IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30. NO. 4, APRIL 1983

377

'On the Informational Properties of the Nash
Solution of LQG Dynamic Games

MARTIN TU, memBER, (e, AND GEORGE P. PAPAVASSILOPOULOS, MEMBER, IEEE

Abstraci—The M-person, N-stuge discrete-time LQG Nash game is
considered. The players use strategies that are linear functions of the
current estimate of the state; generated by a Kalman filter. We study the
impact of improvements of the information on the costs of the players.
For certgin classes of such problems, we show that better information is
beneficial to all the players if the number of stages, or the number of
players, is targer than some bounds, and which bounds are given explicitly
in terms of the coefficient matrices. Related properties of the two-person
zero-sum game are also investigated. It is shown that under certain
conditions, better information is beneficial to the player who has better
maneuverability while the saddle-point cost is independent of the
information if both plsyers have the same maneuversbility. Conditions
guaraniecing the uniform boundedness of the solutions of the coupled
Riccati equations which arise in such games are also given.

I. INTRODUCTION

ONCOOPERATIVE muitiobjective control problems have

received much attention, due to their usefulness in
economics. engineering, etc. In particular, the Nash equilibrium
concept has been studied by several researchers (see [1]-[3], [9],
{10)). There are several features which are characteristic of the
Nash game and differentiate it quite sharply from the single
objective control problem. The particular feature which we
consider here is the impact that changes in the information have on
the optimal costs in a Nash game. It is known that better
information is beneficial in a single objective problem, in the
sense that it results in smaller cost. but as it has been observed in a
Nash setup, better information is not necessarily beneficial to the
players. The purpose of this paper is to study the impact on the
optimal costs of ‘an LQG Nash game, of improvements in the
information available to the players.

Several examples concerning informativeness and performance
(i.e., the impact of changes in the information on the costs) have
been considered. Ho and Blau [4] gave an example of a two-
person Nash game, where better information for both players
results in higher costs for both of them. Basar and Ho [5] gave two
examples which show that better information for either piayer
might result in lower average cost for both players in the LQG
model, whereas for the dupoly model, better information for one
player helps him alone while it hurts the other player. Walsh and
Cruz [6] had another example of a two person Nash game in
which worse information for one of the players could help him
and hurt the other. Informational competitiveness and consistency
constraints are used to explain such phenomena in the quoted
work. Sull, the above examples consider special cases which are
too specific for any concrete general conclusions to be drawn. In
this paper we study the impact of informativeness on performance
for a more general dynamic problem and relate it to the number of
stages or players involved. We consider the case where the
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information available to the players is the same. i.e.. it is public
information. It should be noted that several of the examples in [431-
[6] consider the case where the informaticn of only one plaver is
improved, i.e.. they examine the impact of changes of the private
information of the players. !

The structure of the paper is as follows. In Section II we state
the LQG Nash game. At each stage k, the players are allowed to
use a function of an estimate £(k) of the state x(k), which is
generated through a Kalman filter that uses linear, noise corrupted
measurements of x(k). In this setup the solution exists, is unique
and linear in £(k), under invertibility assumptions on some
matrices. This solution can also be obtained by solving the
deterministic game where the players use linear strategies in the
current state x(k) and using ¥(k) in place of x(k), i.e., by
imposing separation. In this section, we also derive a bound on the
norms of the solutions of the coupled Riccati equations involved,
which guarantees the uniform boundedness—for any k—of these
solutions. In Sections II-V several sufficient conditions that
better information (to be defined later) will lower the players’
costs are derived in terms of the coefficients of the game. An
interesting result that turns out in our analysis is that, for a certain
class of games, if the number of players is large enough, then
better information is beneficial to all the players. An intuitive
interpretation of this result is that if the number of players is very
large, then each player can think of all the others as being very
little affected by him, and thus improvement of his information is
not used by the others in order to increase his cost. Another result
that we prove, for a certain class of games, is that if the number of
stages is large enough, then dynamically better information (to be
defined later) is beneficial to all the players. An interpretation of
this result is that if the number of stages is very large, then the
players become more coupled and tend to cooperate, bringing
about the feature of the team problem where more information is
beneficial. In Section VI we consider the two-player zero-sum
game and we investigate the impact of changes in the information
on the saddle-point cost. Under certain conditions, we show that if
B;B] > B,B], then better information is beneficial to player i and
if B, = B, then the saddle-point cost is independent of the
information available to the players. A similar result for the
continuous-time LQG zero-sum game was given in {11] where
B;BT is viewed as the maneuverability of player i. The above
results could be interpreted as follows. If B,BT > B,B] (player 1
has better maneuverability which implies higher controllability
[11]), then player ] dominates the system, and thus he can use the
better information to his benefit. When B, = B,, both players can
equally influence the system and the controls exerted by the
players cancel each other, so that the system is free of control, and
hence the cost is free of the information available to the
controllers. In Section VII we present three numerical examples to
illustrate the informational properties discussed in the previous
sections. Finally, in Section VIII we present our conclusions and
delineate further directions of research.

" In a sequel paper we present an analysis paraliel to the one of the present
paper studying the impact of changes of the private information. In regard 10
this, see also [15].
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11. DESCRIPTION OF THE GAME AND ITS SOLUTION

Consider an M-person, N-stage Nash game where x(k) evolves
according to )

xtk+ D=Ax+ Y Buk+wk),  x0=xo (1)
i€fy .

where

kEG={0, 1, -+, N—1}

02={l) 2; R M}

x(k) € R" and u,(k) € R’/ denotes the action of player j at stage
k. x, and {w(k), k € 0,} are Gaussian independent random
vectors and E{w(k)w7(k)] = R, EIw(k)] = 0, cov [xy, Xo] =
0, Elx,] = X,. Consider the measurements

k) = Hox(k) + v(k) @

where the v(k)’s are zero-mean Gaussian, independent of Xo,
{w(k), kK € 6,} and Elv(npT(k)] = Z 6, X > 0. Let

£(k) = Elx(k)| y(0), ¥(1), * -+, y(K)} 8)]

and given explicitly by the Kalman filter equations:

2(k) = £(k/k — 1) + DUk — HEk/k — 1)) (4a)
Hhr R =AR+ S Bugk),  #O/-D=% (@)
JjEb: -
DUk = S(k/k = DH' (HE(k/k = DH’ +3) ! (40)
S(k+ 1/k)= AlT- DUOH]S(k/k= DA’ +R,  I(0/-1)=0
4d)
(k) ={I- DIK)H)Z(k/k - 1) (4e)
where
Rk + 17k) = Elxtk + DIAH0), »(1), -+, y(k)] (&)

is the one-step prediction of the state and

(k) = Elxth) - 201Xk - 201 6
Tk + 1/k) = Elx(k + 1) - Kk + 1/Kk))x(k + l)—-f(k-!-' 1761 @

are. respectively, the current estimation error covariance and the
one-step prediction error covariance.
The cost of player i, i € 6, is

N-1 M
J=E { P [xr(n)P,X(")w‘E u](n)Q,ju,(n)]

n=0 J=1
+xT(N )P,x(N)} ®

where P, =2 0, Q;; = 0, Q;; = 1, and E denotes total expectation.

u;(k) is chosen as v ¥(%(k)) and the y}'s are measurable functions,

v5:R" = R'j with the property that y4(£(k)) is a second-order

random vector. The employment of such strategies can be justified

by considering that there is an impartial referee who computes

#(k) and communicates it to the players (see also Remark 1).
Let

g={0 v T i€0

A set {g*, - -, g} is called a Nash equilibrium solution to the
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game if for every i € §,

‘,!(g’l" T g;) § J:(g}'» T, g‘*,_p &£ g,*.p "‘.8;)

o 9

for all admissible g,'s.
The Nash equilibrium solution to the game under consideration
is provided in the following theorem, the proof of which is given

in Appendix A.
Theorem 2.1: Consider the equations

Liky=P+AT [(1+ S BBTL/(k+ n) "] i

j€h

. [L‘»(k+l)+ E L,-(k+l)Bl,Q,jBJTLJ(k+1)]

i€,
H

-1
-[1+2 B,BJ.TLj(k+l)] A, L{N)=P, i€8, (i0)

Jj€8,

which evolve backwards in time. We assume the inverse of [/ +
Tjes, BiBTL,(k + 1)] exists for every k €8, then the following
holds. :

i) There exists a unique Nash solution to the game which is the
following:

u (k) =*y ¥ (k) = Fi(k)t(k)
kEB, i€B,

an

where

Fiky= —=BTLi(k+1) [1+ 3 B,B}L,(kn)] T4 a2

V=1
ii) The cost to go of player i at stage k (deﬁned as Ji(k) equal to

the expression in (8) where the summation is from kuptoN - 1)
is

Ji(k) = EIR T (k)L (k)£ (k)] + Ki(k) 13)
where - .
Kk)y=tr {P.T(k)+ATL(k+1)AZ(K)
+L{k+1}{R~- E(k‘+ M} +Kik+ 1),
KM=t {PL(N}}. (14)

Remark 1: From (12) and (10) we see that the Fi(k) is
independent of the observation noise. As a matter of fact, the
F{(k)’s are the same as those that will be used in this Nash game if
all the players have perfect measurements of the state and use
feedback (closed-loop no memory) strategies. This means that the
separation principle of estimation and control holds for the
strategies considered. This fact provides another motivation for
considering such strategies.

Remark 2: The nonsingularity conditions required in Theorem
2.1 can be satisfied for several cases as, for example, when B, =
b;B, b,, a real number, since then the eigenvalues of I + BB’
2,‘692 b}Lj(k + l) are 1.

Remark 3: If the players know the past history {»(0), -,
»(k)} and uvse it explicitly when they calculate their decisions at
stage k, rather than just X(k), then the Nash solution is different
(see [18], {1]). In [17], the same strategies as those considered
here are derived, after restricting them to be affine in £(k); notice
that we do not impose a priori the affine character of the
strategies.

In our later derivations, it is sometimes crucial to have L, (k)
uniformly bounded as k goes to infinity. Before giving the next
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theorem which provides a sufficient condition to that effect, we
state the following lemma, the proof of which is given in
Appendix B (the norm of any matrix considered here is the sup
norm. and the norm of any vector is the Euclidean one).

Lemma2.l:a)If X > Y 20, then X~!' > X" 'YX - '.b)If X
2 Y>0,thenY!' 2 X"\

Theorem 2.2: 1f B, = b;B, b; a real number, j € 8 and BB
is nonsingular, then L/(k) given by (8) is bounded by a constant
which is independent of & provided that

B2« Omax (F) < Amin (BBT+BB’ > b}P,BBT> 15)

where sEh
(1887 1BQuBT| -+ IBQwBTI|
1BOnBT|  IBBT|  --- |BQwBT| -
W= j (16)
| 180uB7I  1BQwBT] -+ |BB7]

Omax( W) denotes the largest singular value of W and Amis(")
denotes the smallest eigenvalue of (+).

Proof: First notice that since B, = b;B, the nonsingularity
condition of Theorem 2.1 holds, and thus the L{k)’s are well
defined vi, k. From (10) we have that L(k) = P, + a
nonnegative definite matrix, and thus

LikyzP;. a7

We will now show that ||b,L}2(k)(I + BB7 Z ey, b} LK) ']
is bounded by a constant c. It holds that -

-1
Ib,-L,'"z(k) (1+ BBTY b}L,(k))

JEO;

lb,L Y3(k) ((BB URES) bfL,«(k)) "BBT)x

= sup
=1 JjES:
-1
=—{)\ max [(BB")“ ((BB’)"+ )) b}Lj(k)> biLith)
. JES: i
-1 172
: ((BBT)-'+ ¥ b}.Lj(k)) (BB7)"!
j€8;
' -1
< {x max [(BBT)-' ((BBT)“+ h> b}L,(k))
JE8;

. (BBT)“]} v by Lemma 2.1 a)]

cl/Z

>

-1} 12
= {x max [BBT+BBT > b}P,BBT] }

Jj€b;

[by Lemma 2.1 b)} (18)

where A, (*) denotes the largest eigenvalue of (-). From (10) we
have

LN < Pl + 1 Af e
: [1/b$+ p) ||Lj'"2(k+l)BQUBTL}’Z(k+1)H]

JjE8

=||Pfi+ Al % [l/b?** Y I1BQyBT| Ile(k+l)lI]

Jj€8;
19

foreveryi € 0,, i.e.,

oy 1 [ e

S

il | | 1P
176} 1Lk + D)
' + W . 20
1/b3, MLk + D

v

Hence, ||L,(k)| will be uniformly bounded if

A4l *coms (W) <1, N
ie.,
IAR? - Omax (W) < Ao <BBT+BBT > b}P,-BBT) @2
: J€8;
where W is given by (16). - O

1. AN INFORMATIONAL PROPERTY OF THE NASH SOLUTION

In this section we define the concept of better information and
dynamically better information and we investigate how the Nash
costs are affected by the quality of the information. A theorem is
then established which gives a sufficient condition that better
information will lower player i's cost. In the next two sections,
based on the work done in this section, we will delineate how the
number of players and the number of stages affect the informa-
tional properties of the Nash solution.

Let

YICY=HIX()+0() (23a)
Y Y=H"x(-)+v(-) {23b)

be two different observations of x(-) and let £/(k) and £/(k + 1/
k) be defined as in (3) and (5) based on y/(-) with associated error
covariance T/ (k) and T/ (k + 17k). £1(k), #(k + 1/k), =¥
(k) and ¥ (k + 1/k) are similarly defined.

Definition 3.1: We say that the estimate ®/(-) provides betzer
information?® about the random vector x(-) than £7(-) does, if
and only if £ (k) — £/ (k) = Oforall kand £¥ (k) # £/ (k) for
at least one k. If, in addition, we have

Tk/k~1)-Zlk/k— 1) =T k) - T (k) (24)

then we say that £/(-) provides dynamically better information
about x(-) than £(-) does.

Better information simply means that the mean-square estima-
tion error T (k) is reduced and dynamically better information
means that the one-step prediction error = (k/k — 1) is reduced
no less than the reduction of the estimation error ¥ (k). For
convenience, we denote

/() = ELE(U)x k). (25)

J! and KI(k) are defined as in (13) and (14) corresponding to
information £/(-). Similarly, we define §”(k), J/, and K!(k).
Before giving a sufficient condition that better information is

2 Notice that **an increase of information”* of {6], [13] or ' ‘more observabie
system’* of [11], or **better information’" of [5] implies **better information’’
by our definition.
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beneficial to the players. we state the following lemma, the proof
of which is given in Appendix C.

Lemma 3./:1f X > 0and Yis a ncazero. nonnegative definite
matrix, then r {XY} > 0.

Theorern 3.1: The Nash solution given by Theorzm 2.1 has the
property that betier information lowers the cost of playeri if P, +
ATLk + DA - L(k)y > Oforall k € §,.

Procf: From part ii) of Theorem 2.1,

J = ERTOLAOE 0] + K[(O)=1tr {L,OD40) +K (0} (26)
From the recursive expression of X, in (14). we have

Nt
PEM+ATL(MAT(O)+ Y [P

k=1

Kid)y=tr {

N-d
+ATLik+ DA-LIOIZ!0) + S RLi(k+1)

k=9

} . 27

Thus.

M-
Ji=ur {L,-(O)ﬁ’(O_)H-Pﬁ-A TL(DAITIO+ 3 1P,

k=1
} . 28)

N-1
+ATL(k+ DA - LISk + Y, RLik+ 1)

k=0

Similarly,

JM=1r [L,ﬁ(c)fl”(O) +{P+ A TL(DAJTY()

N-1 i N-1
+ 3 [P+ ATLG+ DA~ LIS () + 3, RLik+1 )} ,
k=1 ’ k=0
(29)
By using the fact that
£70) - £(0) = - (£"(0)-Z0)) (30)
we obtain”
JE-J1=% o {[Pi+ ATLi(k + DA ~ LUOIE () -SR]}
k=4,
(3n

Suppose now that #/(-) provides better information than £7(-)

does. then Lemma 3.1 implies J/ — J/ > 0 if
for all k€86;. (32)

8

P+ ATL(k+1)4 - Li(k)>0

IV. EFFECT OF M ON THE INFORMATIONAL PROPERTY OF THE
NasH SOLUTION

We will demonstrate in this section that under some conditions,
as the number of players increases, better information is beneficial
to all the players. We will need the following lemma which we
prove in Appendix D.

Lemma 4.1: If Y
Amm( Y) : xmin(“rrlxr)-

Theorem4.1:1f B, = b,B, b,areal number, ;=2 P> 0,/ £
6., A, B,B] are nonsingular, and L,(k) is uniformly bounded for
all j € 8., then better information lowers all the players® costs if
M, the number of players, is large enough.

2 0, then Aun(XTYX) 2

ot
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A o . .
Proof: From Theorsm 30 asuffcient condil

L. . 2r
information lowers the cost of plaver / is {32y, Sub BN
into (325, we obiain l
_ P ATL G+ A - L= U a3

where

-1
f L ; T LY N
Us [533 D b+ x)] A (34)
i

1

L+ )= BAL(k+ DBOBTL(k+1). (3%
i

- .
I+8B87 E bJ?Lj(k+ l')] Lik+1)

<

1+837 % bjL,(/wn]

JEY:

3
o

Since L’ is nonsingular, the condition for (3 ) 1o hoid is the same

[(BB’)“

+ 3 B (k1)

IS8,

~ one as ¥ > 0. By writing

I+BBT % b Lik+1)=B37

J€8
(3¢)

and let \piolP) = 8, Apal BB') =

ﬁ,max,_~ M= Lk
L,E > |b/' > b > 0, then by J “Q/' g, L(k) =

Lemma 4.1 we have

Voz [(MdB8)%s - L)} - M5qBBT) 1Zi3e. 37
Thus, V' > 0if
(S IL1+Bg1BaT) 4Ly
AM> T . (38
. O
Remark 4. 1f all the players have the same cost functional to

minimize, i.e., P = P, Q; = I for ali i, J and release the
condition that B, = .8, then the decision problem is known as ap
LQG team problem and a Nash solutior leads to person-by-person
optimality which coincides with team optimality. In this case
Lik) = L(k) for all j € 6, ard ) '

e [

L+ D-Lk+D Y, BBL(k+1)

JE€9

I+3 BBTL(k+1)
JE:

;
] Lik+1) [1+ Y BBIL(k+1)

Jj€9:

=Lk+1) Y, BBTL(k+1)

159

*LG+1) 3 BBILk+1) Y BBTL(k+1)

JEB;

>0 for M = 1.

J€
(39

Hence, better information always lowers the team cost no matter
how many players are in a team probiem.

Remark 5: Conditions for boundedness of L{k) were derived
in Theorem 2.2, and thus the related assumption of Theorem 4.1
can be made to hoid.
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Remark 6: Notice that the bound on M, given in (33) can be ad
hoc calculated explicitly.

Remark 7: An interesting effect of M on the asymptotic value
of communication in a team situation was studied in {16].

V. EFFECT OF N ON THE INFORMATIONAL PROPERTY OF THE NASH
SOLUTION

We shall demonstrate that under certain conditions, as the
number of stages increases, dynamically better information is
beneficial to all the players.

Assumption 5.1: Let (A, C) be observable and (4, H")
controllable where R = C7C {recall EJw(k)wT(k)] = R and
w(k) is the random vector in (1)].

We need the following lemma, which actually states two well-
known results from the control and filtering theorem (see [8], [9]).

LemmaS.]:a)E (k + 1/k) = A T (k/k)AT + R. b) Under
Assumption 5.1, £/ (k + 1/k) and 27 (k + 1/k) converge as k
goes to infinity, and hence A T & limy.a A Z (k) & 7 (k) -

1 (k)) exists.

Note that from Definition 3.1 and Lemma 5.1 a), if £/(-)is a
dynamically better information than £7(-), then

AATAT=AS. (40)

Theorem 5.1: Under Assumption 5.1 and if, in addition, i) P;

> 0and ii) Lk) = L v k, then dynamically better information

lowers the cost of player i if N, the number of stages, is large
enough.

Proof: Let £/(+) provide dynamically better information

than £7(-). By Lemma 5.1 b), for ¢ > 0, there exists 5 such that

for k=s—1.

1+ HAT = AT(K) = (1 - §AZ, (C3))
From (31)
N- ‘
J{’—J{= tr { E (P;+ATL(k+ DA - L,-(k))AE(k)}
k=0 .
s~-1
=tr { (Pi+ ATL(k + DA - L(k)AZ(k)
k=0 .
N-t N-1
+ Y (ATLk + DA - LGNAZK) + 3, P,AE(k)} .
k=3 k=s
42

Let X\pin(P) = 6. then
N-1{
E PAS(k) Zz (N-35)P;(1 -§)ATz (N-s)1-£)BAT (43)
k=s

and

N-1
tr { S ATLk+ DA - Li(k))AS(k)}
k=5

N-1

2 Y Ir {(A7Litk+ 1A~ Li(k)AT}
k=5
—tr {1+ [4)D)L]EAT)

N-2
=t {(A TLAN)A — Li(s))AT + E Li(k+1)(AAZAT —-AE)}

k=3
—EN-T+ ALY r AS

2 - +EN=-9) +[A[DHL] o AT 44)

where we use the fact that
tr {(ATL(k+ DA~ Lk +1)AZ}
=tr {Li{k+1AATAT-AT)) 20. .

- Substituting (43), (44) into (42) we obtain

s-1
JI-Jlztr {2 (Pi+ ATLi(k + DA = L(kDAZ(K)

k=0
+(N=8)(1— £)PAT = [1+ E(N - 5)1 + | 4] 2)]fi£||A‘:}

z - {BH + N =9~ §6+ | LI+ A r Az

435
where
s-1
B= 2 (P,+ATL,-(I(+l)A—L,-(k))A.‘J(k)—HZHAE. (46)
k=0
If we choose 4
]
=(1/2) ————r 47
B F AT T “n
then J/ — J! > O provided that
2 |u {B}}.
N>s+5— Tas] (48)
) ‘ -
Remark 8: The third example in Section VII shows that

Theorem 5.1 might not hold if dynamically better information is
replaced by better information.

Remark 9: The ‘‘dynamically better information’ concept
used in the above theorem could also be explained in the following
manner. Since (22) is equivalent to

TMk/k - 1) -T2 Zik/k-1)-Zik) =0 (49)
the advantage of dynamically better information not only resides
in smaller estimation error, but also in that the difference of the
one-step prediction error and the estimation error is reduced. The
best that one-step prediction error could be is equal to the
estimation error, so it is something that really helps in a long-
period dynamical multiobjective control process when both the
estimation error and its difference with the prediction error ar
reduced. '

Remark 10: The condition (40) used in Theorem 5.1 is true in
the scalar case if and only if |4]| = 1, i.e., a better information is
also a dynamically better information if and only if |A4] z 1. | 4]
= 1 in turn implies that the players are stronger coupled than
when |A! < 1. In vector case, it is necessary that | A|| = | and
for different A, (40) suggests the right direction to improve the
estimation such that better information will be beneficial to the
players in the dynamic process. Another interpretation for the
dynamically better information condition in Theorem 5.1 is that
under dynamically better information (which implies 4] 2 D)
the open-loop system is unstable; to the players’ benefit, when NV
is large, they had better stabilize the system first and that makes
them cooperate.

Remark 11: Notice that the bound on N, given in (48) can be
ad hoc calculated explicitly.

Remark 12: Notice that when the condition (38) holds, it is
independent of M. Also when (48) holds, it is independent of M.
In general, we could think of a joint bound for (M, N) which
guarantees that dynamically better information implies lower
costs to all the players.
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V1. RELATED PROPERTIES OF THE ZERO-SUM GAME

Although the two-person zero-sum game {9] is a special case of
the Nash problem. not all the theorems that we derived so far
apply to it, and this is due to the specific structure of the zero-sum
games. For example, the nonnegative definiteness of the matrices
that we imposed in the cost functional (8) do not hold for the zero-
sum case. :

Let us now describe the zero-sum problem that we will
consider. Playver 1 (the minimizer) wants to minimize while player
2 (the maximizer) wants to maximize the following cost:

N-1
J=E { S XT(RPX(K) + u (ki)

k=0

- ulu(k)] + XT(N)Px(N )} . (50)
The evolution of x(k) is described by
x(k + 1) = Axtk) + B x;(k) + Byxa(k) + w(k). (1)

The counterpart of Theorem 2.1 in the zero-sum game defined

above is Theorem 2.1’ given below. The proof of this theorem is

similar to that of Theorem 2.1 but here we need J(k) to be convex

in u,(k) and concave in uy(k) at each stage k while the

corresponding convexity conditions in Theorem 2.1 were implied

by the nonnegative definiteness of the matrices we imposed in (3).
Theorem 2.1’ Consider the equation

L(ky=P+AT[(+(B,BT - ByBT)L(k+ D) 1 T[L(k+1)
+L(k+1)(B BT~ B;B])L(k + )]
U+(B;BT-B;BI)L(k+1)]7'A,

L(Ny=P (52)

which evolves backwards in time. We assume the inverse of [/ +
(B,BT — B:BD)L(k + 1)] exists for every k € 0, and

I+BTL(k+1)B,>0 and I-BJL(k+1)B;>0 (53)
then the following holds. ’
i) There exists a unique saddle-point solution to the zero-sum
game which is the following:
ux(k)=*yf(Rk)=Fi(k)ik) k€,

i=1,2 (34

where
Fiky=— B,.TL(k +D){I+B;BT- BZBZT)L(k+ DI-'4A. (55)

ii) The cost to go of player 1 (player 2) at stage k is J(k)(—
J(k)) where :

J(k) = E1 () L(k)2(k)] + K(k) (56)
Kky=tr {PE(k)+ATL(k+ 1)AZ(K)
+Ltk+ D(R=-Zk+ D} +K(k+1)
K(N)=u {PZ(N)}. Sr))
]

Notice that the convexity and concavity conditions which are
necessary for the above solution to exist results in (53) whichis a
kind of boundedness condition for L(k) to hold. The following
theorem gives sufficient conditions that L(k) will be bgupdgd {ind
the bound is given explicitly. We omit the proof since it is similar
to the proof of Theorem 2.2.

Theorem 2.2°: ) If P > 0 and B\B{ > B;B{.then L(k) = P
> 0.ii) If P < 0and B,B] < B,B], then L(k) < P < 0.1fin
addition to either 1) or 2). ||4l*c]B.B] — B:B]|| < 1. then
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IL{k)| is uniformly bounded by ||L}f where

121+ A4 e

WLy & 5 =
IEl = 5= 48,8 - B,B]|

+ A} BB - BB | Py

(58)
¢ 2 |{B,BT-B:B])+(B,B]-B:B)PB,B[-B.8])]""||.
(59)

ili)IfFB, = By, then L{k) = P + ATL(k + 1)A. If, in addition.
f|4]l < 1, then

1Py
T iA]?

iLtlof =< +]l411% Py (60)

By Theorem 2.1 ii} and by carrying out similar derivation as in
Theorem 3.1, we have the following theorem which is the
counterpart of Theorem 3.1 in the zero-sum game.

Theorem 3.1’: The saddle-point solution given by Theorem
2.1’ has the property that better information lowers the minimi-
zer's cost if, for all k € 8,, the matrix

P+ATL(k+1)A-Lik) (61)
is_positive definite. Better information lowers the maximizer's
cost if (61) is negative definite. Both costs are independent of the
information if (61) is a zero matrix.

O

Since M = 2, the idea of Theorem 4.1 does not apply to the
two-person zero-sum game. We can use, however, a similar
procedure as that used in proving Theorem 4.1 to obtain a
sufficient condition that better information lowers one of the
player’s cost in the zero-sum game. For this reason, the following
theorem is a counterpart of Theorem 4.1.

Theorem 4.1°: i) Better information lowers the minimizer’s
cost if A4 is nonsingular, P > 0, and B,B{ > B:BI. ii) Better
information lowers the maximizer's cost if 4 is nonsingular, P <
0, and B\B] < B.B]. iii) The costs are independent of the
information if B, = B,.

Proof: 1) Substituting (52) into (61) we obtain

P+ATL(+ DA~ L(k)= YT[(B, BT~ B,B])+ L(k+ 1)]Y
(62)
where .
Y & (B,BT—B;BI)L(k+ DU+ (B,BT-BBI)L(k+1)]"'A.
(63)

Under the conditions given, and by Theorem 2.21) we have L(k)
> 0 and Y is nonsingular and, hence, the right-hand side of (62) is
positive definite. Theorem 3.1° then implies the desired result:

i) is similar to (i) with the corresponding matrices negative
definite

iii) immediately from Theorem 2.2"iii) and Theorem 3.1".

O

Remark 13: In Theorem 3.1’ and 4.1°, a sufficient condition
for one of the players to benefit by better information is also a
sufficient condition for the other player to suffer by that
information.

Remark 14: The zero-sum game was extensively studied in the
past decade (e.g., [9], [11], [12}, [14]). Reference [9] considers
the deterministic zero-sum games while [11], [12], and [14]
consider the stochastic zero-sum games. The informational
properties of the zero-sum LQG game were studied in {11] in the
continuous-time setup. Our results which concern the discrete-

time case are analogous to those of [I1]. The concept of

maneuverability was introduced in [11] in order to provide an
intuitive interpretation of the results. As it turns out, this concept
is not sufficient to provide an intuitive interpretation of the



TU AND PAPAVASSILOPOULOS: INFORMATIONAL PROGPERTIES OF THE NASH SOLUTION

informational properties of the nonzero-sum game, which as our
results of the previous sections indicate, depend on other factors
as well,

VII. EXAMPLES

In this section we give three examples which illustrate the
theorems we obtained in the previous sections. All the examples
are scalar nonzero-sum cases with the general formulation given
in Section I. For simplicity we choose X = 0, o = 10, B; = P,
=Q,=R=H=1vj€6b:andQ, =20,i # . We consider
two different measurements which correspond to two different
information available to the players.

Information I: #!, based on measurements yi¢) = x(°) +
vi(-), vI() = N, 1).

Information II: £, based on measurements yiIy = x(*) +
v(-), v(-) = N(O, 2).

Note that Information I provides better information than II,
according to Definition 3.1, and the fact that the larger the
variance of observation noise is, the larger.is the estimation error.

Example I: This example demonstrates Theorems 3.1and 4.1.
Consider an M-person, one-stage (N = 1) game where A = 1.
Since the parameters of the game are symmetric (it is not a team
situation. however), the costs incurred to the players are of the
same value. Before we use (38) to estimate the number of players
under which better information is guaranteed to lower all the
players’ costs, we have to obtain a bound for L(k) from (10). For
this single-stage problem, itiseasytoseethat L{k) = 1 + (20M
~ 18)/(1 + M)*. Without loss of generality we can assume that
there are more than 40 players so that Li(k) < L.5. Equation (38)
then gives M > 46, i.e., if M > 46, then better information
Jowers all the players’ costs. We can see from Table I that if Mis
larger than 16 (which is within the bound of 46), then better
information gives positive benefit. Also, if M is larger than 16,
then P, + ATL{1)A — L;(0) > 0, a sufficient condition given in
Theorem 3.1 holds.

Example 2: This example demonstrates Theorem 5.1. Con-
sider a two-person (M = 2), N-stage game where 4 = 1. Notice
that here by Remark 8, Information I is also a dynamically better
information relative to II. Again, the costs incurred to the players
are of the same value. As in Example 1, we first obtain a bound
for L(k) from (10). It turns out that L{k) < 7. Choose ¢ =0.03
from (47). Then we can use the Kalman filter equations to obtain
A T (k) and A T. Values of s from (41) and B from (44) can be
obtained accordingly. Equation (48) then gives a bound of N >
18 i.e., if N > 18, ther dynamically better information lowers
their Nash costs. We can see from Table I that if N is larger than
4 (which is within the bound of 18), then dynamically better
information gives positive benefit. Moreover, the benefit per
stage due to dynamically better information is increasing with NV.

Example 3: This example demonstrates that dynamically better
information is sometimes crucial for Theorem 5.1 to hold.
Consider the same game as in Example 2 except A = 0.5. Notice
that by Remark 8, in the scalar system, a better information is a
dvnamically better information if and only if |A| = 1. Hence, in
this example, although Information 1 is better than O, it is no
longer a dynamically better information relative to II. The result is
that as N increases. better information does not lower the costs.
The costs are shown in Table HI.

VIII. CONCLUSION

1t is not surprising that better information might be harmful in a
situation of conflict, but it still remains a cause of discomfort for
the players. Besides this discomfort, there are situations where
one would expect better information to be beneficial, as for
example would be the case in a Nash game which is used to model
the decentralized decision making in a large system, which is too
large to be solved in centralized fashion. The conditions of
Theorems 4.1 and 5.1 single out classes of problems where more
information is beneficial to all the players and delineate the

333

TABLE 1
COSTS OF PLAYERS IN EXAMPLE | UNDER DIFFERENT INFORMATION
VERSUS DIFFERENT NUMBER OF PLAYERS

Benefit due
£ Baettar

. T
Information I Iaformation Il Infurmation Pl*A‘L TLYA=Z (O
1 3

M= 2 34,1313 313.0370 ~i.0948 -1.4443
N= 3 35.7727 J4a.54.07 -i.2311 ~1.6358
M= & 34,4548 33.3333 -1.1212 ~i.4852
Ma 3 J2.6162 - 31.6431 ~9.9630 «1.3778
M- 6 3¢.8320 30.0138 -0.8194 ~i.04as
M= 7 29,2186 28.5521 -0.68685 ~0.9363
M= 8 27.68462 27.2757 -9.370% -0.7%31
M= 3 26.6364 26.1667 -0.4637 ~3.620¢
M-10 25.5810 - 25.2011 -0.3819 ~3.5041
M=l 24,6615 24.3365 ~0.3051 ~-0.4028
M=12 23.8510 23.6134 -0.2376 -0.3138
Mwll 23.11338 22.9338 -0.1773 -0.2347
M=1d i2.,4949 22.2764 -0.1246 -0.1644
M=13 21.921 21.8464 -0.0763 -0.101%
M=l6 21.40893 21.3749 -0.0341 -0.045¢C
M=17 20.94239 20.3486 0.0047 0.0062
M=18 20.5215% 20,5614 0.0393 0.0525
Mel3 20.1364 23.2083 0.0720 0.0950
M=20 13.7838 19.88351 0.1014 0.1328
TABLE I

COSTS OF PLAYERS IN EXAMPLE 2 UNDER DIFFERENT INFORMATION
VERSUS DIFFERENT NUMBER OF STAGES

Benefit due to Benefit per Stage
Gynamically Bettsr due tc Dynamically

Information I Information II Information Batter Inforaatiorn
Ne 1 34.1313 33.0370 ~1.0943 ~0.54714
Ne 2 53.5253 .82.3570 -1.1682 -0.38941
Ne ) 62.6977 62.3126 -0.3351 -0.09628
N & 69.2717 69.5068 0.2331 0.048662
Ne 5 75.4314% 76.1124 0.698)3 0.11638
N= 6 81.4866— 82.5919 1.10%2 0.15789
Ns 7 87.5487 89.0429 1.4342 0.18677°
N= 8 93.6092 95.4872 1.8780 0.2084a7
N= 9 99.6635 103.9399 2.2603 0.2260%
Nal0 105.7297 108.3723 2.6425 0.2432)
Na=ll 111.73%00 114.8145 3.0245 0.25205
N=12 117.6502 121.2567 3. 49265 0.26204
N=13 123.9104 127.6389 3.788% 0.27061
N=l4 129.9706 134.141) 4.1704 0.27803
N=15 136.0309 140.5833 4.5524 0.28451
Reld 142.0911 147.0255 4.9344 0.29026
N=17 148.13513 153.4676 5.3r61 0.29%518
N=18 154.2115 159.9098 5.6983 0.2939
N=19 160.2713 166.3520 6.0802 0.30401
- TABLE III
COSTS OF PLAYERS IN EXAMPLE 3
Benefit due Benefit per Stage
to Better due to
Information I 1Information II Information Better Information
N= 1 16.7828 16.5093 -0.2736 -0.13678
N= 2 19.98329 19.5413 ~0.391s6 -0.13052
H= 3 21.8794 21.40890 ~0.4734 -0.1178%
Ha 4 23.5712 23.0214 ~-0.5498 -0.1059¢
Ne 5 25.2143 24.5857 -0.6291 ~0.10485
N= 6 26.8495 26.1409 ~0.7086 -0.10123
Na T 28.4825 27.6%43 -0.7883 -0.098%3
N= B 30.1153 29.2474 -0.8879 -0.09643
N= 9 31.7480 30.8004 -9.9475 -0.Q9475
N=10 33,1806 32.3535 -31.0272 -0.09338
N=11 35.0133 33.9065 -1.1068 -0.09224
N=12 36.6460 35.45353 -1.1865 -0.09127
N=13 38.2787 37.0125% -1.2661 -0.0%041
N=14 39.9113 38.5656 -1.3458 ~0.08972
N=15 41.5440 40.1186 -1.4254 -0.083C9
N=16 43,1787 41.6715 -1.5050 -0.08833
N=17 44.8094 43.2247 ~1.5847 -0.08804
N=18 46.4420 44.77717 -1.6643 ~0.08760
N=19 48.0747 46.3307 ~1.7440 -0.08720

importance of the number of stages or players for such a result to
hold. A salient feature of two-person zero-sum games that
distinguishes them from other types of games is that they do not
allow for any cooperation between the players. This feature is also
revealed in their informational properties. In Theorem 4.1 we
showed that in the zero-sum games, better information is
beneficial to the dominant player only. The dominancy is
determined by the maneuverability and the P matrix. This result
in discrete-time system is consistent with the previous result in
continuous-time differential games.

In this paper we studied the impact of changes of the
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information quality on the optimal costs under a specific informa- ETRTINLANYNYLAN - 1)
tion structure defined in Section II. It is also interesting to ST N/ i i
investigate the impact of changes of the *‘information structure’’ =T N/N = DLAN)EN/N - 1)

on the optimal costs. For example. if in the formulation of the INWSON A TS A
problem, instead of #(k), all of the players know {»(0), - - -, +tr {LUNXE/N - 1) - SN}
y(k)} at stage k, then it can be shown that there exists a unique =(AHN=-D+ E Bju,(N - D) TLANYARN - 1)
Nash solution under certain nonsingularity conditions and the jen
solution is different from the one given by Theorem 2.1. We can
then compare the Nash costs resulting from these two different + 2 BuiN-1)
Chalds

information structures and ask under what conditions one of the
information structure is more beneficial to player i than the other
information structure. Another problem related to this research is +tr {LANWIN/N - 1)~ SN}, (A
to investigate the informational properties of the games with -

players in different hierarchical levels. e.g., the Stackelberg  Substituting (A<4) into (A-3) we obtain

games. These are still open questions in this area of research.

/€9

Finally, notice that Theorem 2.2, although used as a stepping JAN=1) =2T(N - D[P+ ATL(N)AJZN - 1)
stone in our analysis, is of interest in its own, since it provides r
conditions guaranteeing uniform boundedness of the solutions of + E uj (N-1DQyuN-1)
the coupled Riccati equations. i€

+ 3 uT(N=DBTLN) Y Bu(N-1)
APPENDIX A jer ! s
In this Appendix we prove Theorem 2.1 +28T(N=-DATLN) E Bu(N-1)
Notice that £(k) given by (4) is such that the error term ’ jes, i
k) & x(k) - 26) ' +r [SV/N=1) - SNLAN)

is independent of the controls and J; can be written solely in the +tr [PE(N- 1D+ K(N) (A-5)

terms of £(k), k¥ =z 0, with some remainder terms depending only
on x(k).” This construction makes the problem similar to a
deterministic problem considered in {10, Theorem 3] with &(k)
replacing x(k) and M players instead of two. The idea behind the 7
proof of the two theorems is, however, the same. In the @4(N-1)
following we sketch the decision making atstage N — 1, u}(N — dui(N-1)

1),j € 6, ' ‘ +BTL(N) [AX(N— 1

player i chooses 4N — 1) to minimize J(N — 1). Since (N -
1) is convex in u{N — 1), we have

uXN-1)=2 {[1+B,TL,(N)B,-]u;r(N— 1)

j€8;

At stage N (no more decisions to be made)

: M
JilN)y = E[}' T(NP,ix(N)] = ETEIx T(N)P.XIN) | H(V)]) + z Bu*N- 1)] } =0. (A-6)
=E[RT(IN)PAN)] +tr [P,E(M)] J=l i
= ERTMLINZ] + KN (A-1) By writing down M equations like (A-6), i.e., i from 1 to M, we

have the following system equations:

where ”
I+B ITL l(x’V)B‘ B;Ll(N)Bz --- B ITLI(}V)BM

Li(N)=P;, K{N)=1r [P;Z(N)]
BILyN)B,  1+BIL{N)B, -+ BILyN)By

at stage N — 1,

JN-1)=E [xT(N— PAN-1) BLLW(N)B,  BLLy(N)B; -+ I+BT.Ly(N)By
uHN-1 BIL\(
+Y u,T(N—1)Q.-,-u,(~-1)+xT(N)P,-x(N)] v rp
jéo. V=D o BILN | aan-ty. (A
(A-2) u(N~1) BILN)
after receiving &N — 1), player i's objective is to minimize J(N ) '
— 1) given by If a solution exists, u*(N — 1) is of the form such that
JIN-1=E [xT(N— DPX(N-1) Bur(N-1)=G(N-DAXN-1). (A-8)
Also from (A-6) we have
T - AN -
+,§~ u(IN=-DQyu(N-1) Bu*(N-1)= ~B(I+BTL(N)B,]"'BTL(N) [A;e(zv— 1
+xT(N)Px(N)| BN - 1)] + Y BuxN- 1)]
jE j=1
=2T(N-DPEN-1+ 3 4] (N-1)Qu;(N-1)
jes, = ~[/+BBTL(N)"'B,BTLAN) [Ax(N- 1)
+tr [PEN-1D)]
. + 3 Bu*N- 1)] (A-9)
+ ERTINLANEM XN - DI+ K(N)  (A3) jEb e



TU AND PaPAY ASSILOPOULCS: INFORMATIONAL PROPERTIES OF THE NASH 3CLUTION R

wiere we use the fact that

X;(!+X;X;)~l4 2=(I+X;X;)-‘X;1Y2 (A"C\)

provided that the correspending matrices are invertible. Substinut-
ing (A-8) into (A-9)

GAN=-1)= -1+ B.B]L(NM} 1BBL N

[h» > G,(..v-x)-o,»(‘v—x)] (A-1D
JEH
N\

GAN=-1)= - B,BTLAN) (1+ S GuN - 1)) (A-12)

j€

S GiN-1=- [ S BJBITL,-(N)] (1+ 3 GiN- 1)>

-1 i€ Jj€#H

(A-13)

-1
1+Y GWN-1= [1+ b B,BJ.TL,-(N)] . (A1
JE& €%
Substituting (A-8) into (A-7) and then (A-14) into (A-7), we
obtain
-1 -
u¥N-1)=—BTL(N) [1+ S B,BJTL,(N)] AN -1).
J€8
(A-15)

This solution is unique if J + Z,g4, B;B]L;(N) is nonsiagular.
Substituting (A-15) into (A-2) we obtain

JIN-D=ETN-DLN-DAN-1D])+K(N-1)

where Li(N - 1) is given by (10) and Ki(N — 1) by (14). As we
can see, (A-16) and (A-1) are of the same form. So in going back
to stage N — 2, we will just repeat what we did at stage N — 1.
The general form of the solution and the costs are given by (10)-

(14).

(A-16)

APPENDIX B
a) X > Y, premultiplying and pestmultiplying both sides by
X~ yields the result. :
BY!'-Xi=Y(X-T)X!
also

Yl X-l=X-{(X- Y)Y
=X X=X+ XX =YY —X)

=X X-NX" 1+ X" X-NY {(X-NX-!
=0.

ApPPENDIX C

All the diagonal elements y; of Y are nonnegative and at legst
one of them is nonzero. Without loss of generality, let X' = diag
(xh "'9xn),xi > 01 1 .S_ i =n

n
tr {X]/} = E X,'_V,',>0.

i=]
APPENDIX D
A min (X7YX)= l'rurﬂxi“nl vTXTY Xy= !r"?i’nl (Xv)TY(Xv)
Z\ min (Y) lrurﬂxi_nl I xu|?

=X\ min (Y)N min (X7X).
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