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NP, D, P Y
e 2B %)
3(8y.0y.8,) 4
o that we can apply the implicit function theorem to (2.3). Let

e (9,95 .8,) .and. 8 2 (BB - ”3"_;")=(0Pﬂ,.9'”2,. -+.8,), so
s d=(a.frand I =(a.f). Hence there are cpen neighborheeds €, and
+ of a and 3. respectively, and 2 unique conticuousiy differentiable
;‘.;cuon £:Q,—2, such that f(B)=d and

(8).8)=%,
soralt €02 Let us define a new function ¥:Qg—{y

Y (B =2,(f(B)BY:

i=12,,p, (2.4)

i=12,5.

gquation (2.4) implies that ¥, '¥,,---, ¥, are constants. We will show

sa1 ¥, 10,4200, ¥, are also constant. We have

AT ‘ S o, Y
Jn-@; q’..j*;;(f(,ﬂ)!ﬂ)"'k:l ;k(f(B)»AB) a@'
1<i<p, l<j<n—p
3, ,

- 4 3,
a3 =,,.,(/(BLAY+ kg‘ ®,((S( 3)-5)55,

pHIKIKs; 1<j<n=p (2.5

where @, ; denotes the derivative of ®; with respect to its jth argument,
.2 other words it is the (i,j)th element of the Jacobian J(:). Let us define
the neighborhood @;=QnN (2, XR"PIN(R? X Q) of §. Then, by the
regularity condition in &, rank @ = p throught Q,. Hence, each row {9, ;
1<j<7n}, p+1<i<s, is linearly dependent on the rows {®;;; 1</ <n},

i<i< p throughout ;. Then, by (2.5), each row (o¥,/38; 1<j<n—p}s

p+1<i<s is linearly dependent on the rows (3¥,/38; 1<j<n~p},
1<i<p, which are identically zero by construction. It follows that
3, /38,=0, I<j<n—p, 1<i<s, 50 that ¥,( 8} is constant for 1 <i<s.
As a result © is constant on the manifold {a,Bla=f(8)}N{,. There:
fore, & cannot be one-to-one for any neighborhood of the point §, and §
is not locally identifiable. o a
Lemma | and Theorems 1.and 2 combine to. form the following
theorem, Co L P
Theorem 3: Let § €R and let §(-): -0y be continuously differen-
table. Then H"(8)—M a.s. as n—oo and # is locally identifiable if and
anly if, M >0. : ' . ] -]
We remark again that if ® has rank n at § then €A,
We have the following specialization to the case where @ is analytic.
Theorem 4: Assume that & is analytic throughout an open connected
set QCR" and that rank @ is not identically less than n for § €, i,
2N =J, where O = {#rank®=1). Then in @ we have D =& and
A€ has Lebesgue measure zero.

Proof: Let § €A NDC. Thus, the analytic function formed as the
detsrminant of any 1 X n submatrix of J(§) is zero in a neighborhood of
%, and. by analyticity, must be zero throughout Q. This implies that
2CC, contrary 1o assumption; therefore, & N D€ must be empty and
R 9. Now assume § €% so that there is an X1 submatrix M(#) of
J(8) with rank 7. By continuity M(4) has rank 7 for all 8 in a
neighborhood Ng; hence § ER and so D cR. It follows that } =9,
Finally, the set D€ has Lebesgue measure zero since it consists of the
2eroes of a set of analytic functions that are not identically zero. ]

Consider a zero-mean p-component second-order stationary stochastic
process y with rational spectral density matrix ®,4(z) parameterized b'y
9eQcR". Let £,(8) and ,(8) denote, respectively, the (0 X oq) covari-
ance matrix of the process y and the (pXp) covariance matrix of .thc
orthogonal innovations process ». Then, subject to reasonable technical
conditions, it can be shown that the maps §—®y(2), f—-{a l‘incarly
spanning set of entries of ,(8)}, §—3,(8) are all co_ntinugu;ly dxﬁc‘rcn-
tiable, and the first two ase one-to-one if the third is. This is true since
the third map factors through each of the first two. Hence, local
second-order identifiability of Z,(f) at 4 holds if it holds for X,(8). By

Theorem 3 # is locally identifiable i and only if the 2s. limit of
{H™(Z,(8)), n> 1} is positive definite. In the Gaussian case F7(Z,(9)) is
both the (approximate) scaled log-likelihood functior on {»; i > 1} and
on {y; i> 1) (see [11]) and is frequently used as a conveanient indirect
method to compute the likelihood on the process y.

The ideas in the paragraph above will be spelled out in detail in a
future paper.

We conclude by remarking that since the results in this paperare of a
local nature in R" we may rephrase them all as results on an n-dimen-
sional once continuously differentiable (denoted €' manifold. This is
significant because the space of canonical forms of all finite-dimensional
linear systems of fixed internal state dimension is an analytical (and
hence C!) manifold [12}.
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On the Existence o.f Solutions to Coupled
Matrix Riccati Differential Equations in
Linear Quadratic Nash Games

G. P. PAPAVASSILOPOULOS anp J. B. CRUZ, JR.

Abstract—Sufficlent conditions for the existence of closed-loop linear
Nash strategies for a linear quadratic game are derived through use of
differential inequalities.

I. INTRODUCTION

Diiferential games have attracted considerable attention as a method
for studying large scale, decomposed, or hierarchical systems and, of
course, systems where many controllers with nonidentical aims operate.
The concept of Nash equilibrium is well known; see [1]. There are many
results concerning Nash games, but many questions related to existence
and uniqueness of solutions, within certain strategy spaces, are still to be
answered. In [2], sufficient conditions for the existence of closed-loop,
linear in the state, equilibrium Nash strategies are given, for a linear
plant with quadratic cost functionals over [0, +oc). Conditions for
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existence of solutions to a pair of coupled algebraic Riccati equations 5. F _ _ _
were derived via Brower’s fixed-point theorem. The stability of the P=FP+PF+Q~PSP-PISPJ-JPSIP+JPISJPS M
resulting closed-loop matrix was also studied. PO)=K, t€[0,T]

In the present paper we consider a linear quadranc Nash game over a
finite period of time [0, T]. The matrices involved are piccewise-continu- where
ous functions of time. The existence of linear closed-loop Nash strategies
depends on the existence of continuous solutions to an associated system X(ty=Xx(T-1), €[0,T]
of two coupled Riccati- differential equations over [0,7] Sufficient [+ )y ; . ,
conditions for existence are derived in the next section by usin g a simple P(t) is a solution of (7) on [0,) where £ <T, then

result from the theory of differential inequalities. 5 =
Yy mmequatihies WE@I < BIP (DI +allP(D)+q (8)
I STATEMENT OF THE PROBLEM where || || denotes the usual sup norm of a square matrix calculated for
‘ v fixed ¢z, and -
Let us consider the dynamic system
: R . a=max {2||A(D; 01T
 x=Ax+Byu+ Byuy, x(0)=xo t€[0,T] m 40l )
. R R ‘ B=max (S +ISe();  0<t<T} )
-the two cost functionals ‘
e e g=max{|@(I; 0<:<T}.
-’i(“b“z) =3 {x( T)'K,x(T)+ f ("' ch """ u‘“l"’“' Rﬂ'ﬁ)dr} "~ The a, B, q are finite due to the piecewise continuity of the matrices and

B B S i 12 ing (2) the finiteness of [0, T]. Clearly a, 8, ¢ > 0. We assume 850, since if =0
: then (4) is a linear differential equation and the solution exists for 7

and’ the associated Nash game, see [1]. The state x and the strategxcs u, arbitrarily large.

u, take values in R”, R™, and R™, respectively. The matrices 4, B, O,  Consider the scalar differential equation

Ry, are real valued piecewise-continuous functions of time and of ap-

propriate dimensions. We also assumé K; = X} > 0 constant real matrices, y=p+ay+q, y(Q)=y, t>0. (10)
QD=0 (D)>0, R(N=R () >0, R,,(t)>0 vt E[O T], where ‘the time ) _
interval [0, T is ' assamed fixed. Using [3, p. 32, Corollary 6.3}', we obtain that

if y(0)> ||P(O)}! and y(r) isa solution of (10) on [0,7] then the

We restrict the admissible strategiw to those wlnch are hnear in x, i.e.,

solution of (7) exists on [0, T] and | P(1)}| < ¥(t), t€[0, T].

WO=LOD, =2
| We thus conclude that a sufficient condition for the existence of a
tif h mhb N h f trat ¢ 1 i
| :;sc:n“b:&hm‘['gt:; l T °q ko pau' o s egxes continuous solution P(f) of (4) over [0, 7], is that
== R;'B/Px i=1,2, 3) y(O) >[|Koll and T<:, an

where [0 t,) is the maximal interval of existence of the conunuous
solution of (10).
A straightforward investigation of the behavior of the solution of(!O)
@ yields the conditions under which (11) is satisfied. We state the resulis of
this investigation in the form of a proposition.

where P,, P, satisty a system of two coupled differential Riccati equa-
tions. This system can be written as

-—P=F’P+PF+Q PSP—PJSPJ - JPSJP+JPJSJPJ

P( T ) =Kn, tE[O T] - ) - Proposition: Let B0 and set
wh - A ——-
ere , mdidpy, =TSR o mes
- 28 2B
F=l[4 O ] )
10 4 1) If A=0, and
(BR7'B] . 0 2 i
S= ‘ T ——e (_l_,-ﬂ
0 B.Ry;'B; a+28] Kol .
‘o - B,R5;'R1R53'Bs 0 “ ® then the solution of (4) exists and
0=
0 BiR;7'RyRi1'B; ' 1 - 28 €10, 71
; : 1BOI<e* e=gr= O ik (S
Ql 0 Qi |
Q=
| 0
2) If A)O, p2<pl<0, and
0 . .
Jo- , I'=nXn unit matrix
[l ] o T<—!——l (.HK_“I‘_—_BE) (130
rp 1Kol =,
p=| ! 1
‘ 4] P2 then the solution of (4) exists and
The purpose of the present paper is to give sufficient conditions under P ~pyCedir—oUT =D
which (4) has a solution over {0, T]. (Ul < — Ceflei—p)T-0
Kol = el
[1I. DERIVATION OF THE SUFFICIENCY CONDITIONS C= -}EYOT-—%‘ . t€[0, T} '
100 2
By setting
P(y=P(T~-1 %) o

. N . - g EAETNE
' Aithough Coroliary 6.3, page 32 of [3], is stated for the vevior ase.

we can consider equivaieniy w {35 Miatiix Cuse IS Vsl



53.7.1?_“.:\<0 1)1-174.[) 0:=vk—;k k=—nx 223 A=. l,-B
=% ~ 1 and
1 r foid »\, =y
T —— w-r—..t:m"( | (14-1)
VA i
then the solution of (4) exists and
NPV <k+Atan(AB(T- N+ C)
ol (.
c=mn—x('=_’f")‘\‘__). 1 E10.T] (1a2)

whers tan~ ¢ s the inverse tan on (—=/27/2)
If 4=0, 0,=0. K;=0. and 3, R, are constant. L1en case 1) holds and
7 can be taken arbitranly large.

I1I. CowCLUSIONS

In the present paper we derived sufficient conditions for the existence
of continuous sclutions of the coupled Riccati differential equations
arising in closed-loop Nash games. The conditions are given in terms of
upper bounds on the length of the time interval of interest and do ot
depend on controllability or observability assumptions. Note also that
the positive (semi-} definiteaess assumptions on @, R, were not used in
proving the existenceof solutions of (4). The basic tool in deriving these
conditions was a simple differential inequality-type result. Although the
conditions give only a partial answer to the question of existence of
solutions, they can nonetheless provide a positive answer for a certain
class of problems. The cxtensxon of the present results to the N-players
case is straightforward.:~
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On the Internal Stability of Two-Dimensional Filters
E. FORNASINI axp G. MARCHESINI

Abstract—The internal stability concept for state-space representations
of two-dimensional filters is introduced and an algebraic stability criterion
is presented. The conuections among internal stability, input-output stabil-
ity, and coprimeness of the realization are also clarified.

1. INTRODUCTION

The stability problem for two-dimensional filters in input-output form
has been investigated by several authors {1]-{6]. The aim of this corre-
spondence is to provide a first insight intc the “internal” stability
problem which arises when we consider state-space realizations of the
filters. i

State-space models of two-dimensional discrete-time filters constitute
a recent field of investigation [7]-{}41-I+-has been shown [14] that all
state-space models so far considered can be viewed as special cases of
the following “doubly indexed dynamical system”™ T = (4,4, B,, B,,C):

Manuscript received January 3, 1978. This work was supported by the Consiglio
Nazionale deile Ricerche: Gruppo Nazionale Automatica e Sistemistica.
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1AL

(1) x{(th+Lk+D=A,x(h+ L)+ A x(h i+ 1)

+ Biula+ | Ly + Baap k=1

Y(h k)= Cx{h.k)

where u(h.k), the input vajue at (A.k). and »(4.4). the output value at
(Ak). are in R, and A, k= Z, 4,€R"™", BER™L CER'*" i=1,2,
and x € X'=R" (local state space).

A first attempt to investigate the internal stability was made by Attasi
[8) in the special case of separable filters. The class of filters we deal with
is the whole class of filters having rational transfer function. so we shal]
consider the stability of dynamucal systems represented by (1).

II.  SrasiLity CRITERION

Introduce the foilowing notation:
N o={x(hk):x{hk)EX. i+k=").
Let |jx}j denote the Euclidean norm of x in X and let

N, = sup ix(r—n,n)i.
We therefore have the following definition.

Definition: Let = be described by (1). The system £ is asymptotically
stable if, assuming u=0 and ||%,]] finite, |}, ||—0 as i— + 0.

As is well known. the asymptotic stability analysis of discrete-time
linear systems is reduced to investigate the zero’s position of the char-
acteristic polynomial of the matrix A.

The asymptotic stability of = is related to lhe algebraic curve defined
in CXC by the equation

det(f—z 4, —24,)=0
as stated in the following proposition.

Proposition 1: Let T be as in (1). Then = is asymptotically stable xf
and only if the polynomial det(f— 4z, ~ 4,:,) is devoid of zeros in the
closed polydisk:

P|= {(ZIIZZ)EC'XC:IZXI < l’ lZ:l < ]}

sufficiency. Let dc't(I—z,A.-a3A2)=/=0 in ¥, and call ¥ the algebraic
curve defined by det(/—A,z;— A,2,)=0. Since ¥ and ¥, are closed,
¥ N ¥, =D implies that there exists e>0 such that the polydisk

Dle={(2,2) ECXC 2| < 1 +¢ |z < T +¢}

does not intersect V. »
Then the rational matrix (/—A,z,~A,z,) can be inverted in 9,
and its McLaurin series expansion, given by

Ayzy)™!

converges normally in the interior of 9, [15]

; It follows that the series Z;[|My|l converges. Consequently,
2,4 jurll M|l =0 as r—co, [16]. This implies the asymptotic stability of Z.
For, assume || %, finite and pick in %, r >0 any local state x(m,r—m),
then

(I-Az;~ =3, M,ziz}

x(m,r— m)u=‘ s
i+tjmr

<2n

i+j=r

,jx(m—-i,r—m—j)u
Mx(m=ir—m=DI <INl 2 (M)
i+ jmr

necessity, Assume = be asymptotically stable. Then for any x€X,
M,;x—0 as i+ j—ro0. This faci and

’l

Myl < khM &l

(with {e)7 the standard basis in X' =R") imply
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