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Nonzero-Sum Differential Games 1 

A. W. STARR 2 AND Y. C. Ho ~ 

Abst rac t .  The theory of differential games is extended to the situation 
where there are N players and where the game is nonzero-sum, i.e., the 
players wish to minimize different performance criteria. Dropping the usual 
zero-sum condition adds several interesting new features. It is no longer 
obvious what should be demanded of a solution, and three types of solutions 
are discussed: Nash equilibrium, minimax, and noninferior set of strategies. For 
one special case, the linear-quadratic game, all three of these solutions can 
be obtained by solving sets of ordinary matrix differential equations. To 
illustrate the differences between zero-sum and nonzero-sum games, the 
results are applied to a nonzero-sum version of a simple pursuit-evasion 
problem first considered by Ho, Bryson, and Baron (Ref. 1). Negotiated 
solutions are found to exist which give better results for both players than the 
usual saddle-point solution. To illustrate that the theory may find interesting 
applications in economic analysis, a problem is outlined involving the 
dividend policies of firms operating in an imperfectly competitive market. 

1. I n t r o d u c t i o n  

Since the study of differential games was initiated by Isaacs (Ref. 2) in 
1954, many papers on the subject have appeared, mostly dealing with problems 
of the pursuit-evasion type. The  differential games considered in those papers 
have almost always had the zero-sum property,  i.e., there is a single performance 
criterion which one player tries to minimize and the other tries to maximize. 

This  paper considers a more general class of differential games, where 
there may be more than two players and where each player tries to minimize 
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his individual performance criterion. Each player controls a different set of 
inputs to a single system, described by a differential equation of arbitrary 
order. The sum of all the players' criteria is not zero nor is it constant. 
Dropping the zero-sum hypothesis adds both conceptual and analytic 
complexity, but in the authors' opinion it extends the utility of the theory 
of differential games to economic and military applications. 

Very little work has been published on this subject, although Case 
(Ref. 3) extended some of Isaacs' results to the nonzero-sum, _N-player case 
for one special kind of solution. But Case did not explore the implications 
of dropping the zero-sum hypothesis, nor were any practical applications 
discussed. 

Before introducing our general differential game, we illustrate some of 
the important conceptual differences between zero-sum games and nonzero- 
sum games, using simple bimatrix games of the type presented by Luce and 
Raiffa (Ref. 4). 

Player 1 

Game l :  Zero-sum game 

Player 2 

x y 

1, --I O, 0 

2, --2 --2, 2 

Game 2: Zero-sum game 

Ptayer 2 

Player 1 

x y 

--1,  1 0 , 0  

2, - -2  --2,  2 

In Game 1, Player 1 chooses between strategies a and b, while Player 2 
simultaneously must choose x or y. The corresponding entries give the costs 
J1 ,  J2 for the two players. For each strategy pair, f l  + J~ -~ 0, so the game 
is zero-sum. (In all games, each player wishes to minimize his own cost and is 
indifferent to the cost paid by the other player.) Player 2, if he is rational, 
always plays x, and Player 1, realizing this, plays a. This saddle-point solution 
is apparently the only reasonable one. 

Defini t ion.  If  JI(sl,...,sN),..., J~v(sl,.,.,sn) are cost functions for 
{si ,..., sN} is a Nash equilibrium strategy players t .... , N, then the strategy set * * 

set if, for i = 1,..., N, 

] i ( S :  ,..., S'i__1 , gi , $~+1 , ' " ,  S~) ) J i ($:  ..... S/~) (1) 

where s i is any admissible strategy for Player i. 
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In other words, the Nash equilibrium strategy is the optimal strategy 
for each of the players on the assumption that all of the other players are 
holding fast to their Nash strategies. In the two-player, zero-sum case, the 
Nash solution is the familiar saddle-point solution. 

In Game 2, also zero-sum, no saddle-point solution exists. But Player 1 
can minimize his maximum possible loss by choosing a on the assumption 
that Player 2 ignores his own cost criterion and attempts to do maximum 
damage to the criterion of Player 1. By the same reasoning, Player 2 chooses 
x. Thus (a, x) is a minimax solution, but it is not a Nash equilibrium. 

It can easily be shown (Ref. 4) that, in a zero-sum game, (i) all Nash 
equilibria are equivalent, i.e., have the same costs, and (ii) if (sl, s~) and 
(s*, s*2) are equilibrium pairs, then so are (si, s*) and (s*, s~). Property (ii) 
is called interchangeability. 

It is also clear that there can be no mutual interest in a zero-sum game; 
what is good for one player is harmful to the other. Nor can one player ever 
gain by disclosing his strategy in advance to his opponent. 

Player 1 

Game 3: Dating game 

Player 2 

X 

a 0, 1 

b 2, 2 

Y 

2, 2 

1 ,0  

Game 4: Prisoners' dilemma 

Player 2 

Player 1 

x y 

2, 2 10, 1 

1 ,10  5 ,5  

Game 3, the dating game, 4 is nonzero-sum. It has two Nash equilibria, 
(a, x) and (b, y), with different costs. They are not interchangeable, since 
(a, y) and (b, x) are not equilibria. Note what happens when both players seek 
to achieve their lowest possible costs. But, if Player 1 announces in advance 
that he is committed to strategy a, then Player 2 has no choice but, to play x. 
Thus, it is advantageous in some, but not all, nonzero-sum games to disclose 
one's strategy in advance, i.e., to make the first move. 

4 Player 1 (he) prefers a football game a to a concert  b, while player 2 (she) prefers concert  y 
to football x. But each prefers going to the same event ax or by to going to separate events 
ay or bx. 
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Game 4 is the classical prisoners'  d i lemma.  ~ The only equilibrium solution 
is (b, y), yet (a, x) gives a better result for both players. The solution (a, x) 
is vulnerable to cheat ing by one player, while (b, y) is not. This illustrates the 
non-op t ima l i t y  of the Nash equilibrium solution in the nonzero-sum game. 
There  is mutual  interest, since both players could gain if cooperation were 
possible. 

These simple examples should convince the reader that there are 
important  phenomena which can arise in nonzero-sum games but  not in 
zero-sum games, and that  the Nash equilibrium solution is not the only  
solution of interest. 

The  most important phenomenon arising from the extension from 
2 players to N players is the possibility of coalitions among groups of players. 
Very little can be said unless strict rules governing coalition formation are 
postulated. One special case, a single coalition of all the players, the so-called 
p a r e t o - o p t i m a l  solution, is discussed in the following sections. 

2. General Differential Games 

In the general, nonzero-sum, N-player differential game, the following 
situation arises: For i = 1 .... , N, Player i wishes to choose his control u, to 
minimize 

f~i Li(x,  u~ J, = K,(x(t ,) ,  ts) + ..... uu  , t)  dt (2) 

subject to the constraint 

~ f ( x ,  u 1 .... , Ux , t), x(to) = X o (3) 

where x is a state vector of arbitrary dimension n. There may also be inequality 
constraints on the state and/or control variables, as well as restrictions on the 
terminal state. The  terminal t ime t I may be variable or fixed; here, it is 
considered fixed for simplicity. 

The  problem as stated is not well-posed. Recall that the simple bimatrix 
games in the previous section could not be solved until one specified what 
properties the solution should have. Similarly, in the differential game, one 

Two prisoners awaiting trial are held in separate cells. Each is offered a 50% reduction in his 
sentence if he divulges evidence about the other's crime. If one refuses, the other can only be 
convicted of a lesser offense (2 year sentence). A similar situation arises when two superpowers 
contemplate building antimissile systems. 
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must demand that the solution have some attribute such as minimax, Nash 
equilibrium, stability against coalition formation, pareto-optimality, and so on. 
One must also specify what information is available to each player during the 
course of the game. Here, it is assumed that each player knows the current 
value of the state vector as well as all system parameters and cost functions, 
but he does not know the strategies of the rival players. Each player's strategy 
can then be expressed as a function of time and the current state vector. 
This does not exclude mixed strategies. 

2.1. Nash  E q u i l i b r i u m  Solut ions .  In a game where cooperation 
among the players is inadmissible or at least dit~cult to enforce, one is naturally 
interested in solutions which have the Nash equilibrium property (I). This 
solution is secure against any" attempt by one player to unilaterally alter his 
strategy, since that player can only lose by deviating from his equilibrium 
control. There may be many- equilibrium solutions; one cannot then speak 
of an equilibrium control for a single player without also stating the corres- 
ponding controls for all the other players. 

Case (Ref. 3) derived general necessary conditions for a strategy set 
¢ = {¢1 ,..., ¢~} to have the Nash property. He used two methods, the value- 
function approach, analogous to dynamic programming, and the variational 
approach. He was mainly concerned with problems of the type considered 
by Isaacs (Ref. 2), where the controls are discontinuous on certain singular 
surfaces in the state space. Since we are not directly concerned with such 
phenomena, we can state these results much more simply, though perhaps 
with some loss of rigor and generality. 

Consider first the value function approach. Let 

¢(x, t) = {41(x, t) ..... ¢N(X, t)} 

be any set s of control strategies for the N players, resuking in piecewise 
continuous udt ). Then, the value function for the ith player is piecewise 
continuously differentiable and defined as 

f~i g*(~ V,(xo, to, ¢)  = K~(x(t,), t,) + , ¢, t) dt (4) 

By applying the definition of the Nash property (t) in an obvious extension 

Strictly speaking, the set ¢(x, t) must be defined so that the trajectory x¢(t) satisfying (3) can 
be continued from any initial point (x0, to). 
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of the usual dynamic programming argument,  one can show that the value 
functions V~ are solutions of the partial differential equation 

8~i/8t --: --min tti(x, t, 711 ..... !Pi-1, ui , Wi+l ..... ~gN , OVi/Sx) (5) 
U i 

where H t , the Hamil tonian for the ith player, has the functional form 7 

H,(~, t, 4,, ,~J) ----- r~(x, 4,, t) + AJU(~, ~, t) (6) 

and where Vi(x(ti) ,  t l ) =  Ki(x( t l ) ,  tl). This  is the generalized Hami l ton-  
Jacobi equation. T h e  equil ibrium strategy W~(x, t) is the control u~ which 
achieves the min imum in (5). To  integrate (5) backward f rom the terminal 
manifold, we must  be able at each (x, t) to find the Nash  saddle-point of the 
vector Hamil tonian H = [H a ,..., H~],  i.e., to solve an ordinary, continuous, 
nonzero-sum, N-player  game (not a differential game) at every instant t. 
This  is not always possible, but  it is possible in an important  class of games. 
A differential game is said to be normal (Ref. 3) if (i) it is possible to find a 
unique Nash equil ibrium point W* for the vector  H for all x, h, t, and (ii) when 
the equations 

= f ( x ,  u~ . . . .  , U N ,  t )  

,,~ = ~*(x ,  t, ~v~f&, . . . ,  av~ /ax )  

(7) 

(8) 

(9) 

are integrated backward f rom all the points on the terminal surface, feasible 
trajectories are obtained, s T h e  next  section considers a class of games which 
are normal. 

Necessary conditions for a Nash equil ibrium can also be obtained by  an 
extension of the variational methods used in optimal control theory. Case 
(Ref. 3) did this, but  his results are apparently valid only for strategies which 
are functions of t ime only. In  nearly all problems Of interest, we require 
strategies which are functions of the state vector and time. T h e  conditions 
given below satisfy this requirement .  With the Hamiltonians H~ defined in (6), 

7 Note that 1i here is merely a dmnmy variable, to be replaced by 8VJax in (5), although it can 
be interpreted as a costate variable in the variational approach described below. 

8 Note that condition (i) requires that a unique set of controls giving a saddle-point of H(x, t, u, ~t) 
can be found as an explicit function of x, t, )t for any ;t. This is a sufficient (but not necessary) 
condition for the existence of a Nash trajectory. It is relatively easy to determine if (i) is satisfied, 
since no differential equation need be solved. 
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a Nash equilibrium trajectory must satisfy, for i = 1,..., N, the following 
conditions: 

2 = f ( x , u  1 .... ,UN, t ) ,  X( to)= X o (10) 

~i r = --(e/8x) Hi(x , t, u 1 ,..., ~IN, ~i) - -  ~ ~ n  i aTj  (x, t) (11) 
j=l,j~i ~ui ~x 

AiT(t~).=- [~/~x(ts) ] Ki(x(t,), t,) (12) 

u i = T,(x, t) minimizes Hi(x, t, T t  ,..., T i -1 ,  u~, Ti+~ ,..., T N ,  Z,) (13) 

Note that, for N = 1 (optimal control problem), the second term in (11) is 
absent. The optimal closed-loop control u(x, t) can then be obtained by solving 
for the open-loop optimal control u(t) for every initial point (x, t). This method 
is not valid in the N-player game, however, due to the summation term in (11). 
In the optimal control problem, these necessary conditions are a set of ordinary 
differential equations, but in the N-player, nonzero-sum game, they are a set 
of partial differential equations, generally very difficult to solve. 

2.2.  M i n i m a x  Contro ls .  When a player believes that the other 
players play Nash equilibrium controls, he should also play the Nash controls. 
But, if he cannot be sure of how his rivals select their strategies, he may 
instead choose to minimize his cost against the worst possible set of strategies 
which they could choose. 

Defini t ion.  A strategy ¢,(x, t) is the minimax strategy for the kh player 
if, for all admissible {¢1(x, t),..., CN(X, t)}, 

max Ji(¢l ,--.,~ ,...,¢N) ~ max Ji(¢l ,..., ¢i .... , ¢~v) (14) 
¢1 . . . . .  ¢i--I,q~i+1 . . . . .  ,d)N 4)1 . . . . .  @i-l,@i+i ..... ~N 

Note that only the ith player's cost function enters into the computation 
of his minimax control. This is equivalent to finding the equilibrium solution 
of a two-player, zero-sum differential game, where the opponent of Player i 
chooses all the controls except the ith and tries to maximize  J i .  Player i can 
also calculate his minimax cost f l  • If he plays ¢~, he pays no more than ]i  • 
He probably pays much less, since the other N -  1 players, each with his 
own cost to minimize, are unlikely to choose the combination of strategies 
which maximizes Ji (for example, they may play their own minimax controls). 
Since it fails to take account of the other players' cost criteria and since it is 
excessively pessimistic, the minimax solution is somewhat unsatisfactory in 
the nonzero-sum game. In some reasonable, well-behaved games, ]i  = co. 
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Of course, in the two-player, zero-sum game, the Nash solution, if it exists, 
is also minimax, but this is not true when N > 2, nor in a nonzero-sum game. 

2.3. Non in fe r io r  Cont ro ls .  It may be of interest to know what 
could be gained by all players if a negotiated solution could be reached and 
enforced. Clearly, this solution should be selected from the set of strategy 
N-tuples defined below. 

Definition. The strategy N-tuple 0 = {01,..., ON} belongs to the 
noninferior set if, for any other strategy N-tuple ¢, 

{]i(¢) ~< J¢(O),i-~ 1,..., N} only if {J~(¢) = ]~(O),i= 1 .... ,N} (15) 

Solving for the set of noninferior controls is equivalent to solving an 
optimal control problem with a vector cost criterion. When appropriate 
convexity conditions are satisfied (Ref. 5), the problem is equivalent to solving 
an N -  1 parameter family of optimal control problems with scalar cost 
criteria (Refs. 5-7). Each noninferior control N-tuple then minimizes the 
scalar criterion 

J = t~1J1 + "'" + tZyJw (16) 

for some/~ = {/x 1 ,...,/zN} satisfying 

N 
y. /~i ~ = 1, ~ >~ 0, i =  1,..., N (17) 
/=1 

Conversely, for any/~ satisfying (17) with strict inequalitiesfl the corresponding 
control N-tuple which minimizes J in (16) belongs to the noninferior set. 

The members of the noninferior set are not ordered by the vector 
criterion. Thus, the negotiating problem, equivalent to selecting a vector /~ 
satisfying (17), cannot be solved unless further rules are specified. 

3. L i n e a r - Q u a d r a t i c  Games 

This section considers a special class of differential games where the 
system is tinear and the cost functions are quadratic functions of the state 

9 Kl inger  (Ref. 7) has  given an example  where  a solut ion obta ined wi th  one of  the  t~i = 0 is no t  
noninferior .  Such  pathological  cases would  not  occur  in the  applicat ions of interest  to us. 
Besides,  one would  probably  reject a negotiated solut ion which  totally ignored  the  in teres ts  

of  one player. 
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vector and controls. Like its counterpart in optimal control theory, the 
linear-quadratic game is analytically tractable and of some practical interest 
(Ref. 1). 

For the ith player, i = 1,..., N, the problem is to choose a control 
strategy u t = ~ i ( x ,  t) to minimize 

subject to 

J~ = ½(xr&/O,=, , + ~ ~** 
2 "JtO 

In some problems, 

N 

(xrQix 4- ~ ujrRisuj) dt (18) 
5=1 

N 

= A x  4- ~, Bjuj (19) 
5=1 

inhomogeneous forc ing  functions appear in the cost 
criteria or in the state equation. Though they add no great difficulty, they are 
omitted here to make the presentation simple. 

3.1. Nash  E q u i l i b r i u m  Con t ro l s .  If the results of Section 2.1 are 
applied, the Hamiltonian for the ith player is 

?¢ N 

I4, -- -~x~Q~. + ~ y. u?~%uj + a~(Ax + y, Bsu;) (20) 
5=1 j = l  

Using the value-function approach, one sees that the game is normal and 
the minimizing control for the ith player is 

u* = --R~XB,rh, = --R-~IB,T(avi/ax) T (21) 

All the Ri i  must be positive definite; otherwise, the problem is meaningless. 
Substituting (21) into the Hamilton-Jacobi equation (7), one obtains a partial 
differential equation which can easily be solved by separation of variables. 
Assuming that V i ( x  , t) has the form 

V i = ½xTSi ( t )x  S0 that u* = - - R ~ I B i T S t x  (22) 

where S i is symmetric, and taking the symmetric part of the resulting 
differential equations in the S i , one obtains 

N 
S~ = - -  S~A --  A r S i  --  Qi - ~ (S~BjR'~IRijR'~IB~TS~ --  S~BjR'~'B~rSj 

j=l 

- -  SjBsR;*B~rS,),  S,(tf)  = S~I (23) 

It is easily verified that, for N = 1 (optimal control problem), Eq. (22) 
reduces to the familiar Riccati equation. Of course, Eq. (23) can also be 
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obtained from the necessary conditions (10)-(13). When the set of N coupled 
matrix equations (23) is integrated backward from the terminal time, the costs 
incurred by each player are given by (22). One might wish to compare these 
costs with those incurred when the players use arbitrary linear feedback 
controls of the form 

u i ......... K i ( t ) x  (24) 

If one starts at (x, t), these costs are 

J~ = ~xrP~x (25) 

where P~(t),  i = 1,. . . ,  N ,  satisfy the N uncoupled linear matrix equations 

N 
P~ = - - P , A  - -  ArP~ - -  Qi - Z ( K T R i a K j  - -  P iB ,  K '  - -  K'TBjTp~) , Pi(t ,)  = S~, 

j=l  

(26) 

In many applications, it seems natural to have R¢j = 0 for i @ j, so that the ith 
player's cost function does not contain the other players' controls. But, with 
this choice of the R i j ( i  ~ j ) ,  there is no choice of the remaining parameters 
R i i ,  S i r ,  Q f ,  which can make the game zero-sum. (Choosing R i t  = 0 would 
permit infinite controls.) In fact, with N = 2, the game is zero-sum only if 

R12 = --R22, R21 = --/211, Szs = - - S ~ ,  Q2 = - Q 1  (27) 

Substituting (27) into (23), one obtains two equations which are both satisfied 
by the choice $1 = --$2 = S. The result is a single matrix Riccati equation 

---- - - S A  - -  A T S  - -  Q1 + S(B1R;~B1T - -  B2R~B2T)  S,  S( t , )  = $1, (28) 

and the equilibrium controls (which are also saddle-point controls, because 
the game is zero-sum) are 

u* = - - R ; ~ B l r S x ,  u* = R ; ~ B 2 r S x  (29) 

in agreement with the results of Ho, Bryson, and Baron (Ref. 1). 

3.2. M i n i m a x  Cont ro ls .  Finding the minimax control for the ith 
player is equivalent to solving a two-player, zero-sum game, where the 
opponent of the ith player chooses all but the ith control and tries to maximize 
J~. Applying the results of Section 3.1, we see that the minimax control for 
the ith player is 

< = - R - 2 W & x  (30) 

8o9f3/3-4 
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where 
N 

= - -S ,A  -- ATS~ -- Q, + S~ E BjRTjlB~rS~, 3~(t,) = S,,  (31) 

provided that 
R,, > 0, R,j < 0, j # i, j = 1,..., N (32) 

If  conditions (32) are not satisfied, the ith minimax control may fail to exist, 
so that the ith minimax cost is infinite. Note that a minimax control might 
exist for some players and fail to exist for others. A case of interest is Rij = 0 
for all i, j # i. In this special case, the minimax control is either identically 
zero or does not exist. 

3.3. Non in fe r io r  Cont ro l s .  It was concluded in Section 2.3 that the 
set of noninferior controls could be obtained by solving an (N  -- 1)-parameter 
family of optimal control problems. In the linear-quadratic game, this is very 
easy. The noninferior controls are 

F u 1-a 
z~,(/z) = --[~__I/~jR,,/ B, TS(Iz) x (33) 

where 

j=l i=l 

N 

~(/~, %) = ~ t~,S,s (34) 
i=1 

where 
N 

tz~ = 1, ~ ~> 0, i = 1,..., N 

There is no reason to expect the Nash equilibrium control to belong to the 
noninferior set. Hence, one expects to find the prisoners' dilemma situation in 
most linear-quadratic nonzero-sum games. 

In the next section, the above results are applied in an example which, 
though very simple, displays many of the interesting differences between 
zero-sum and nonzero-sum differential games. 

4. Example :  A S i m p l e  Pursuit-Evasion Problem 

In 1965, Ho, Bryson, and Baron (Ref. 1) presented a simple pursuit- 
evasion problem which could be formulated and solved as a two-player, 
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zero-sum differential game. In  this section, that problem is generalized to 
a nonzero-sum game, allowing the players to have different cost criteria. 

T h e  problem concerns the lateral maneuvers of a n  interceptor  (pursuer) 
and a target (evader) in space, approaching each other on a nominal collision 
course. I f  one ignores external forces, the relative position vector r of the 
pursuer  with respect to the evader obeys the kinematic equations 

¢ = v ,  ~3 == a ~  - -  ae  (35) 

where the accelerations ap and a e are controlled by the pursuer  and evader, 
respectively. T h e  cost criteria are 

1~ 2~ T~, f T  ]~ 
. I  o 

(36) 
T Y" 

where r I --  r ( T )  and the final t ime T is fixed. [Following (27), we can obtain 1° 
the zero-sum game of Ho,  Bryson, and Baron by taking % = % ,  cpe = - -ce ,  

and c~p = - - c  v .] 

T h e  Nash equil ibrium controls for this game are found using (23), 
where, for convenience, S~ = P,  S 2 = E. Specifically, 

a~ : -- %[0 a~ : ce[0 

, = - ~ [; 0I] f ° ~1 ~ + ~ [~ 

~o~/~)~ [~ °11 

= ~ [ ° ; 1 - [ 0  o I ~ + ~ [~ 

10 I n  the  original p roblem,  the  quadra t ic  t e rms  in the  controls  arose w h e n  energy const ra ints  
were adjoined to the  cost cri terion w h i c h  was jus t  a quadrat ic  func t ion  of  te rminal  mis s  
distance.  T h e  au thors  do n o t  m e a n  to imp ly  tha t  the  p rob lem as originally s tated shou ld  
have  been treated as a n o n z e r o - s u m  game.  
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Defining r = T - -  t as the t i m e - t o - g o ,  we can easily verify that  the solutions 
to these equations are 

where the scalar functions p ( r )  and e(~-) are solutions of 

ap/dT = ---r2(p ~ + 2pe - -  ae2), p(O) --: c~% ~ 

de~dr = --.rZ(e ~ + 2pe - -  bp~), e(O) = - - c ~ f l  (39) 

a = c J c ~ ,  b = ce /c~  

By introducing the following nonlinear scaling of the t ime-to-go ~- 

t ' =  1~.~ (40) 

we reduce these equations to 

dp/dt '  . . . . . .  p~ - -  2pe + ae 2, de/dt '  = - - e  ~ - -  2pe + bp 2 (41) 

Besides being in a more convenient  form for computation,  Eqs. (41) have 
another  significance. In  the simpler pursuit-evasion game with ve loc i t y  con t ro l  

~' = v~ -- v~ (42) 

with ap and ae in the cost criteria (27) replaced by % and ve, respectively, 
the Nash equil ibrium solution is 

v~ = - -p ( t ' )  I t ,  % = e(t ')  I r  (43) 

with associated costs 11 

J~ = (1 /2c~)pr  ~, J~ - -  (1/2c¢)er e (44) 

where t' = T - -  t is the time-to-go. Thus ,  one can simultaneously solve the 
velocity-control problem and the acceleration-control problem, the solution 
to the latter being obtained f rom that of the former  by using (38) and the 
inverse of (40). 

Since a performance criterion may always be multiplied by a positive 
constant, there is no loss of generality in taking %~ ---- %2 = 1. Fur thermore ,  

11 The players measure their costs associated with their own controls in different units, each 
unit chosen to give unit weighting to the terminal miss. One must be careful in interpreting 
these costs; a direct comparison is not always meaningful. 
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(41) is left unchanged if p and e are multiplied by a while t' is divided by 
a (o~ > 0). Thus, we need only consider the case where 

--p(O) e(O) = c~c~%~% ~ = 1 (45) 

since any other case can be obtained by a linear scaling on t'. 
The costs incurred can also be computed assuming that the players use 

arbitrary linear feedback controls 

velocity control: % = --k~(t ' )  r, % = k~(t') r (46) 

In this problem, we have 

J~(r, t) = {p*(t')12%] rTr, J,(r, t) = [e*(t')/2c~] rTr (47) 

where the scalar functions p*(t'), e*( t ' )  are solutions of the following linear 
equations obtained from (26): 

dp*/dt '  = k~ ~ + ake ~ - -  2p*(k~ -t- k~), 

de*f i t '  = k~ ~ + bk~ 2 - -  2e*(k~ + k,), 

p*(O)  = c , , ,~  ~ 
(48) 

e*(O) = -c , , ,o  ~ 

The corresponding costs for the acceleration-control problem can be obtained 
by the same transformations as in the case of the Nash equilibrium, using 
(40), (38), (22), provided that the feedback controls are restricted to have the 
form 

(49) 

This is equivalent to feeding back the predicted terminal miss, assuming 
that no further controls are used. If the feedback does not have this form, 
(26) does not reduce to a scalar equation. 

For the velocity-control problem, Eqs. (41) have been solved on an analog 
computer. The results can also be used to understand the acceleration-control 
problem, since the transformations (40) and (38) do not affect the qualitative 
behavior of the solutions. All curves are plotted as a function of time-to-go 
(the clock t ime runs from right to left) with the normalizations described 
above [see (45)]. 

The solutions to (41) for the zero-sum case are shown in Fig. 1. To 
obtain the zero-sum case, one must take c~e-~--c~ and c~p = --cp.  In 
addition, by (45), %c~ ----- 1. This leaves only one free parameter, which we 
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1 2  
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2 212 

% 0.5 l.O 
TIME-TO-GO 

Fig. 1. Equil ibr ium costs for the zero-sum case. 

take to be o~ 2 = %/c~ .  T h e n ,  a = 1/b = - - J ,  % = cu, and c e ----- 1/~o. I f  co is 
large, the  pu r sue r  places a smaller  weight  on his cont ro l  energy (relative to 
his weight ing on te rminal  miss) than  does the  evader .  Since the costs s tar t ing 
at (r, t) are [ f rom (44)] 

J~ = [p(t')/2oJ] r 2, Je = [e(t')/2] o~r 2 (50) 

the  quant i t ies  of  in teres t  ( the costs, apar t  f r om the  factor  ½r ~) are p/oJ and ew, 
and these are the  quant i t ies  p lo t ted  in all figures. 

In  the  ze ro - sum case, (32) can be solved analytically.  T h e  resul t ing 
costs, shown in Fig. 1 for  a 1 = a~ = 1, are 

2lair 2 = - 2 J ~ / r  ~ = 1/[1 -F (oJ - 1/o)) t'] (51) 
Note  that ,  when  ~o < 1, the cost becomes  infinite when  the t ime- to -go  is 
co/(1 - -  o~2). For  larger t ' ,  no solut ion exists. T h e  miss distance is t hen  infinite; 
the  evader  escapes. Th i s  occurs  because the pu r sue r  places too large a price 
on his cont ro l  energy.  Fo r  ~o > 1, finite solut ions always exist; the  pu r sue r  
can afford the  chase. 
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In the general, nonzero-sum case, the presence of three free parameters 
makes it difficult to present the results clearly. However, there is one case of 
special interest, the case a =- b = 0, so that neither player has the other 
player's control in his cost function. In  some pursuit-evasion applications, 
this may be more plausible than the usual zero-sum assumption. With this 
choice and the time-scaling (45) , only one free parameter remains, the 
parameter 

o ~  = c~/c~ (52) 

which is the ratio of the price of evader's energy to the price of pursuer 's 
energy, where the prices are measured in units which give unit weighting by 
each player on the terminal miss. 1~ Some members of this one-parameter 
family of Nash equilibrium cost curves are plotted in Fig. 2. Since this game 
is nonzero-sum, cost curves for both pursuer and evader are given. Note 
that ~o has the same interpretation as in the zero-sum case, so that Fig. 2 
can be compared with Fig. 1. 

When co >~ 1, there is very little that the evader can do to avoid capture, 
and the cost curves closely resemble the corresponding ones in the zero-sum 
case. Mult iplying the pursuer 's cost by co and the evader's cost by 1/co gives 
the feedback gains. Thus,  when the evader's control is relatively expensive, 
he uses very little control. 

When ~o = 1, the Nash equilibrium behavior is very different from the 
corresponding zero-sum case, where the costs and feedback gains were 
constant functions of the time-to-go. As co decreases further,  the difference 
becomes more striking. Infinite costs are not obtained for any co > 0. The  
reader is cautioned not  to interpret these curves as tr@ctories. Along any 
trajectory with a = b = 0, the costs for each player increase monotonically 
with the time-to-go. 

In Fig. 3, the Nash equilibrium cost curves for a --= b = 0 and co = 1 
are compared with the costs with the same parameters when nonequitibrium 
feedback gains are used (in this case, multiples pp and Pe of the equilibrium 
gains for pursuer and evader, respectively ). Figure 3a demonstrates the Nash 
property fo r  unilateral deviations from equilibrium by the evader. With 
pp = 1, Pe > 1, both players incur higher:costs for any t'; while, for pp ~ 1, 
Pe < 1, the evader still pays more but the pursuer pays less. Figure 3b 
demonstrates the Nash property for deviations by tile pursuer. 

Figure 3c shows that, with PD = 0.8, Pe = 0.71, lower COSTS are incurred 

x~ These prices are measured in different units, each chosen to make the corresponding prices 
on terminal miss unity. 
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Nash equilibrium costs for the nonzero-sum case with a = b = O. 

by  both players. But  this solution does not have the Nash  proper ty ;  the evader 
can make a small improvemen t  in his cost by changing to pe = 1.2, at great 
additional cost to the pursuer  who still plays pp = 0.8. A similar effort by the 
pursuer  to improve  his cost against Pe = 0.71 leads to a higher cost for the 
evader. Thus ,  we are confronted with an example of the prisoners' dilemma 
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Fig. 3, Effect of deviations f rom the Nash  equil ibrium controls on costs for nonzero-sum case 
with a = b = 0 and o) = 1. Controls are multiples p~ and P. of  Nash equil ibrium controls. 
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situation described in Section 1. The  same situation arises for other values of 
o9. Thus,  even in this very simple differential game, it is evident that the Nash 
equilibrium is in no sense opt imal  and that it would be in the mutual interest 
of the two players to agree upon some other solution, if such an agreement 
could be enforced. 

For the case considered here (a = b = 0), the m i n i m a x  controls cannot 
be obtained from (31), because (32) is not satisfied. Inspection of the cost 
functions for the problem readily shows that a, = 0 is a minimax control for 
the evader (with minimax cost J ,  = 0) but  the pursuer has no minimax 
control. 

The  noninferior controls for the velocity control problem 13 can be obtained 
by applying the results of Section 3.3. The  family of noninferior controls 
is easily found to be 

v~ = -s%~,r,  v ,  = sc/Jr (53) 

where 

s(tz , t) = sf/(1 -t- 7slt'), t '  = t s - -  t 

ss(~) = ~%2 _ (I - ~) o Z  7 = ~% +/3~o 
(54) 

c~ = 1/[/~ + (1 --/z) c,/%,], /3 = 1/[1 --/~ -t- lzc,/%,] 

0 ~ < ~ < 1  

Note that, when s! < O, that is, when /z  < %21(%~ _~ %~), the noninferior 
controls become infinite at some finite t'. With a = b = 0, 7 = 1//z(1 -- /z) ,  
and there is some range tz* < / ~  ~< 1 such that  the noninferior controls 
are finite for all t '  (one must  put a sutficiently large weight/z on the pursuer 's 
cost). When a set of noninferior controls is used, the costs incurred by the 
two players can be obtained by solving (26). The  resulting costs are 

where 

and 

L = ~( t ) , ,~ ,  L = ~(t) , ,2 (55) 

~(t)  := ~s12t'/(1 + 7sit') + %2/(1 + 7sft') ~ 

~(t) = Vs?t'/(1 + 7sst' ) - -  ~o2/(1 + 7sft')~ 

= %~,~ + c ~ / % ~  

ta The  corresponding results for the acceleration control problem can again be obtained from 
the results for the velocity control problem via (40) and (38). 
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Set  o f  n o n i n f e r i o r  costs ,  w i t h  w e i g h t i n g  iz o n  p u r s u e r ' s  c r i t e r ion ,  fo r  t h e  case  a = b = 0 

a n d  co = 1. 

F o r  the  case a = b = 0, these  p a r a m e t e r s  are a = 1/if, / 3 =  1 / ( l - - i f ) ,  
7 == co/ff + 1/c~(1 - -  if), ~ = oJ//z 2, and  ~ = 1/~o(1 - -  ff)~ where  ~o is def ined 
in (52). F o r  the  par t icu la r  value oJ ...... 1 ( the  pr ice  ratio is the  s ame  for  bo th  
p layers )  these  non in fe r io r  costs  f i ( t ' )  and  ¢(t ') are p lo t ted  in Fig.  4 for  several  
va lues  of  the  we igh t ing  p a r a m e t e r  /z. N o t e  that ,  as the  we igh t ing  on the  
p u r s u e r ' s  cost  f u n c t i o n / z  increases ,  the  resul ts  b e c o m e  m o r e  f avorab le  to the  
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pursuer. The Nash equilibrium costs for the same co are shown for comparison. 
Presumably, neither player would accept a negotiated solution giving him a 
higher cost than the Nash solution. This would restrict the negotiable range 
to approximately 0.5 < / z  < 0.6. The exact limits of this range depend on 
time-to-go. However, in some games, threat situations may exist (Ref. 4) 
which force one player to accept a noninferior solution which is worse for 
him than the Nash solution (recall that the Nash solution does not have the 
minimax property). Of course, the present mathematical formulation of the 
problem gives us no help in selecting a member of the noninferior set. Further 
rules are needed to define a unique, fair noninferior solution. The lack of a 
set of such rules acceptable to all parties is a major obstacle in practical 
negotiations. 

5. E c o n o m i c  E x a m p l e  

The authors believe that the theory of nonzero-sum, N-player differential 
games may find some interesting applications in economic analysis, for 
example, where there is a mutual interest among competing firms. A simple 
model is outlined below to illustrate this idea. 

Consider the dividend policies for N firms, each manufacturing a single 
product. The products are substitutable but not identical. This means that an 
increase in the price of the ith product results in lower, but not zero, sales of 
the ith product and increased sales for all the other products. In this model, 
the amount produced by each firm is a function only of the firm's capital, and 
everything produced is sold at whatever price the market offers. These market 
clearing prices are in turn determined by the amounts of all the N products 
currently offered for sale. A firm can generate new capital only from its own 
profits (no borrowing allowed). Given the appropriate production, demand, 
and production cost functions, one can obtain a vector function giving the 
net profit flow for each firm as a function of the vector of capital levels of all 
the firms. 

The task of the management of the ith firm is to choose the continuous 
dividend rate u t to maximize the shareholder's utility function 

t I 

J~ = f u~ exp[-a(t - to) ]dt  -[- xi(tj) exp[--c~(tf -- to) ] (56) 
' I t  0 

subject to 
~, = f,(xl ,..., x~) - ,,, (57) 

u~ >~ 0, x~ >~ x~ (58) 
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where x t is the capital level of t he / t h  firm, 

f ,  = . . . . .  FN(x )) - -  C , (x¢ )  

the net profit function, Fi the production function, PC the market-clearing 
price function, Ci the production cost function, and ~ the interest rate. 
Clearly, this is a nonlinear, nonzero-sum differential game. Even with very 
simple Fi and P~, the inequality constraints make it difficult to analyze. 
Nevertheless, if interest is great enough, it might be possible to extend some 
of the computational methods of optimal control theory to obtain Nash 
equilibria and other relevant solutions. 

6. Conclusion 

A general class of differential games is introduced where N players seek 
to minimize different cost criteria. Their interests are not diametrically 
opposed. Dropping the usual zero-sum hypothesis leads to several interesting 
phenomena which are not present in zero-sum games. Several solutions with 
different features are proposed. For one solution, the Nash equilibrium, 
which is secure against unilateral deviations by any player, the appropriate 
controls can be obtained by solving a set of coupled nonlinear partial 
differential equations, provided that the Nash saddle-point of a vector 
Hamiltonian can be found. For the linear-quadratic case, the Nash controls 
and costs can be obtained in terms of the solutions of a set of coupled matrix 
differential equations resembling (but more complicated than) the matrix 
Riccati equations which arise in optimal control theory. Solutions with other 
properties are also discussed, for both the general nonlinear game and the 
linear-quadratic case. The minimax solution, where each player minimizes 
his maximum possible cost, can be found by solving a two-player, zero-sum 
differential game. Finding the set of noninferior (or pareto-optimal) solutions, 
from which any negotiated solution can be chosen, involves solving an 
(N -- 1)-parameter family of optimal control problems. 

These results are applied to a nonzero-sum version of a simple pursuit- 
evasion problem. Even this very simple differential game displayed the 
prisoners' dilemma phenomenon, showing that there is more to a differential 
game than just finding the Nash equilibrium. Finally, an economic example 
is outlined involving the dividend policies of firms operating in an imperfectly 
competitive market. 
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