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On the Stackelberg Strategy in Nonzero.Sum Games 1 

M. SIMAAN ~ aND J. B. CRuz, JR. s 

Communicated by Y. C. Ho 

Abstract.  The properties of the Stackelberg solution in static and 
dynamic nonzero-sum t~'o-playet games are investigated, and 
necessary and sufficient conditions for its existence are derived. 
Several game problems, such as games where one of the two players 
does not know the other's performance criterion or games with 
different speeds in computing the strategies, are best modeled and 
solved within this solution concept. In the case of dynamic games, 
linear-quadratic problems are formulated and solved in a Hilbert 
space setting. As a special case, nonzero-sum linear-quadratic 
differential games are treated in detail, and the open-loop Stackelberg 
solution is obtained in terms of Riccati-like matrix differential 
equations. The results are applied to a simple nonzero-sum pursuit- 
evasion problem. 

1. I n t r o d u c t i o n  

The solution of a nonzero-sum game is generally defined in terms 
of the rationale that each player adopts as a means of describing opti- 
mality. One of the most commonly known rationales is the Nash strategy 
(Ref. 1), first introduced in dynamic games in Ref. 2-3. The Nash 
strategy safeguards each player against attempts by any one player to 
further improve on his individual performance criterion. This solution 
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generally assumes that the players know each other's performance 
functions and that, when the strategies have been calculated, they are 
announced at the same instant of time. However, because these assump- 
tions may not always hold, many games cannot be modeled and solved 
in this manner. 

For example, in a two-player game, if the first assumption does not 
hold and one player does not have information about the other's perfor- 
mance function, then it is no longer possible for this player to calculate 
his Nash strategy. Instead, a l lo~ng  for the worst possible behavior on 
his rival's part, he may choose to play a minimax strategy whose calcula- 
tion requires only knowledge of his own performance function. Or, 
instead of risking such a pessimistic sti:ategy, he may select to play the 
game passively, that is, by waiting until the other player's strategy is 
announced and then solving an ordinary optimization problem for his 
corresponding strategy. Similarly, the same situation arises in games 
where, due to faster means of information proce~;.ng, one player is 
capable of announcing his strategy before the other. These cases are only 
a few examples of a class of games that are formulated in such a way 
that the strategies are announced sequentially. The  main question that 
this paper is concerned with is the following: for the player that has to 
announce his strategy first, what will be the best strategy to choose ? 
Assuming that the sole objective of the players is to minimiee their 
respective cost functions, a solution concept  most reasonable for games 
of this nature is known as the Stackelberg strategy. This strategy is 
well known in static competitive economics (Refs. 4--6) and was recently 
introduced in dynamic games (Ref. 7). It will be shown that, if the player 
that has to announce his strategy first follows a Stackelberg strategy, 
he will do no worse, in  terms of obtaining lower cost, than the corre- 
sponding Nash solution. 

As an example of the type of problems considered, let us examine 
the following simple matrix game. Assume that a government G wants 
to select a tax rate from the following set of allowable rates: {at°./o, a2% , 
an% } for taxing a certain firm F, which in turn has to decide on manu- 
facturing one Out of three possible varieties {vl, v2, v3} of the products 
that it can manufacture. Let the objectives (for example, representing 
net income for the firm and a combination of income and price stability 
for the government) of the government and the firm be measured 
quantitatively for every pair of tax rate and product variety by the entries 
in Fig. 1. 

Here, the first entries correspond to the firm and the second entries 
correspond to the government, t t  is assumed that the only desire of F 
and G is to maximize their individual objective measures. If, due to the 
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Fig. 1 

nature of the game, 4 the government were to fix the tax rate before the 
firm decides on its product, then, by choosing a Stackelberg strategy, the 
government will actually be selecting the most advantageous tax rate as 
well as imposing some influence in the selection of the variety of product 
to be manufactured by the firm. 

The  purpose of this paper is to study some of the important charac- 
teristics of the Stackelberg strategy and derive necessary and sufficient 
conditions under which its existence is guaranteed in static as well as 
dynamic two-player nonzero-sum games. In the -,se of dynamic 
problems, linear-quadratic games are formulated and solved in a Hitbert 
space setting, thus including continuous-time, discrete-time, distributed- 
parameter and delay-differential systems. A continuous-time differential 
game problem is then treated in detail as a special case, and the solution 
for the open-loop Stackelberg strategies is obtained in terms of Riccatl- 
like differential equations. Finally, a pursuit-evasion differential game 
is solved a~ an illustrative example. 

2. Def in i t ion  a n d  P r o p e r t i e s  of  the  S t acke lbe rg  S t r a t e g y  

Let Ul and U 2 be the sets of admissible strategies for players I and 2, 
respectively. Let the cost functions J l (u l ,  us) and J~(ul, u.,) be two 
functions mapping U 1 × U s into the real line such that Player 1 wishes 
to minimize J1 and Player 2 wishes to minimize J2. Following the 
terminology in Ref. 5, the player ,'.hat selects his strategy first is called 
the leader and the player that selects his strategy second is called the 
follower. Unless otherwise stated, for the rest of this paper a Stackelberg 
strategy will always refer to a Staekelberg strategy with Player 2 as 
leader. 

Def in i t ion  2.1. I f  there exists a mapping T: U s -~ U 1 such that, 
for any fixed u~ ~ / , ~ ,  Ji(Tu~, u2) ~ Jx(ul, us) for all u I ~ Ut ,  and if 

' For instance, the firm might only know the first entries of the table in Fig. 1, corre- 
sponding to its o~aa objectives, and thus chooses to wait until  a tax rate is fixed before 
deciding on its product. 
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there exists a uz~ ~ Uz such that f~(Tuz~s, u2,~) <~ J2(Tus, us) for all 
u a ~ U~, then the pair (uu2, uz~2)~ U1 × Us,  where ul~ ---- Tu2,,~, is 
called a Stackelberg strategy pair with Player 2 as leader and Player I as 
follower. 

In  other words, the Stackelberg strategy is the optimal strategy for 
the leader when the follower reacts by playing optimally. A Stacketberg 
strategy with Player 1 as leader is also defined in a similar way. Let the 
graph Dx = {(ul, us) ~ U1 × U2: ul ~ Tus} of the mapping T be called 
the rational reaction set of Player 1. This  set represents the collection of 
strategy pairs in U 1 × U2 according to wl~ich Player ~ zeacts to every 
strategy u a ~ U 2 that Player 2 may choose. By playing according to 
the set D1, Player 1 is referred to as being a rational player. In the 
Stackelberg strategy, the follower is always assumed to be rational 
Similarly, let D 2 denote the rational reaction set of Player 2 when Player I 
is the leader. The  sets Dx and D 2 have significant importance in charac- 
terizing both the Stackelberg and  the Nash strategies as demonstrated 
in the following two propositions. 

P r o p o s i t i o n  2.1. A strategy pair (ul~s, uz~o.) is a Stackelberg 
strategy with Player 2 as leader iff (uls2, uz~s) ~ D 1 and 

J2(ux~, u2,2) ~ J~(ul, u~), ¥ ( u l ,  u2) ~ D l . (1) 

P r o p o s i t i o n  2.2. A strategy pair (Ur,w, z,'zs.) is a Nash strategy 
pair if[ (ulN , u~.) ~ D 1 n D 2 . 

The  proofs of these propositions are straightforward and follow 
directly from the definitions of the Nash and Stackelberg strategies and 
the sets D t and D 2 . 

Several interesting properties relating the Nash and Stackelberg 
strategies can be derived from these propositions. From (I) and Propo- 
sition 2.2, it is seen that 

(2) 

which means that the leader in the Stackelberg solution achieves at least 
as good (possibly better) a cost function as the corresponding Nash 
solution. This  is so because, by choosing a Stackelberg strategy, the 
leader is actually imposing a solution which is favorable to himself. 
I f  the Stackelberg strategies with either player as leader coincide, then 
they both coincide with the Nash strategy and, clearly, in this case the 
leader loses its advantage. It  is also evident that, in zero-sum games with 
saddle point, the Nash strategy, the Stackelberg strategy with either 
player as leader, and the minimax strategy coincide. Similarly, in 
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identical goal games, the Nash and the Stackelberg strategies are the 
same. T h e  following examples are presented to illustrate the basic idea 
and related properties. 

E x a m p l e  2.1. In  the matrix game of Fig. I, both F and G want to 
maximize J1 and J2- T he  rational reaction set of F when G is the leader 
is the set of pairs D = {(al, vl) , (a2, v3), (a3, v3)}, and the Stac.kelberg 
strategy with G as leader is the element of D that maximizes J2 - This  is 
achieved by the pair (a I , vi). Thus ,  by selecting a tax rate of a~%, the 
government  leaves no choice for the firm but  to manufacture the product 
~1; hence, the resulting J2 is more than what it would ha~:e been, had 
a z or a~ been chosen instead. The  Staekelberg strategy with F as leader 
(aa, v~) and the Nash strategy (a2, %) are also easily computed. Note 
that, in this example, both leaders in the Staekelberg solution obtain better 
results than in the Nash solution and that the followers are worse off. 

E x a m p l e  2.2. Consider the following sl.ngle-state two-stage 
matrix game. T h e  2 × 2 matrix games shown in Fig. 2 are to be played 
consecutively. The  first player controls u~ and u 2 in game (a) and Pl and Pz 
in game (b), while the second player controls vl and v z in game (a) and 
ql and q2 in game (b). T h e  first entries in the tables are the costs borne 
by Player t and the second entries are those borne by Player 2. The  game 
may be played starting with either (a) or (b), and the costs to every 
player, as shown in Fig. 3, are the sum of the costs borne in (a) and (b). 

T h e  Stackelberg strategy with Player 2 as leader as obtained from 
Fig, 3 is {(utpz) , (z,~ qt)}. The  Stackelberg strategies with Player 2 as 
leader of  the subgames (a) and (b) are (ul ,  v2) and ( p~, qi), respectively. 
Thus ,  it is seen that the Stackelberg strategies of the individual subgames 
are components  of the Staekelberg strategies of the composite game. 
Stated in more general terms, we have the following proposition. 

P r o p o s i t i o n  2.3. I f  a game is composed of N simultaneous 
separate subgames, where the cost functions are the sum of the corre- 

_ _ _  vlql)vlq~ vzql vzq~ ~ 

~IP~ 8~0 12,9 8,1 12~i0 
u l P z  7,4 3,5 7,5 3,6 
o~p~ 7,3 n,I?(~.o,4 1~,i3 

(a) (b) 

Fig. 2 Fig. 3 

8o9[x ~/5-7 
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sponding cost functions of the subgames, then a composite strategy is a 
Stackelberg strategy pair for the composite game iff its components are 
Stackelberg strategy pairs for the component subgames. 

P r o o f .  Let the ith subgame be defined by u J ° c  ~i} and 
J$(i)I ,Ai I .,,(i)~ v'* , "z ,, J = 1, 2. Then, 

N 

, = Jjt.~l,u~}), j = l , 2 ,  (3) 
/.,=1 

where 
N 

u, = {~:'} = {4'),..., 4 `) ..... &')}, t5 = H u Z  . / =  l, 2. 

(a) Let ~-u2r"(~), uz, a ,  (q~ be a Stackelberg strategy, for the ith subgame 
Vi  = 1,..., N .  Then, there exists T u) such that u,~(t) = _T"),,(;).~= and, for 

j{~}. , . . (o  (i) fi).t . ( t ) .  (i) t*  ~ , , ~ , < J ~ , , ~ ' ~ ) ,  v d  '>~v~ '), v i = I  ..... N, (4) 

] . ) . - , . ~  ,~ . .~ .  .~). . , . ,~ ~,) .~. v,,~,~ u~ '), ( l  u2~,u2,2) ~ j ~  Ll  u, ,u 2 ), ~ V i =  I, . . . ,N. (5) 

Let Tu2 = {T"~u~}}. By summing (4) and (5) for i = 1 .... , N, we obtain 

I i (Tu ,  , uz) < Jl(ul , u~.), uz ~ L½ , Vul ~ U, , (6) 

A (  Tu2,., , uz:.) <~ J~(Tuz , uz), Vu~ c [q . (7) 

(uu~ :u m'~ m = ~ ~s2~, uz~ = {u~,~}) is therefore a Stackelberg strategy for the 
composite game. 

(b) Let (ulna, uz,2) be a $tackelberg solution for the composite 
game. Then, there exists Tsuch that uL~ z = Tuz~ ~ and (5)-(7) are satisfied. 
Fix u~ ----- {u~ ~} ~ Uz, and let u x = Tu z or ui/~ = T{Ou~ik Now, select 
u~ ~ U~ such that u~ {Tmu~ ~' .... , T 'i-l~ u~z i- l , ,  u~l i}, TO'+i)u~i+l),..., 
T{N}u~m}, where u~ i} ~ U1i); then (6) reduces to 

t *  "* , "~ ) < S, t" ,  , u~')), Vu~ '~ i =  L-.., N .  (8) 

Similarly, i f  

" ' "  "~'-" u~', " '+') -~)" u~ '~ U~", 

then (7) reduces to 

j ~ ' ~ r % ~ , ~ )  < J ~ ' ~ r % P , 4 ' b ,  w p ~ u p ,  i =  ~ ..... N. (9) 

Therefore, ~-~s2:"tt}, ,'z~"mx is a Stackelberg strategy for the ith subgame. 
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The significance of this proposition lies in the fact that, if a set of 
N games are played consecutively such that the outcome of every game 
does not affect the outcome of the following games, the players need only 
calculate the Stackelberg strategies for every subgame in order to obtain 
the Stackelberg strategies for the composite games. Note that this 
property does not hold for the noninferior solutions as shown in Ref. 3. 

3. S ta t ic  G a m e s  

Static games are games that do not evolve over time. In this section, 
a class of static games in which the cost functions J'l(ul, uz) and J. ,(u I , u2) 

are real-valued continuous functions defined over a subset or all of the 
Euclidean space R m~ × R m:, where m 1 and m2 are positive integers, will 
be considered. Unlike matrix games, the Stackelberg solution in static 
games need not always exist. In these games, the Nash solution may 
exist, but the Stacketberg solution may not exist (and v ice  rer sa ) ,  as 
demonstrated by the following examples. 

E x a m p l e  3.1. Let the cost functions of the two players be 

us) = -u us + + ul ,  

J # l ,  u2) = + 1) us + ½(u# - - 2u , 

where u 1 6 R 1 and uz 6 R 1. We have, respectively, 

~J1l~ul = - - u  s + ux + 1, ~'.[tl~gu? = 1 

~J2/~u~ = - ( u #  + 1) + u s ,  ~2jdOuz'- == 1. 

The rational reaction sets D 1 and D~ are therefore the line u x = u z -- I and 
the curve u z = ul 2 + 1. The solution of these equations (u 1 = 0, us = I) 
and (ux = 1, us = 2) are the Nash strategies for this game. On the other 
hand, the Stackelberg strategy with Player 2 as leader is obtamed by 
minimizing J~ subject to the constraint ul = u2 -- I. This reduces to 
minimizing the function 

J ,  = - u Z  + 2u~ ~ - 3u~ - 1.5, 

which has no minimum with respect to u t ,  thus implying that a 
Stackelberg strategy does not exist. 

In order to guarantee the existence of Stackelberg strategies, one 
generally requires compactness of the spaces U t and U s . The following 
proposition gives sufF, cient conditions for the existence of the Stackelberg 
strategies in static games. 
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Propos i t ion  3.1. If  U x and Uz are compact sets, U, C R~* and 
U, C/~"~, and if ./1 and J~ are real-valued continuous functions on 
U, × U: ,  then Stackelberg strategies with either player as leader exist. 

P roof .  T h e  existence of a Stackelberg strateg T ~ t h  Player 2 as 
leader will be proved. The proof for the case where Player 1 is the leader 
is analogous. Since Dx is a subset of the compact set Ux × U ,  we need 
only show that it is closed. Let (u~ °, uz °) be a point in D , ,  the closure of 
Dx, and let (ufl',uz'*) be a sequence of points in Dx converging to 
(ux o, uz°). We will show that (u~ °, u.o °) ~ D~. Suppose that (u~ °, u2 °) ~ D~, 
then ~(u~*, u2 °) ~D~ such that J~(ux °, uz °) > J~(u~*, uz°). Let ~- - -  
J,(ux °, u., °) - Jx(u**, uz0). Since J~ is continuous, SSt and 80 > 0 such 
that 

where 

and 

where 

1 ] , (u , ,  u2) - / , ( u , 0 ,  u.oO)l < e'/3, V(u,, u2) ~ A, 

A = { ( . , ,  .~) ~ tq × U~ : 1(~,, u~) - -  (,,?, .0)I < ~,), 

t J~( . , ,  "9 - J~("**, u?)I < e~/3, v ( . , ,  u~) ~ ~ ,  

B = { ( . , ,  u~) ~ U, × ~q : I(",, .~.) - -  (",*, %°)1 < ~ ) ,  

and A c~ B = 0 ,  where [ .  [ denotes the Euclidean norm. Since 
(ul n, u.,") ~ (ul °, u2°), 3N x such that (ux", u2 '~) ~ A ,  Vn > N 1 ,  and also 
3 a sequence u*'* --~ ul* and Na such that (u~ n, uz n) ~ B, Vn > N 2 . Now, 
pick N = max{N1, N2}; then, T/l(u~ '* , u.,'*) - -  J~(ux °, ufl)l < ~/3 and 
[ Jl(u*'*, u2") - Jl(ul*,  u2°)] < ~'/3, Vn > N. This means that 
Jl(ul'*, u2 n) > Jx(u*x'*, u2"), Vn > N .  This is a contradiction, since 
(ux", u~") is a sequence in D l . Hence, (ul °, Uz °) ~ Dx, and D 1 is closed. 
By the continuity of J2,  ](uw2, uz~e) ~ D1 such that (1) is satisfied. 

When the Stackelberg strategies happen to be in the interior of 
U 1 × U~, or when Ux × U2 is the whole Euclidean space, necessary 
conditions for the existence of a solution can be derived easily. If  U 1 = 
R m~, U~ = R m2 and J l (u l ,  ua), Jz(ul ,  u2 )are  twice differentiable on 
Ux × U2, then, if a Stackelberg solution (Ulm, uz~z) with Player 2 as 
leader exists, it must satisfy the following set of equations: 

(i) V~f l l (u l~  , u2~) = O, 

(ii) V~,J2(ul~2, u2~) n u/1,,,,,~(u1~, u2~)A = O, 

(iii) V,,.fi(u,~o., u2~) q- fi,,,,,,(u,~, u2~)A = O, 

(lo) 

(11) 

(12) 
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where }t is an rex-dimensional Lagrange multiplier. The  notation Vu.]l 
denotes the gradient vector of J1 with respect to u t and Jl,~,, and Ja~,,, 
represent the m x ×  m, and m~ × m, matrices of second partial 
derivatives whose ~]'th elements are e~J~Jeu~ j, eu~', and e,l,/eu~J, e,,'" 
respectively. 

A simple example of planar games illustrating some of the basic 
properties of the solutions is presented below. 

E x a m p l e  3.2. The  static minimization game considered in 
Refs. 6-8 is reproduced in Fig. 4. The  cost functions Jt  and J~, defined 
on R t ×  R 1, are assumed to be convex and twice differentiable x~qth 
respect to u x and ua and having contour lines as shox~aa in Fig. 4. The  
rational reaction sets D x and D~. are obtained by joining the points of 
tangency betnveen the contour lines and the lines of constant u s and u t , 
respectively. It  is clear that J2 achieves its minimum over Dl at the point 
St  whose 'coordinates (u~ 2 , uz.a) are the Stackelberg strategies when 
Player 2 is the leader. In other words, if Player 2 is to select his strategy 
first, he has no better choice than u~¢., as long as Player I reacts according 
to the curve D t . Similarly, point S t is the Stackelberg solution when 
Player I is  the leader and point N is the Nash solution. An interesting 
feature of these strategies, illustrated in this example, is that the leader 
is not necessarily always the only player that benefits. In fact, in this 
example, both Stacketberg solutions give lower costs for both players 
than the  Nash solution. Thus,  by playing Stackelberg (that is, by 
agreeing that one player will lead and the other ~qll follow), the players 
,,viii be playing an enforceable solution from which both can benefit over 
the Nash solution. Furthermore, the Stackelberg solution has great 

U 1 

UlN 

~z 

oz 

th 

# 

Fig. 4. A game with Nash and Stackelberg solutions. 
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u~f 

IJ 2 

Fig. 5. A game without Nash but  with Stacketberg solutions. 

impact on the two players in the process of making negotiation: Finally, 
a slight modificaxion of this game shox~ in Fig. 5 illustrat¢~ a situation 
where Stackelberg strategies exist while a Nash strategy does not exist. 
In this case, the Stacketberg strategies are potential substitutes for the 
Nash strategies. 

4. D y n a m i e  G a m e s  

Dynamic games are games that evolve over time. Their description 
is usually done in terms of a dynamic equation that describes the evolu- 
tion of the state of the game in response to control variables selected by 
the players from sets of a!lowabIe controls. Linear-quadratic games are 
generally represented by a linear state equation and quadratic cost 
functions. In this section, linear-quadratic games defined over real 
HiJbert spaces are treated. This formulation includes several dynamic 
games, such as continuous-time, discrete-time, etc., that are of interest 
to control engineers. 

i The  authors would like to thank one of the rev~exvers for bringing this fact to their 
attention. I f P  C Ul x Ut is the noninferior set, t h e n  a negotiation set 2~ can be defined 
as follows: 

N ,  = ( (u,  , u d  ~ P ;  I , (u i  , uD < LO,~.,  , u, . . )  < ].(u~N , u ~ ) ,  i = 1, 2}, 

where ( u t , ,  u~,~) is the Stac~elberg solution whet_ player i is tl'.e leader. The  underlined 
relation is always true if  the Stackelberg and Nash strategies exist. I f  any of them do 
not exist, the corresponding part of the inequaliw can be ignored~ In Fig. 4, P is the 
curve .Z/E, and N,  is the curve BC. 
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Let H, H I ,  H~ be real Hilbert spaces, and let the state equation of 
the game be of the form 

x = ~ 'o  + Lxux + L~u 2 , (13) 

where the state variable x and the initiaI state x o are in H, and where the 
control variables u I and ua of Players I and 2 are selected f rom/ /1  and H 2 ,  
respectively. 4~: H -~. H,  L1; 1tl --~ H ,  and L2:/ /2 --* H are bo.unded 
linear transformations. The  cost functionals that the players seek to 
minimize ate of the form 

J~(u, , u~) = , ( (x ,  Q,x)  -b (ul ,R~,ul)  + (u2 , R,2u.,.)), (14) 

L(ul, u2) = ~((~,,Q:) + (ul, &: , l )  + (,,.., R2:~2)), (15) 

where QI and Q2 are bounded linear self-adjoint (BLSA) operators on H, 
R1, and Rzl are BLSA operators on H1,  and R12 and R m are BLSA 
operators on H 2 . The  inner products in (14)-(15) are taken over the 
underlying spaces. Necessary and sufficient conditions for the existence 
of open-loop and closed-loop Nash controls for this game have been 
obtained in Refs. 9-I0.  In the following analysis, necessary and sufficient 
conditions for the  existence of an open-loop Stackelberg control pair 
(u~2, uz~2)~/-/1 × Hz are obtained. Because of difficulties encountered 
with resulting nonlinear equations, closed-loop Stackelberg controls wiU 
not be considered here. 

If  u, e H2 is fixed, Player 1 can calculate his corresponding optimal 
strategy by minimizing J~(u 1 , u..). This  minimization, when repeated 
for all u., ~ H , ,  will lead to a description of the rational reaction set D , .  
When (13) is substituted into (14), Jx(u 1 , u~) b e c o m e :  

L(u~, u~) = ½(<u~, ( & l  +t~*O_lL1),q> + 2<ul ,L:Q~(¢Xo + L:~)> + Lo), 
(16) 

where 

Jlo = (<~xo + Le,~, o~(~Xo + L~u~)> + <u~, R~ou~>). 

A necessary condition for u x to minimize (16) is obtained by setting 

[aL(u, + ~ , ~.)/a~L°o = o, 

where f i l¢ / /1  and ~ is a real number.  This  gives 

(Rll + L I * Q 1 L 1 )  u 1 + LI*QI(4X 0 +L2u~) = 0. 

*LI* denotes the adjoint of  the operator L , .  For i = 1,2, if Lt : H ,  --," H, then 
L~*: H -~ H~ and is defined by (x, L~u~) = (L~*x, u~), .x ~ H,  u~ ~ H i .  
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A sufficient condition (Ref. 11) for u 1 to minimize J t  is that the operator 

S 1 = Rxx + LI*QiL1 

be strongly positive. That  is, it must  satisfy 

" [i u~ I: < (Slul, ul::' < / ~  11 u~ i:, 0 < ~ < / L  V u x s H  1 , (17) 

where ~ and ~ are real numbers  defined by 

a = inf <Slul, ul) and /3 = sup <Slux, u,). 
Ilu~t(t~l )luttl=l 

I f  (17) holds, Si  -1 exists and 

,,~ = -~ '&*Q~(¢: ,o  + L~,,,). 0 8 )  

This  relationship defines the mapping T, and the collection of pairs 
(u l ,  us) such that (18) is satisfied constitutes the rational reaction set D I . 

Now, for u 1 as in (18), Player 2 (the leader) can find his optimal 
control by solving an  optimization problem for )to(u2) = Ja(ul,  u~) when 
(18) and (13) are substituted for u I and x. Following the same procedure 
as above, by setting 

[a.)'#a +,~)I,¢4,~o = o, 

h e ~ H a and n a real number,  necessary and sufficient conditions for a 
minimizing uze are obtained by 

Szua,~ + (La*MI*QrMa6 + La*O~LxS~tR2aSTaLa*Q~¢) x o = O, (19) 

where 

S~ = La*MI*Q2M, L 2 + L2*QxL1S~IR2xS'~XL~*~L2 + R22, (20) 

M 1 := ] -- LxST~Lx*Qx, (20 

/ b e i n g  the identity operator on H. If  $2 is strongly positive, S~ 1 exists and 

ua~ = --~x(L:MI*Q~MI$ + L~*QIL,S~R~I~ILI*9~$) xo. (22) 

uwa is then obtained by substituting (22) into (I8). These results are 
summarized in the following preposition: 

P r o p o s i t i o n  4.1. I f  the operators $1 and S a are strongly positive, 
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then the game defined by (13)-(15) has a unique pair (ux~ 2 , ~2)  of 
open-loop Stackelberg controls satisfying the relations 

(23) 
u ~  := --S~XL~*( MI*Q~Mt4~ + QtL~S-f IR2tST~Lx*Q~q~) xo . (24) 

By properly selecting the various operators in (14)-(15), S t and Sz 
can be made strongly positive in order to guarantee the existence of a solu- 
tion. One such possible selection is given in the following proposition. 

Proposi t ion 4.2. If Rtt and R22 are strongly positive, and Q~, 
Qz, and R~ are positive semidefinite,7 then an open-loop Stackelberg 
solution (urst, u~z) exists. 

Proof .  If Rlx is strongly positive and Q1 ~ 0, then clearly S l is 
strongly positive. Similarly, if Rz2 is strongly positive, Q2 >/0, and 
Rzl ~ 0, then $2 is strongly positive. By Proposition 4.1, a Staekelberg 
solution exists and satisfies (23)-(24). 

Note that the existence of a Stackelberg solution with Player 2 as 
leader does not generally imply the existence of a Stackelberg solution 
with Player 1 as leader. The form in which the Stackelberg strategies 
(23)-(24) are obtained is most convenient for solving games defined over 
finite-dimensional Euclidean spaces. However, when infinite-dimen- 
sional spaces are considered, an alternative form that does not require 
inverting the operators S~ and Sz is preferable. One such representation, 
helpful in the numerical computation of the strategies as functions of 
time only, will be to express the open-loop controls (23)-(24) as a 
function of x, rather than x 0 , and then solve for x as a function of x 0 
separately from the state equation. After some algebraic manipulations, 
(23)-(24) reduce to 

ul,  = (25) 

= Q P)x, (26) 

where the operator P and the state x satisfy the relations 

P- -  LaR~XtLI*(Qs -- QxP) + LxR-f~ R, xR~LI*Qx = O, (27) 

(x + + - -  = 4 x 0 .  (28) 

The state vector x is obtained in terms ofx o from (28) and then substituted 

7 If  H is a HUbert space and R is a BLSA operator on H, then R is positive definite 
(semidefinite), denoted by R > 0 (>0)  if (h, Rh) > 0 (>0) ,  Vh ~ 0 ~ H .  
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in (25)-(26). It is important to note that (25)-(26) are only used for 
generating the open-loop controls and are not intended for closed-loop 
control implementation. As a special ease of the above analysis, linear- 
quadratic differential games will be considered in the following section. 

5. L i n e a r - Q u a d r a t i c  Dif fe rent ia l  G a m e s  

Recently, linear-quadratic differential games have received con- 
siderable interest in the differential games literature (Refs. 8-13). These 
games have significant importance in studying tee local behavior of 
corresponding nonlinear differential games. The dynamics of the game 
considered here are assumed to obey the linear differential equation 

sr = Ax + BIu~ + B;u.,., x(to) = xo, (29) 

and the performance criteria are of the form 

f t  

J~(ul, u2) = {xt'K~,xl + ½ fro (x'Q,x + u,'R,,u, + uz'R~=uz) dr, (30 )  

L(~I.,,,) - -  ½x/X~x~ + ½ f, (~'9~'~ + ~:'R~,,~ ÷ ,q'l~o~,~) at. (31) 

In these equations, the initial time t o and the final time t I are finite and 
fixed, the state x is an n-dimensional vector of continuous functions defined 
on [t o , tl] with x / ~  x(tl), and the controls u 1 and u 2 are square (Lebesque)- 

• integrableml-dimensional and m2-dimensional vector functions defined on 
[t o , tt]. The various matrices in (29)-(31) are of proper dimensions and 
vdth elements continuous functions on [to, tj]. In order to guarantee 
the existence of an open-loop Stackelberg solution (Propositions 4.1 or 
4.2), the matrices in (30)-(31) are assumed to be symmetric and to satisfy 
the conditions K11 >1 O, 1£21 ~ O, Q,(t) >I 0, Q2(t) ~ 0, Rll(t) > O, 
Ra2(t) > O, R~l(t ) >~ O. These are only sufficient conditions and, in 
games where-these conditions are not satisfied (for example, zero-sum 
or almost zero-sum games), it must be insured that S 1 and S~ are 
strongly positive. We note that the matrices Rxl(t ) and R22(t), being 
positive definite, are in fact strongly positive, s The players are seeking an 

I Since Ru(t)> 0, Vte[to, tl], then there exists a ~ > 0 such that, Vte [tg, tt], 
uz~'(t) Rtx(t) ul(t) ~ ~ul'(t) ul(t), Vux e R ~t. Therefore, 

f," ~'j, " 
u((t) Rl~(t) ul(t) dt ) ~ .  u~'(t) u~(:) dr, 

t o t o 

which implies that ( u l ,  Rxx-'~x) ~ a II u,_ H", Similar results hold for R~(t~) .  
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open-loop Stackelberg solution. That is, the leader is seeking a strategy 
u.~(t), a function of time only, that he announces before the game starts. 
The follower vdll then calculate his strategy uue(t) also as a function of 
time only. 

In  order to formulate this problem into tile Hitbert-space structure 
of (13)-(15), the solution of (29) is first obtained. Using the variation of 
parameters formula, we have 

x(t) ------- ~(t, to) xo + [ ¢(t, r) B~(r) ul(r ) dr + ~(t, ~-) B~(~-) u.,(r) d~-, (32) 
o 

where ~(t,  to) satisfies the relations 

•(t, to) = .4¢(6 to), ¢(t, t) = L (33) 

Let H, Hx,  H 2 be the following spaces: 

H = .W,"[t°, t,] X R", H~ = .2~ 'It o , ts], H= ----- .Z~ =[to, tr], 

where .W~[t0, ts] is the set of all j-dimensional real-valued square- 
integrable functions v(t)  satisfying the inequality 

f~' v'(t) v(t) ¢o dt < 

and accompanied with the inner product 

Let 

t! 
v.,(t)> = [ dt. 

Jr, 
(34) 

rx4~l 
u~ e H 2 • 

t x t ~  txoJ 

Equation (32), when evaluated at t and ts, can be written in the form 

= $~o + Llux + L2u2, (35) 
where 

° 
to)] (361 

6(t, r) B,(.) u,(.) dr 

L,a~ = , i =.  1, 2. (37) 

Is," J 
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The  performance criteria (30)-(,31) reduce to 9 

A(u~, u~) = ~((~, 0 ~ )  + (u~, R~u~) + (u~, R ~ ) ,  

where 

(38) 

(39) 

[Q,(t) x(t) l 
~i~ =1. Ko.~:t J' i----1,2. (40) 

The  next step is to determine the adjoints of L x and L.,. Consider 
the inner product of L,ug with an arbitrary vector 

a~ = [ W l c H ,  
wt 

that is, 

tt t tt 
(w,L,u,) = f w'(t) ~. ,(t ,  ~)B,(r)u,(.:)d. dt + w / ~  ,(t,,~)B,(~)u,(r)dr. 

o 

By interchanging the order of integration, one easily obtains the relation 

= f, o,<,) a ,  

II 

+ f~. u,'(.) B,'(.) ¢'(t~, ,) wl a~, 

from which we conclude that L~*: H --+ H~ is defined by 

L,*w=B,'(t)~ ~'(a,t)rz'(er)d~+B,'(t),6'(tl,t)wt, i =  1,2. (41) 

Using these results, and omitting a few algebraic manipulations, (25}-(26) 
reduce to 

ui,~ = -- R-~I~ Bx'Krv, (42) 

u~n = --l~z~XB..'K~x, (43) 

t T h e  inne r  p roduc t  on  H is defined by  

(~ ,  ~z) = xl'x, dt + xbx~. 
*0 
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where x, KI (O,  K~(t) satisfy the relations 

s ,  = ( a  - -  B1R  B,'Iq - -  B2R 'B2'K   ,  to) ---- x o ,  (44)  

= " t , Kx(t) x(t) t) pt(o) x(o) do + ~ ( l ,  t) K~r,  (45) 

K2(t) x(t) = [ 4"(0, 0[02(0) --  Or(a) P(")] x(o) d~ + ¢'(t¢, t)[Kze--KttP(ts) ] x¢, 
"~ (46) 

where P( t )  is obtained from (27) and satisfies the relation 

P(t)  x(t) = f [  ¢(t, r) B,(r)  R~ll0-)[BI'(v) h~(~-) 

--  R~I(~- ) Ri'~(r ) B~'(r) K~(~-)] x(~,) dr. (47) 

Differentiating (45)-(47) with respect to t, we see that they reduce to 

ga  = - -A 'Kx  - -  K , A  - -  Q,  + K~B~R-i~B~'K~ q-- KxBzR~'B,z'K h , 

Kx(t/) = Kt¢ ,  (48) 

K~ = - - A ' K 2  - -  K ~  --  9 z  + 9~P + K2BxR;IBx'Kjt + K~B.,~T.:JBz'Kq, 

K,( t , )  = X v --  KtcP(tz), (49) 

- I  r ~ - - 1  1 t . : - -  - -  B1RnRzIR~I~B, K ,  P A P  P A  + PBIR~I~BI"K 1 + PB2Ra~ B,, K 2 

+ B,  Ri~B~'K~, P(to) --- O, (50) 

and the open-loop Stackelberg controls are 

u,n  = --RT~IB~'Kle(t, to) :Co, (51) 

uo~ = - -R igB;Kz~( t ,  to) .r o , (52) 
where 

~(t, to) = (A  - -  B,RyI~B,'K'I - -  B2R;gB~'K2) ¢(t, to), ¢(t, t) = L (53) 

Equations (48)-(49) are identical to the Riccati equations obtained 
in the corresponding open-loop Nash solution (Ref. 8), except for the 
terms containing P in (49). These terms account for the fact that the 
leader is now minimizing his cost on the rational reaction set [Eq. (18)] 
of the follower. Equation (50), however, is not of the Riecati type, and 
its solution must be done forward in time in contrast  to (48)-(49), 
v'hose solution is obtained backward in time. 

This  two-point boundary-value problem is generally not easy to 
solve. It is possible, however, to obtain its solution from the solution of a 
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single-point boundary-value problem, as follows. I f  there exists a 
2n × 2n matrix F( t )  satisfying 

P = - - ~ I T  - -  F.ff - -  0 + FI~F, F(tt)  = F t ,  (54) 
where 

F = [ [ "  e " l ,  [~" F~ I  F ,  = 

and if (50) has a solution when K 1 and K 2 are o f  the form 

[ • ]  fr~ e~: l[Zl,  
= 1~½, --FnJ LPJ (55) 

then the open-loop Stackelberg strategies (51)-(52) can be written as 

u t s  2 = --R~x~ Bx'(Fll  + FlzP ) ~(t, to) xo , (56) 

u2~ = --R~)B;(F21 -- F . P )  #(t, to) x0. (57) 

In  (56)-(57), ~(t, to) is the solution of (53) wi th  K t and K2 obtained 
from (55). It  is shown in the append[× that the construction of K1,  Kz ,  
P,  as obtained above, satisfies (48)-(50). 

It  will now be shown that, in the special case of zero-sum games and 
identical goal games, the Stackelberg solution reduces to the familiar 
saddle-point and cooperative solutions. 

(i) Z e r o - S u m  Games rzqth Saddle  Point.  In zero-sum games, 
]1 = - - . / 2 .  That  is, R n  = - - R 2 t  = R1, R22 = - - R 1 2  = R~, Qt = 
- Q z  = Q, K i t  = - - K e !  = K t . T h e  sufficient conditions of Proposi- 
tion 4.2 are not satisfied. However, assuming that these matrices are 
selected in such a way that S I and S~ are strongly positive, then a 
Stackelberg solution exists; and, upon substituting in (48)-(50), we 
conclude that  P ( t )  ~ O, Vt  ~ [to, tl] and Kx(t ) ----- - - K s ( t  ) = K ( t )  and 
satisfying 

12£ = - - A ' K  - -  K A  - -  Q + K(Btl~xXB~ - -  B~I~zaB.~')K, K(t t)  -~ I ( I ,  

in agreement with the saddle-point solution (Ref. 12). 

(ii) Ident ical  Goal  Games. If  the two players are cooperating in 
minimizing the same performance function Jx = J~, the game is called 
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an identical goal game. This problem can be formulated as an optimal 
control problem, and its solution obtained in terms of the Riceati equation 
of the regulator theory. When R ,  -~ R21 = R 1 , R12 = R2~ -- R2, 
~x = Q2 = Q, KI!  ~- K2/ -~ K !  are substituted in (48)-(50), it is easily 
concluded that P(t)  ~ 0, Vt ~ [to, tA, and Kl( t  ) = K~(t) -~ K( t )  and 
satisfying 

K = - - A ' K  --  K A  -- Q + K(BIR';1B, ' + B2R~*B~')K, K(t~) -~ K~, 

in agreement with the Riccati equation of regulator theory. 
Except for those two special cases, the Stackelberg solution is generally 

different from the Nash solution. In what follows, a simple pursuit-  
evasion problem will be considered. 

E x a m p l e  5.1. Consider the nonzero-sum velocity-controlled 
pursuit-evasion game studied in Refs. 2 and 13. The dynamics of the 
game are described by the equations 

= u t  - -  us, x(t0) = x0, 

where u I and u S are the velocities of the pursuer and evader, respectively, 
and x is their relative position. The performance criteria are 

where 

1 
]1 = ½xt * + (I/2c~) fo u~2 dr, J2 = -½x,~ + (1/2c~) u2 ' et, 

Assume that Player 2 decides to evade before Player 1 decides to pursue. 
Naturally, in this case, his best choice will be to announce a Stackelberg 
strategy uz~ 2 with himself as leader. 

Applying (48)-(53), we obtain the open-loop Stackelberg solution 
with the .evader as leader as 

u1~ = [ -c , / (c ,  - oce + 1)] x0, u ~  = [-oee/(e~ - oe, + 1)] xo, 

where 

o = 1 / (1  + e~) .  

Sufficient conditions for the existence of a solution are obtained from 
Propositions 4.1. With the conditions that % > 0, c~ > 0, %c~ = 1, 
the operators S 1 and S s will be strongly positive if asG < 1. These 
conditions imply that c~ < 2.116. That  is, if ce < 2.116, an open-loop 
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Stackelberg solution with the evader as leader exists. On the other hand 
(Ref. 13), the open-loop Nash solution exists if c, < I, it does not exist 
i fe ,  > 1, and nothing can be said about its existence if G ---- 1. Therefore, 
in this example, the existence of a Stackelberg strategy wqth Player 2 as 
leader is guaranteed over a wider range of parameters. 

The  performance functions as calculated when the Stackelberg 
strategy is used are 

J , ( u , ~  , u~,~) = ] l : .  = ½[(1 + e , ) / ( l  - oc. + e,)"] x : .  

A ( u , ~ .  u~.~) - -  1 ~  - -  ½[(,~c. - 1)/(1 - , c .  + c,)~] xo'-. 

For the sake of comparison, the  open-loop Nash solution for this problem 
(Ref. 13) is shown below as follows: 

ulN = [ - c , / ( 1  + c ,  - c.)] x0 .  

u ~  = [ - c d ( t  + e ,  - -  c.)] xo .  

J l ( u w .  ~2,,) = J l , ,  = ½[(l + , , ) / (1  - c. + c,)~] Xo-', 

J2(UlN, UaN) -~ J2N = ½[(Ce -- I)/(1 -- C, + C~) 2] Xo ~. 

For the range where both the Stackelberg and the Nash solutions exist 
(i.e., c e < I), a comparison of the above quantities will yield Jls2 < J1n 
and Jz~2 < J~¢. That  is, not only the leader will benef, t by using a 
Stackelberg solut ion but also the follower will benefit as well. Thus,  in 
this special case, the Stackelberg solution can be looked at as an enfor- 
ceable negotiated solution that is preferred by both players over the 
Nash solution. 

6. C onc lu s ions  

A class of nonzero-sum games in which the strategies are announced 
sequentially has been investigated, and it was shown that, if the players' 
sole objective is to minimize their cost functions, the Stackelberg strategy 
is the most natural way of defining optimality. Games where one player 
does not know the other's cost function while the other player knows both 
cost functions and games where one player is faster than the other in 
computing his strategy are best modeled and solved within this solution 
concept. In  this strategy, the roles of the players, whether leader or 
follower, must  be properly defined and, when compared to the Nash 
solution, it was shown that it is advantageous to the leader. Conditions 
for the existence of the Staekelberg strategies have been obtained. It was 
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shown that, in general, one cannot conclude the existence of a Stackelberg 
solution from the existence of a Nash solution nor ~ice ,,ersa. Several 
examples were considered in order to illustrate the properties of this 
solution concept. In dynamic games, an abstract formulation in Hilbert 
spaces has been considered, and necessa D" and sufficient conditions for 
the existence of an open-loop Stackelberg solution were obtained. 
Linear-quadratic differential games were treated as a special case, and 
the solution was expressed in terms of Riccati-like differential equations. 
A simple pursuit-evasion problem was solved, and the results were 
compared to the Nash solution. 

7. Append ix  

Write Eqs+ (48)-(50) in the following form, u,ing the notation in 
Ref. 14: 

K = - A ' K  --  K2I + K N K  + K N K  -- Q + Qo~, K(ts) = K t , (58) 

T" = A'P - : A  + P~VK + P ~ g  + R K  + RF., P(to) = 0, (59) 

where all matrices in (58)-(59) are 2n X 2n and where 

-+ = to';~, ,+ : E~' °I, +£,+,+,I, 

_0 = I++, o+°+.1, 

and the operation K is as follows- 

Let K1 and K~ be related to P by (55). In the above notation, this is 
written as 

K = F, + F.: ,  

where 

++= [+.,~+,,.. 

,+'. : t3o o°]: 

809/x z/5-8 
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Upon differentiating (60) and substituting in it (58)-(59), and after 
several steps invol~qng algebraic manipulation, (54) is obtained. Further- 
more, from the symmetry of (54), it is clear that F2~ = - -F  n . If (54) 
has a solution, then K~ and K.~ can be written as functions of P as in (55) 
or (60). P and 6 are then obtained by solving (50) and (53) forward in 
time. 
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