_{2 \mathrm{~B}}\left(y_{1}, y_{2}^{0}, u_{1}\right)=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2}\left\{b_{1} \gamma_{1 \mathrm{~B}}\left(y_{1}\right)+\left[h_{1} y_{1}+h_{2} y_{2}^{0}\right]\left(1+h_{1}^{2}+h_{2}^{2}\right)^{-1}\right\}+\zeta\left(u_{1}-\gamma_{1 \mathrm{~B}}\left(y_{1}\right)\right) \tag{10b}
\end{align*}
$$

where ζ is any real number such that

$$
\begin{equation*}
1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+\zeta\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2} \neq 0 \tag{11}
\end{equation*}
$$

Let us denote by L the class of all these linear solutions $\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta}$.

2.3. Stackelberg solution of Case B

The Stackelberg solution with player 1 as the leader is denoted by (γ_{15}, γ_{25}) and is the following:

$$
\begin{equation*}
\left(\gamma_{1 \mathrm{~S}}, \gamma_{2 \mathrm{~S}}\right)=\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta=\zeta \mathrm{s}} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta_{\mathrm{s}}=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{1} b_{2} \tag{13}
\end{equation*}
$$

2.4. Nash solution of Case C

The Nash solution of Case C is a special one of Case A with $\zeta_{A}=0$ in (8). It is also a special one of Case B with $\zeta=0$ in (10). Notice that (7) and (11) are satisfied when $\zeta_{\mathrm{A}}=\zeta=0$.

3. An ordering of the Nash solutions

Two things are done in this section. First, it is shown that to every ICS Nash pair (with some particular d in (3)), there corresponds an ECS Nash pair (with some particular ζ) such that the two pairs represent the same random variable pair, and vice versa. Secondly, we make an ordering of all the Nash pairs in L and M.

Consider the Nash pair (10), with

$$
\begin{equation*}
\zeta=\zeta_{\mathrm{A}}=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2} h_{2} d\left(1+h_{1}^{2}+h_{2}^{2}\right)^{-1} \tag{14}
\end{equation*}
$$

(Notice that (11) is satisfied.) A simple calculation shows that ($\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}$) and ($\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}$) are equivalent in the sense that they represent the same random variable pair, or equivalently the same function of the random variables x, w_{1} and w_{2}. Hence we write

$$
\begin{equation*}
\left(\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}\right)_{d}=\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\xi=\xi_{\mathrm{A}}} . \tag{15}
\end{equation*}
$$

Furthermore, if $q_{2} h_{2} \neq 0$, then to each Nash pair in L with some particular ζ, there corresponds a Nash pair in M with some particular d in (3), and vice versa. We thus have the following lemma.

Lemma 1. If $q_{2} h_{2} \neq 0$ then there is a one-to-one correspondence between M and L where

$$
\begin{align*}
& M \stackrel{\Delta}{=}\left\{\left(\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}\right)_{d} \mid d \in R \text { such that }(7) \text { holds }\right\} \tag{16}\\
& L \stackrel{\Delta}{=}\left\{\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta} \mid \zeta \in R \text { such that }(11) \text { holds }\right\} \tag{17}
\end{align*}
$$

and the correspondence is given by (15).
Substituting ($\left.\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta}$ of (10) into (1a), we obtain $J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)$ as a differentiable function with respect to (w.r.t.) ζ except possibly at some singular point g where

$$
\begin{equation*}
1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+g\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2}=0 \tag{18}
\end{equation*}
$$

By carrying out some calculations, we obtain the following derivative:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \zeta} J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)=\left\{\frac{b_{2}^{2} h_{1}^{2}\left(q_{1}-p_{12} q_{2}\right)^{2}\left(1+q_{2} b_{2}^{2}\right)}{\left(1+h_{1}^{2}\right)\left[1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+\zeta\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2}\right]^{3}}\right\} \cdot\left(\zeta-\zeta_{\mathrm{s}}\right) \tag{19}
\end{equation*}
$$

We assume, without loss of generality, that $\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2}$ is positive-valued (if not then either the singular point g does not exist or Fig. 1 is flipped over the J_{1} axis and looks like Fig. 2), in which case:

$$
\frac{\mathrm{d}}{\mathrm{~d} \zeta} J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right) \begin{cases}>0, & \text { if } \zeta>\zeta_{\mathrm{S}} \text { or } \zeta<g \tag{20}\\ =0 & \text { if } \zeta=\zeta_{\mathrm{S}} \\ <0 & \text { if } g<\zeta<\zeta_{\mathrm{S}}\end{cases}
$$

Since $\lim _{\zeta \rightarrow+\infty} J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)=\lim _{\zeta \rightarrow-\infty} J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)$ exists, and $\lim _{\zeta \rightarrow+\infty} J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)>J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta=\zeta \mathrm{s}}$, the value $J_{1}\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)$ versus ζ can be plotted as in Fig. 1. $J_{1}\left(\gamma_{1 \mathrm{~A}}, \gamma_{2 \mathrm{~A}}\right)$ versus d is then plotted in Fig. 2 in view of Lemma 1. Figs. 1 and 2 give a full view of the impact of ECS and ICS on player 1's Nash performance. Several important features of this impact are summarized in the following theorem.

Fig. 1. Impact of ECS: $J_{1}\left(\gamma_{18}, \gamma_{2 B}\right)$ as a function of ζ where $\zeta \mathrm{s}$ denotes the Stackelberg solution and 0 denotes the SIS Nash solution.

Fig. 2. Impact of ICS: $J_{1}\left(\gamma_{1 A}, \gamma_{2 A}\right)$ as a function of d where $d_{\mathrm{s}}=\left(1+h_{1}^{2}+h_{2}^{2}\right) b_{1} / h_{2}$ and 0 denotes the SIS Nash solution.

Theorem 1.

(i) In L, the set of uncountably many linear Nash solutions under ECS, the unique local and global minimum of J_{1} is given by $\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta={ }_{6}}$ which is the Stackelberg solution.
(ii) Under ECS, player 1 can do better than under SIS if

$$
\zeta \in\left[\zeta_{\mathrm{s}}, 0\right)
$$

(iii) Under ICS, player 1 can do better than under SIS if

$$
d \in\left(0,\left(1+h_{1}^{2}+h_{2}^{2}\right) b_{1} / h_{2}\right]
$$

Remark 1. This theorem shows that Uchida's claim, namely that the SIS solution is a local minimum of J_{1} in L, remark 3.3(i) of [2], is false.

Remark 2. This theorem indicates that the Stackelberg solution is more beneficial to player 1 as should be expected in general than all the other Nash solutions under ECS and SIS. It is not difficult to see that the Nash solution under ECS considered in theorem 2 of [1] is actually a Stackelberg solution.

Remark 3. This theorem and Fig. 1 give a general description of the impact of ECS on J_{1} which includes the result of theorem 2 of [1] as one particular impact out of uncountable ones.

Remark 4. The parameter d in (3) can be regarded as a measure of the strength with which player 1 communicates his control implicitly to player 2 . It can be regarded also as an incentive mechanism in a leader-follower situation, e.g. if the leader cannot communicate his control value to the follower free from noise, then by designing $d=\left(1+h_{1}^{2}+h_{2}^{2}\right) b_{1} / h_{2}$ in (3) and playing Nash (ICS), the leader can expect the same performance as in a Stackelberg game where the follower has perfect knowledge of the leader's control value.

4. Comments

In this section we give comments concerning the impact of ECS on J_{1}. In the first part we explain part (i) of theorem 1, i.e. why a local minimum of J_{1} among L is given by the Stackelberg solution instead of the SIS solution as claimed by Uchida. In the second part we explain part (ii) of theorem 1, i.e. why player 1 can do better in a continuous range of ζ under ECS than under SIS.

Since $J_{i}\left(\gamma_{1}, \gamma_{2}\right)$ is quadratic in $\gamma_{j}, i, j=1,2, J_{i}\left(\gamma_{1}, \gamma_{2}\right)$ is differentiable w.r.t. γ_{j}. Furthermore, γ_{2} is
differentiable w.r.t. γ_{1} since we take it to be linear in γ_{1}. By definition of a Nash solution (5), we have:

$$
\begin{align*}
& \left.\frac{\partial J_{2}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}}\right|_{\left(\gamma_{1}, \gamma_{2}\right) \in L}=0 \tag{21}\\
& \left.\frac{\mathrm{~d} J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\mathrm{d} \gamma_{1}}\right|_{\left(\gamma_{1}, \gamma_{2}\right) \in L}=\left.\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{1}}\right|_{\left(\gamma_{1}, \gamma_{2}\right) \in L}+\left.\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}} \cdot \frac{\partial \gamma_{2}}{\partial \gamma_{1}}\right|_{\left(\gamma_{1}, \gamma_{2}\right) \in L}=0 . \tag{22}
\end{align*}
$$

For every $\left(\gamma_{1}, \gamma_{2}\right) \in L$, the derivative of $J_{1}\left(\gamma_{1}, \gamma_{2}\right)$ w.r.t. ζ can be written as:

$$
\begin{align*}
\frac{\mathrm{d} J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\mathrm{d} \zeta} & =\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{1}} \cdot \frac{\partial \gamma_{1}}{\partial \zeta}+\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}}\left(\frac{\partial \gamma_{2}}{\partial \zeta}+\frac{\partial \gamma_{2}}{\partial \gamma_{1}} \cdot \frac{\partial \gamma_{1}}{\partial \zeta}\right) \tag{23a}\\
& =\left(\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{1}}+\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}} \cdot \frac{\partial \gamma_{2}}{\partial \gamma_{1}}\right) \cdot \frac{\partial \gamma_{1}}{\partial \zeta}+\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}} \cdot \frac{\partial \gamma_{2}}{\partial \zeta} \tag{23b}\\
& =\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}} \cdot \frac{\partial \gamma_{2}}{\partial \zeta} \tag{23c}
\end{align*}
$$

where we use (22) to obtain (23c). Let ζ^{*} correspond to the pair ($\left.\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta=\zeta^{*}}$ which achieves a local minimum of J_{1} in L, then

$$
\begin{equation*}
\left.\frac{\mathrm{d} J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\mathrm{d} \zeta}\right|_{\zeta^{*}}=0 \tag{24}
\end{equation*}
$$

Since $\partial \gamma_{2} /\left.\partial \zeta\right|_{\zeta^{*}} \neq 0$ in general, (23c) and (24) imply

$$
\begin{equation*}
\left.\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}}\right|_{\sigma^{*}}=0 \tag{25}
\end{equation*}
$$

(22) and (25) in turn imply

$$
\begin{equation*}
\left.\frac{\partial J_{1}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{1}}\right|_{\zeta^{*}}=0 \tag{26}
\end{equation*}
$$

Equations (21), (25) and (26) simply mean that with the constraint (21), J_{1} is optimized w.r.t. both γ_{1} and γ_{2} at ζ^{*}. By a well-known theorem in optimization theory (p. 224 of [3]), equations (21), (25) and (26) are equivalent to saying that the following equations hold:

$$
\begin{equation*}
\left.\frac{\partial}{\partial \gamma_{i}}\left[J_{1}\left(\gamma_{1}, \gamma_{2}\right)+\lambda G\left(\gamma_{1}, \gamma_{2}\right)\right]\right|_{\zeta^{*}}=0, \quad i=1,2 \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
G\left(\gamma_{1}, \gamma_{2}\right)=\left.\frac{\partial J_{2}\left(\gamma_{1}, \gamma_{2}\right)}{\partial \gamma_{2}}\right|_{\left(\gamma_{1}, \gamma_{2}\right) \in L}=0 \tag{28}
\end{equation*}
$$

and λ is a Lagrange multiplier. Equations (27) and (28) are the first-order necessary condition for the

Stackelberg solution (6) to hold [4]. Since J_{1} and J_{2} are convex in γ_{1} and γ_{2}, the first-order necessary condition is also a sufficient condition for ζ^{*} to be a Stackelberg solution.

It is remarkable that under ECS, although $J_{1}\left(\gamma_{1 B}, \gamma_{2 B}\right)$ depends on the statistics of the observation noise, its ordering for different ζ is independent of the noise, as we can see from (20). Thus, in order to explain the ordering of $J_{1}\left(\gamma_{1 B}, \gamma_{2 \mathrm{~B}}\right)$ for different ζ, one need consider only the deterministic game. In Section 2, if there is no observation noise in (2)-(4), then for any given u_{1} the optimal value of u_{2} minimizing J_{2} is determined uniquely by

$$
\begin{equation*}
\gamma_{2}\left(x, u_{1}\right)=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2}\left(b_{1} u_{1}+x\right) \tag{29}
\end{equation*}
$$

The locus of such points (u_{1}, u_{2}) given by (29) for all $u_{1} \in R$ is called the reaction curve of player 2 . The reaction curve of player 1 is similarly determined. Equicost contours of J_{1} and J_{2} and the reaction curves of both players are plotted in Fig. 3 for some particular values for the parameters of the game. The Nash solutions of Case B given by (10) now reduces to:

$$
\begin{align*}
\gamma_{1 \mathrm{~B}}(x) & =-\left\{1+q_{1} b_{1}^{2}+q_{2} b_{2}^{2}+\zeta\left(q_{1}-p_{12} q_{2}\right) b_{1} b_{2}\right\}^{-1}\left\{q_{1} b_{1}+\zeta\left(q_{1}-p_{12} q_{2}\right) b_{2}\right\} x, \tag{30a}\\
\gamma_{2 \mathrm{~B}}\left(x, u_{1}\right) & =-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2}\left\{b_{1} \gamma_{1 \mathrm{~B}}(x)+x\right\}+\zeta\left(u_{1}-\gamma_{1 \mathrm{~B}}(x)\right), \tag{30~b}
\end{align*}
$$

for all $\zeta \in R$ such that (11) holds. Notice that at each solution point of (30), the value of u_{2} given by (30b) is equal to that determined by the strategy

$$
\begin{equation*}
\gamma_{2}\left(x, u_{1}\right)=-\left(1+q_{2} b_{2}^{2}\right)^{-1} q_{2} b_{2}\left(b_{1} u_{1}+x\right) \tag{31}
\end{equation*}
$$

Equation (31) is the same as (29), which means that all the Nash solution pairs $\left(\gamma_{1 B}, \gamma_{2 B}\right)_{\zeta}$ are on R_{2}, the reaction curve of player 2. Furthermore, since $\left\{u_{1}\right\}$ given by (30a) for all $\zeta \in R$ such that (11) holds, is the real line, we conclude that R_{2} comprises all the linear Nash solutions of Case B. Point C in Fig. 3 represents $\left(\gamma_{1 \mathrm{C}}, \gamma_{2 \mathrm{C}}\right)=\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\xi=0}$, the SIS solution where R_{1} and R_{2} intersect. Point S represents ($\gamma_{1 \mathrm{~S}}, \gamma_{2 \mathrm{~S}}$) $=\left(\gamma_{1 \mathrm{~B}}, \gamma_{2 \mathrm{~B}}\right)_{\zeta=\ell_{\mathrm{S}}}$, the Stackelberg solution, where R_{2} is tangent to the contour of J_{1} [1]. Fig. 3 shows clearly that point S gives a global minimum of J_{1} on R_{2} and point C is by no means a local minimum of J_{1} on R_{2}. All the points between C and S on R_{2} yield lower cost of J_{1} than point C. Finally,

Fig. 3. Illustration of the impact of ECS on $J_{1} . R_{2}$: reaction curve of player $2 ; R_{1}$: reaction curve of player 1 .
we notice that while Fig. 3 provides an exact illustration of the impact of control sharing on J_{1}, it does not give a general description of the impact on J_{2}. For example, while Fig. 3 indicates that point S results in higher cost of J_{2} than point C, things might go the other way around. For more detail we refer to [5].

References

[1] Y.C. Ho, I. Blau and T. Basar, A Tale of Four Information Structures, Lecture Notes in Economics and Mathematical Systems, Vol. 107 (Springer-Verlag, 1975) 85-96.
[2] K. Uchida, On Nash solutions in a nonzero sum game with partially nested information structures, Large Scale Systems 3 (1982) 245-250.
[3] D.G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley Publishing Company, 1973).
[4] C.I. Chen and J.B. Cruz, Jr., Stackelberg solution for two-person games with biased information patterns, IEEE Trans. on Automatic Control AC-17 (6) (1972) 791-798.
[5] I. Blau, Value of information in a class of nonzero sum stochastic games, Ph.D. Thesis, Masschusetts Institute of Technology, Mathematics Department, June 1974.
[6] G.P. Papavassilopoulos, On the linear-quadratic-Gaussian Nash game with one-step delay observation sharing pattern, IEEE Trans. on Automatic Control AC-27 (5) (1982) 1065-1071.
[7] T. Basar, Decentralized multicriteria optimization of linear stochastic systems, IEEE Trans. on Automatic Control AC-23(2) (1978) 233-243.
[8] T. Basar, Hierarchical decision making under uncertainty, in: P.T. Liu (Ed.), Proceedings of the 1978 Kingston Conference on Differential Games and Control Theory (Plenum Press, 1979).

[^0]: *This research was supported by 'AFOSR grant 82-0174 and by the USC Faculty Research and Innovation Fund.
 ** Current address: Bell Communications Research, 331 Newman Spring Road, NVC-1F255, Red Bank, NJ 07716, U.S.A.

[^1]: North-Holland
 Large Scale Systems 7 (1984) 219-226

