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lems, popular in operations research. F\lrthermore, many applications and
examples, drawn from a broad variety of fields, are discussed.
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well as a new chapter on continuous-time optimal control problems and the
Pontryagin Minimum Principle, developed from a dynamic programming
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based approximation techniques for dynamic programming. These tech
niques, which are often referred to as "neuro-dynamic programming" or
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plication of dynamic programming to complex problems that involve the
dual curse of large dimension and lack of an accurate mathematical model.
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With the new material, however, the book grew so much in size that
it became necessary to divide it into two volumes: one on finite horizon,
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Life can only be understood going backwards,
but it lllust be lived going forwards.

Kierkegaard

N is the horizon or number of times control is applied,

and fk is a function that describes the system and in particular the mech
anism by which the state is updated.

The cost function is additive in the sense that the cost incurred at
time k, denoted by gk(Xk, Uk, 'Wk), accumulates over time. The total cost
is

2 ,]'11e Dynamic Programming Algmithm Chap. 1 Sec. 1.1 Introduction 3

1.1 INTRODUCTION

This book deals with situations where decisions are made in stages. The
outcome of each decision may not be fully predictable but can be antici
pated to some extent before the next decision is made. The objective is to
minimize a certain cost a mathematical expression of what is considered
an undesirable outcome.

A key aspect of such situations is that decisions cannot be viewed in
isolation since one must balance the desire for low present cost with the
undesirability of high future costs. The dynamic programming technique
captures this tradeoff. At each stage, it ranks decisions based on the sum
of the present cost and the expected future cost, assuming optimal decision
making for subsequent stages.

There is a very broad variety of practical problems that can be treated
by dynamic programming. In this book, we try to keep the main ideas
uncluttered by irrelevant assumptions on problem structure. To this end,
we formulate in this section a broadly applicable model of optimal control
of a dynamic system over a finite number of stages (a finite horizon). This
model will occupy us for the first six chapters; its infinite horizon version
will be the subject of the last chapter as well as Vol. II.

Our basic model has two principal features: (1) an underlying discrete
time dynamic system, and (2) a cost function that is additive over time.
The dynamic system expresses the evolution of some variables, the system's
"state" , under the influence of decisions made at discrete instances of time.
T'he system has the form

k = 0,1, ... ,N - 1,

where

k indexes discrete time,

:1; k is the state of the system and summarizes past information that is
relevant for future optimization,

'Ilk is the control or decision variable to be selected at time k,

'Wh: is a random parameter (also called disturbance or noise depending on
the context),

N-1

gN(XN) + L gk(Xk, Uk, 'Wk),

k=O

where gN(XN) is a terminal cost incurred at the end of the process. How
ever, because of the presence of 'Wk, the cost is generally a random variable
and cannot be meaningfully optimized. We therefore formulate the problem
as an optimization of the expected cost

where the expectation is with respect to the joint distribution of the random
variables involved. The optimization is over the controls 'lLo, 'Ill, ... , UN -1,

but some qualification is needed here; each control Uk is selected with some
knowledge of the current state Xk (either its exact value or some other
related information).

A more precise definition of the terminology just used will be given
shortly. Vile first provide some orientation by means of examples.

Example 1.1.1 (Inventory Control)

Consider a problem of ordering a quantity of a certain item at each of N
periods so as to (roughly) meet a stochastic demand, while minimizing the
incurred expected cost. Let us denote

Xk stock available at the beginning of the kth period,

Uk stock ordered (and immediately delivered) at the beginning of the kth
period,

'Wk demand during the kth period with given probability distribution.

We assume that 'Wo, 'WI, ... , 'WN-l are independent random variables,
and that excess demand is backlogged and filled as soon as additional inven
tory becomes available. Thus, stock evolves according to the discrete-time
equation

where negative stock corresponds to backlogged demand (see Fig. 1.1.1).
The cost incurred in period k consists of two components:

(a) A cost r(xk) representing a penalty for either positive stock Xk (holding
cost for excess inventory) or negative stock Xk (shortage cost for unfilled
demand).



Figure 1.1.1 Inventory control example. At period k, the current stock
(state) x k, the stock ordered (control) Uk, and the demand (random distur
bance) 'Wk determine the cost r(xk)+cUk and the stock Xk+1 = Xk +Uk 'Wk

at the next period.

1-.........--- Uk

5

if Xk < Eh,
otherwise,

Introduction

/tk(Xk) = amount that should be ordered at time k if the stock is Xk.

and we want to minimize J1t"(xo) for a given Xo over all 'if that satisfy the
constraints of the problem. This is a typical dynamic programming problem.
We will analyze this problem in various forms in subsequent sections. For
example, we will show in Section 4.2 that for a reasonable choice of the cost
function, the optimal ordering policy is of the form

The sequence 'if {{to, ... , jlN - I} will be referred to as a policy or
contr-ol law. For each 'if, the corresponding cost for a fixed initial stock :ro is

so as to minimize the expected cost. The meaning of jlk is that, for each k
and each possible value of Xk,

Sec. 1.1Chap. 1

dk+1

The Dynamic Programming Algorithm

Wk IDemand at Period k

eriod I< Stocl< at Perio
Inventory System

Xk+ 1 = Xk +

Stock ordered at
Period I<

Stocl< at P

xk

Cost of Penod k

r(xk) + CUI<

(b) The purchasing cost C'Uk, where c is cost per unit ordered.

There is also a terminal cost R(XN) for being left with inventory XN at the
end of N periods. Thus, the total cost over N periods is

where Sk is a suitable threshold level determined by the data of the problem.
In other words, when stock falls below the threshold Sk, order just enough to
bring stock up to Sk.

We want to minimize this cost by proper choice of the orders Uo, ... , UN-I,

subject to the natural constraint Uk 2:: 0 for all k.
At this point we need to distinguish between closed-loop and open

loop minimization of the cost. In open-loop minimization we select all orders
Uo, ... , UN-I at once at time 0, without waiting to see the subsequent demand
levels. In closed-loop minimization we postpone placing the order Uk until the
last possible moment (time k) when the current stock Xk will be known. The
idea is that since there is no penalty for delaying the order Uk up to time k,
we can take advantage of information that becomes available between times
o and k (the demand and stock level in past periods).

Closed-loop optimization is of central importance in dynamic program
ming and is the type of optimization that we will consider almost exclusively
in this book. Thus, in our basic formulation, decisions are made in stages
while gathering information between stages that will be used to enhance the
quality of the decisions. The effect of this on the structure of the resulting
optimization problem is quite profound. In particular, in closed-loop inven
tory optimization we are not interested in finding optimal numerical values
of the orders but rather we want to find an optimal rule for selecting at each
pe'f'iod k an o'f'der Uk for each possible value of stock Xk that can conceivably
occur-. This is an "action versus strategy" distinction.

Mathematically, in closed-loop inventory optimization, we want to find
a sequence of functions Itk, k = 0, ... ,N - 1, mapping stock Xk into order Uk

The preceding example illustrates the main ingredients of the basic
problem formulation:

(a) A discrete-time system of the form

where !k is some function; for example in the inventory case, we have
fk(Xk, Uk, 'Wk) = Xli: -I- 'ILk - 'Wk·

(b) Independent random parame"ters 'Wk. This will be generalized by al
lowing the probability distribution of 'Wk to depend on Xk and Uk;

in the context of the inventory example, we can think of a situation
where the level of demand 'Wk is influenced by the current stock level
Xk·

(c) A control constraint; in the example, we have 'Uk ~ O. In general,
the constraint set will depend on Xk and the time index k, that is,
'Uk E Uk(Xk). To see how constraints dependent on Xk can arise in the
inventory context, think of a situation where there is an upper bound
B on the level of stock that can be accommodated, so Uk ~ B Xk.'

(d) An addit'lve cost of the form



Introduction

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation B has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cmn for passing from any operation 'IT/, to any
other operation n is given. There is also an initial startup cost SA or Sc for
starting with operation A or C, respectively. The cost of a sequence is the
sum of the setup costs associated with it; for example, the operation sequence
ACDB has cost

Example 1.1.2 (A Deterministic Scheduling Problem)

Thus a discrete-state system can equivalently be described in terms
of a difference equation or in terms of transition probabilities. Depend
ing on the given problem, it may be notationally or mathematically more
convenient to use one description over the other.

The following examples illustrate discrete-state problems. The first
example involves a deterministic problem, that is, a problem where there
is no stochastic uncertainty. In such a problem, when a control is chosen
at a given state, the next state is fully determined; that is, for any state i,
control u, and time k, the transition probability Pij (u, k) is equal to 1 for a
single state j, and it is 0 for all other candidate next states. The other three
examples involve stochastic problems, where the next state resulting from
a given choice of control at a given state cannot be determined a priori.

where wet, u,"j) is the set

Sec. 1.1Chap. 1The Dynamic Programming Algorithm

where gk are some functions; in the inventory example, we have

(e) Optimization over (closed-loop) policies, that is, rules for choosing Uk

for each k and each possible value of Xk.

This type of state transition can alternatively be described in terms of the
discrete-time system equation

In the preceding example, the state Xk was a continuous real variable, and
it is easy to think. of multidimensional generalizations where the state is
an n-dimensional vector of real variables. It is also possible, however, that
the state takes values from a discrete set, such as the integers.

A version of the inventory problem where a discrete viewpoint is more
natural arises when stock is measured in whole units (such as cars), each
of which is a significant fraction of xk, Uk, or Wk. It is more appropriate
then to take as state space the set of all integers rather than the set of real
numbers. The form of the system equation and the cost per period will, of
course, stay the same.

Generally, there are many situations where the state is naturally dis
crete and there is no continuous counterpart of the problem. Such sit
uations are often conveniently specified in terms of the probabilities of
transition between the states. What we need to know is Pij (u, k), which
is the probability at time k that the next state will be j, given that the
current state is 'i, and the control selected is u, Le.,

Discrete-State and Finite-State Problems

where the probability distribution of the random parameter Wk is

Conversely, given a discrete-state system in the form

together with the probability distribution Pk(Wk I Xk, Uk) of Wk, we can
provide an equivalent transition probability description. The corresponding
transition probabilities are given by

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem is shown in Fig. 1.1.2. Here the problem is deterministic, Le., at
a given state, each choice of control leads to a uniquely determined state.
For example, at state AC the decision to perform operation D leads to state
ACD with certainty, and has cost CCD. Deterministic problems with a finite
number of states can be conveniently represented in terms of transition graphs'
such as the one of Fig. 1.1.2. The optimal solution corresponds to the path
that starts at the initial state and ends at some state at the terminal time
and has minimum sum of arc costs plus the terminal cost. We will study
systematically problems of this type in Chapter 2.



RepairDo not repair

In troeIuction

(a) Let the machine operate one more period in the state it currently is.

(b) Repair the machine and bring it to the best state 1 at a cost R.

We assume that the machine, once repaired, is guaranteed to stay in state
1 for one period. In subsequent periods, it may deteriorate to states j > 1
according to the transition probabilities Plj.

Thus the objective here is to decide on the level of deterioration (state)
at which it is worth paying the cost of machine repair, thereby obtaining the
benefit of smaller future operating costs. Note that the decision should also
be affected by the period we are in. For example, we would be less inclined
to repair the machine when there are few periods left.

The system evolution for this problem can be described by the graphs
of Fig. 1.1.3. These graphs depict the transition probabilities between vari
ous pairs of states for each value of the control and are known as transit'ion
pr'Obabil'ity graphs or simply transition graphs. Note that there is a different
graph for each control; in the present case there are two controls (repair or
not repair).

Sec. 1.1Chap. 1

AS

8 CBD

~eCDB
8 CBD

Ceo

The Dynamic Programming Algorithm

Initial
State

Pij = P{next state will be j I current state is i}

Figure 1.1.2 The transition graph of the deterministic scheduling problem
of Exarnple 1.1.2. Each arc of the graph corresponds to a decision leading
from some state (the start node of the arc) to some other state (the end node
of the arc). The corresponding cost is shown next to the arc. The cost of the
last operation is shown as a terminal cost next to the terminal nodes of the
graph.

g(l) ::; g(2) ::; ... ::; g(n).

The implication here is that state i is better than state i + 1, and state 1
corresponds to a machine in best condition.

During a period of operation, the state of the machine can become worse
or it may stay unchanged. We thus assume that the transition probabilities

Consider a problem of operating efficiently over N time periods a machine
that can be in anyone of n states, denoted 1,2, ... , n. We denote by g(i) the
operating cost per period when the machine is in state i, and we assume that

Exarnple 1.1.3 (Machine Replacement)

We assume that at the start of each period we know the state of the
machine and we must choose one of the following two options:

satisfy

Pij = 0 if j < i.
Figure 1.1.3 Machine replacement example. Transition probability graphs for
each of the two possible controls (repair or not repair). At each stage and state i,
the cost of repairing is R+g(l), and the cost of not repairing is g(i). The terminal
cost is O.
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from the game is
00 1
v - .. - .2k - X = 00
~ 2k +1 '
k=O

so if his aeceptanee eriterion is based on maximization of expected profit,
he is willing to pay any amount x to enter the game. This, however, is in
strong disagreement with observed behavior, due to the risk element in
volved in entering the game, and shows that a different formulation of the
problem is needed. The formulation of problems of deeision under uncer
tainty so that risk is properly taken into aeeount is a deep subject with an
interesting theory. An introduction to this theory is given in Appendix G.
It is shown in particular that minimization of expected cost is appropriate
under reasonable assumptions, provided the cost function is suitably chosen
so that it properly eneodes the risk preferences of the deeision maker.

1.3 THE DYNAMIC PROGRAMMING ALGORITHM

The dynamie programming (DP) technique rests on a very simple idea,
the principle of optimality. The name is due to Bellman, who contributed
a great deal to the popularization of DP and to its transformation into a
systematic tool. H.oughly, the principle of optimality states the following
rather obvious fact.

P.r~ .~ .. 1 of Optirnality

Let 1f* {ILo,11i ,... , ILN-I} be an optimal policy for the basic prob
lem, and assume that when using 1f*, a given state Xi occurs at time
i with positive probability. Consider the subproblem whereby we are
at Xi at time i and wish to minimize the "cost-to-go" from time i to
time N

Then the truncated poliey {J/i, fLi+1l ... , /1N-I} is optimal for this sub
problem.

The intuitive justification of the prineiple of optimality is very simple.
If the truncated policy {ILl' J-l i+1' ... ,fLN-I} were not optimal as stated, we
would be able to reduce the cost further by switching to an optimal policy
for the subproblem once we reach Xi. For an auto travel analogy, suppose
that the fastest route from Los Angeles to Boston passes through Chicago.
The principle of optimality translates to the obvious fact that the Chicago
to Boston portion of the route is also the fastest route for a trip that starts
from Chicago and ends in Boston.

The principle of optimality suggests that an optimal policy can be
constructed in piecemeal fashion, first constructing an optimal policy for
the "tail subproblem" involving the last stage, then extending the optimal
policy to the "tail subproblem" involving the last two stages, and continuing
in this manner until an optimal policy for the entire problem is constructed.
The DP algorithm is based on this idea: it proceeds sequentially, by solving
all the tail subproblems of a given time length, using the solution of the
tail subproblems of shorter time length. We introduce the algorithm with
two examples, one deterministic and one stochastic.

The DP Algorithm for a Deterministic ~chelr1uung -lL........<....... ·<nJ ..·~

Let us consider the scheduling example of the preceding section, and let us
apply the principle of optimality to calculate the optimal schedule. We ~l~ve

to schedule optimally the four operations A, B, C, and D. The tranSItIon
and setup costs are shown in Fig. 1.3.1 next to the corresponding arcs.

According to the principle of optimality, the "tail" portion of an op
timal schedule must be optimal. For example, suppose that the optimal
schedule is CABD. Then, having scheduled first C and then A, it must
be optimal to complete the schedule with BD rather than with DB. With
this in mind, we solve all possible tail subproblems of length two, then all
tail subproblems of length three, and finally the original problem that has
length four (the subproblems of length one are of course trivial because
there is only one operation that is as yet unscheduled). As we will see
shortly, the tail subproblems of length k + 1 are easily solved once we have
solved the tail subproblems of lengt.h k, and this is the essence of the DP

technique.

Tail Subproblems of Length 2: These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, anel

CD (see Fig. 1.3.1)

State AB: Here it is only possible to schedule operation C as the next
operation, so the optimal cost of this subproblem is 9 (the cost of
scheduling C after B, which is 3, plus the cost of scheduling Dafter

C, which is 6).

State AC: Here the possibilities are to (a) schedule operation 13 and
then D, which has cost 5, or (b) schedule operation D anel then B,
which has cost 9. The first possibility is optimal, and the correspond
ing cost of the tail subproblem is 5, as shown next to node AC in Fig.

1.3.l.

State CA: Here the possibilities are to (a) schedule operation 13 and
then D, which has cost 3, or (b) schedule operation D and then 13,
which has cost 7. The first possibility is optimal, and the correspond-



ing cost of the tail subproblem is 3, as shown next to node CA in Fig.
1.3.1.

Figure 1.3.1 '[\'ansition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (ef. the
principle of optimality). The optimal cost for the original problem is equal to
10, as shown next to the initial state. The optimal schedule corresponds to the
thick-line arcs.
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IN-l(XN-r) = r(xN-l)

+ min fCUN _ 1 + E {R(XN-l + 'ILN-l - 'WN-1)}J .
UN-l;::::O l WN-l

Adding the holding/shortage cost of period N 1, we see that the optimal
cost for the last period (plus the terminal cost) is given by

CUN-l + E {R(XN-l + UN-l - 'WN-r)}.
'WN-l

Naturally, IN-l is a function of the stock XN-l· It is calcula,ted either
analytically or numerically (in which case a table is used for computer

Consider the inventory control example of the previous section. Similar to
the solution of the preceding deterministic scheduling problem, we calcu
late sequentially the optimal costs of all the tail subproblems, going from
shorter to longer problems. The only difference is that the optimal costs
are computed as expected values, since the problem here is stochastic.

Ta'il Subproblems of Length 1: As~ume that at the beginning of period
N - 1 the stock is XN-l. Clearly, ~o matter what happened in the past,
the inventory manager should order the amount of inventory that mini
mizes over UN-l ~ °the sum of the ordering cost and the expected tenni
nal holding/shortage cost. Thus, he should minimize over UN-l the sum
CUN-l + E{R(XN)}, which can be written as

The DP Algorithm for the Inventory Control ~x:an'lplle

subproblem of length 2 (cost 5, as computed earlier), a total cost of
11. The first possibility is optimal, and the corresponding cost of the
tail subproblem is 7, as shown next to node A in Fig. 1.~1.1.

Original Problem of Length 4: The possibilities here are (a) start with op
eration A (cost 5) and then solve optimally the corresponding subproblem
of length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start
with operation C (cost 3) and then solve optimally the corresponding sub
problem of length 3 (cost 7, as computed earlier), a total cost of 10. The
second possibility is optimal, and the corresponding optimal cost is 10, as
shown next to the initial state node in Fig. 1.:3.1.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the opti
mal schedule by starting at the initial node and proceeding forward, each
time choosing the operation that starts the optimal schedule for the cor
responding tail subproblem. In this way, by inspection of the graph and
the computational results of Fig. 1.3.1, we determine that CABD is the
optimal schedule.

Sec. 1.3Chap. 1The Dynamic Programming Algorithm
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State CD: Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Ta'il Subpmblems of Length 3: These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B
(cost 2) and then solve optimally the corresponding subproblem of
length 2 (cost 9, as computed earlier), a total cost of 11, or (b) sched
ule next operation C (cost 3) and then solve optimally the correspond
ing subproblem of length 2 (cost 5, as computed earlier), a total cost
of 8. The second possibility is optimal, and the corresponding cost of
the tail subproblem is 8, as shown next to node A in Fig. 1.3.1.

State C: Here the possibilities are to (a) schedule next operation A
(cost 4) and then solve optimally the corresponding subproblem of
length 2 (cost 3, as computed earlier), a total cost of 7, or (b) schedule
next operation D (cost 6) and then solve optimally the corresponding
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(1.5)

The Dynamic Programming Algorithm

t Our proof is somewhat informal and assumes that the functions Jk are
well-defined and finite. For a strictly rigorous proof, some technical mathemat
ical issues must be addressed; see Section 1.5. These issues do not arise if the
disturbance 'Wk takes a finite or countable number of values and the expected
values of all terms in the expression of the cost function (1.1) are well-defined

and finite for every admissible policy 7f.

Proof: t For any admissible policy 7f = {}LO, Ill, ... , IlN-d and each k =
0,1, ... , N -1, denote 1fk = {Ilk, P'k+l, ... , }LN-d. For k 0,1, ... ,N -1,
let J;;(Xk) be the optimal cost for the (N - k)-stage problem that starts at
state Xk and time k, and ends at time N,

Proposition 1.3.1: For every initial state Xo, the optimal cost J*(xo)
of the basic problem is equal to Jo(xo), given by the last step of the
following algorithm, which proceeds backward in time from period
N - 1 to period 0:

We now state the DP algorithm for the basic problem and show its opti
mality by translating into mathematical terms the heuristic argument given
above for the inventory example.

Jk(Xk) = min E {9k(Xk"Uk,Wk) + Jk+l(fk(;r;k"uk, lLJk))},
UkEUk(Xk) Wk

k = 0,1, ... ,N - 1,
(1.6)

where the expectation is taken with respect to the probability distribu
tion of 10k, which depends on Xk and Uk. :Furthermore, if uk = /lk(xk)
minimizes the right side of Eq. '(1.6) for each Xk and k, the policy
7f* = {{lO' ... , }LN-I} is optimal.

The DP Algorithm

Sec. 1.3

policy is simultaneously computed from the minimization in the right-hand
side of Eq. (1.4).

The example illustrates the main advantage offered by DP. While
the original inventory problem requires an optimization over the set of
policies, the DP algorithm of Eq. (1.4) decomposes this problem into a
sequence of minimizations carried out over the set of controls. Each of
these minimizations is much simpler than the original problem.

(1.4)

Chap. 1The Dynamic Programming Algorithm

Again IN-2(;r;N-2) is caleulated for every XN-2. At the same time, the
optimal policy ILN_2 (;r;N-2) is also computed.

Tail Subproblems of Length N - k: Similarly, we have that at period k:,
when the stock is;[;k, the inventory manager should order Uk to minimize

(expected cost of period k) + (expected cost of periods k + 1, ... ,N - 1,

given that an optimal policy will be used for these periods).

By denoting by Jk(Xk) the optimal cost, we have

= T(XN-2)

+. min [CllN-2 + E {IN-l(XN-2 + 'UN-2 - WN-2)}]
uN-2?'0 WN-2

which is equal to

(expected cost of period N - 2) + (expected cost of period N - 1,

given that an optimal policy will be used at period N - 1),

Using the system equation ;I;N-1 = XN-2 + UN-2 - WN-2, the last term is
also written as IN-1(XN-2 + UN-2 WN-2).

Thus the optimal cost for the last two periods given that we are at
state '.1;N-2, denoted IN-2(XN-2), is given by

which is actually the dynamic programming equation for this problem.

The functions Jk(:Ck) denote the optimal expected cost for the tail
subproblem that starts at period k with initial inventory Xk. These func
tions are computed recursively backward in time, starting at period N - 1
and ending at period O. The value Jo (;[;0) is the optimal expected cost
when the initial stock at time 0 is :ro. During the caleulations, the optiInal

22

storage ofthe function IN-1). In the process of caleulating IN-1, we obtain
the optimal inventory policy P'N-l (XN-I) for the last period: }LN-1 (xN-d
is the value of 'UN -1 that minimizes the right-hand side of the preceding
equation for a given value of XN-1.

TaU S'ubproblems of Length 2: Assume that at the beginning of period
N 2 the stock is ;I:N-2. It is clear that the inventory manager should
order the amount of inventory that minimizes not just the expected cost
of period N - 2 but rather the .
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k 0,1,
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where a is a known scalar from the interval (0,1). The objective is to get
the final temperature X2 close to a given target T, while expending relatively
little energy. This is expressed by a cost function of the form

Example 1.3.1

A certain material is passed through a sequence of two ovens (see Fig. 1.3.2).
Denote

Xo: initial temperature of the material,

Xk, k = 1,2: temperature of the material at the exit of oven k,

Uk-I, k = 1,2: prevailing temperature in oven k.

We assume a model of the form

Sec. 1.3

Ideally, we would like to use the DP algorithm to obtain closed-form
expressions for Jk or an optimal policy. In this book, we will discuss a
large number of models that admit analytical solution by DP. Even if such
models rely on oversimplified assumptions, they are often very useful. They
may provide valuable insights about the structure of the optimal solution of
more complex models, and they may form the basis for suboptimal control
schemes. It'urthermore, the broad collection of analytically solvable models
provides helpful guidelines for modeling: when faced with a new problem it
is worth trying to pattern its model after one of the principal analytically
tractable models.

Unfortunately, in many practical cases an analytical solution is not
possible, and one has to resort to numerical execution of the DP algorithm.
This may be quite time-consuming since the minimization in the DP Eq.
(1.6) must be carried out for each value of Xk. The state space must be
discretized in some way if it is not already a finite set. The computa
tional requirements are proportional to the number of possible values of
Xk, so for complex problems the computational burden may be excessive.
Nonetheless, DP is the only general approach for sequential optimization
under uncertainty, and even when it is computationally prohibitive, it can
serve as the basis for more practical suboptimal approaches, which will be
discussed in Chapter 6.

The following examples illustrate some of the analytical and compu
tational aspects of DP.

Chap. 1The Dynamic Programming Algorithm

= min E {9k (Xk' J-lk(;r:k), 'Wk)
ftk 'I1Jk

+ ~~l} [, E {9N(XN) + ~ gi (Xi, J-li(Xi) , 'Wi)}] }
7f f· wk+I, ... ,'I1JN-I .

t=k+l

= min E {9k (Xk' p.k(Xk), 'Wk) + Jk+1Uk (Xk' J-lk(Xk), Wk))}
ILk 'I1Jk

= min E {9k(Xk,/ldxk),'Wk) + Jk+1(fk(Xk,J-lk(Xk),'Wk))}
ILk 'I1Jk

= min E {9k(Xk,'Uk,'Wk) + Jk+l(fk(Xk,Uk,'Wk))}
'ItkEUk(~(;k) 'I1Jk

= Jk(Xk),

min F(x, fl(X)) = min F(;!:, u),
ftEM UEU(x)

where M is the set of all functions fl(X) such that fleX) E U(x) for all x.

cOInpleting the induction. In the second equation above, we moved the
minimum over Jrk+l inside the braced expression, using a principle of opti
malityargument: "the tail portion of an optimal policy is optimal for the
tail subproblem" (a more rigorous justification of this step is given in Sec
tion 1.5). In the third equation, we used the definition of Jk+1

, and in the
fourth equation we used the induction hypothesis. In the fifth equation, we
converted the minimization over Ilk to a minimization over Uk, using the
fact that for any function F of x and u, we have

For k lV, we define Jjy(XN) = gN(XN). We will show by induction
that the functions J'k are equal to the functions Jk generated by the DP
algorithm, so that for k = 0, we will obtain the desired result.

Indeed, we have by definition Jjy = JN = gN. Assume that for
some k and all Xk+l, we have Jk+1(Xk+I) = Jk+1(Xk+l). Then, since
Jrk (ILk, Jrk+1), we have for all xk

The argument of the preceding proof provides an interpretation of
Jk(Xk) as the optimal cost for an (N - k)-stage problem starting at state
;X:k and time k, and ending at time N. We consequently call Jk(Xk) the
cost-to-go at state Xk and time k, and refer to Jk as the cost-to-go function
at time k.

where 7' > °is a given scalar. We assume no constraints on Uk. (In reality,
there are constraints, but if we can solve the unconstrained problem and
verify that the solution satisfies the constraints, everything will be fine. ) The
problem is deterministic; that is, there is no stochastic uncertainty. However,
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We n~w go back one stage. We have [ef. Eq. (1.6)]

Sec. 1.8Chap. 1
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Oven 2 Temperature x2
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Initial
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and by substituting the expression already obtained for J l , we have

k = 0,1,

where wo, WI are independent random variables with given distribution,
zero mean

E{wo} = E{Wl} = 0,

. [2 r((1- a)2~r;0 + (1 - a)auo - T)2]
Jo(xo) = mm Uo + 1 ') .

'Uo + ra-

We minimize with respect to Uo by setting the corresponding derivative to
zero. We obtain

The optimal cost is obtained by substituting this expression in the formula
for Jo. This leads to a straightforward but lengthy calculation, which in the
end yields the rather simple formula

2r(1 - a)a( (1 - a)2 xo + (1 - a)auo - T)
0= 2uo + 1 2 .+ra

This completes the solution of the ·problem.

One noteworthy feature in the preceding example is the facility with
which we obtained an analytical solution. A little thought while tracing
the steps of the algorithm will convince the reader that what simplifies the
solution is the quadratic nature of the cost and the linearity of the system
equation. In Section 4.1 we will see that, generally, when the system is
linear and the cost is quadratic, the optimal policy and cost-to-go function
are given by closed-form expressions, regardless of the number of sta.ges N.

Another noteworthy feature of the example is that the optimal policy
remains unaffected when a zero-mean stochastic disturbance is added in
the system equation. To see this, assume that the material's temperature
evolves according to

* r(l- a)a(T - (1- a)2 xo )
IJ,o(Xo)= 1+ra2(1+(1-a)2) .

This yields, after some calculation, the optimal temperature of the first oven:

(1.7)

o 2n1+2ra((1-a)xl+aul-T),

,h(Xl) = min[ui + J2(X2)]
'UI

= ~~n [ui + J2 ((1 - a)xl + aUI) ].

For the next-to-Iast stage, we have ref. Eq. (1.6)]

Figure 1.3.2 Problem of Example 1.3.1. The temperature of the material
evolves according to Xk+l = (1 a)xk + aUk, where a is some scalar with
O<a<1.

* ra(T - (1- a)xl)
{I,1(Xl) = 1 2 .

+ra

Note that this is not a single control but rather a control function, a rule that
tells us the optimal oven temperature Ul = jLi (xI) for each possible state Xl.

By substituting the optimalnl in the expression (1. 7) for J l , we obtain

and by collecting terms and solving for Ul, we obtain the optimal temperature
for the last oven:

This minimization will be done by setting to zero the derivative with respect
to 11,1. This yields

Substituting the previous form of J2 , we obtain

such problems can be placed within the basic framework by introducing a
fictitious disturbance taking a unique value with probability one.

We have N = 2 and a terminal cost 92(X2) = r(x2 - T)2, so the initial
condition for the DP algorithm is [ef. Eq. (1.5)]



p(Wk = 2) = 0.2.P(Wk = 1) = 0.7,
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p(Wk = 0) = 0.1,

We calculate the expectation of the right side for each of the three possible
values of U2:

U2 = 0 : E{-} = 0.7·1 + 0.2·4 1.5,

U2 = 1 : E{-} = 1 + 0.1·1 + 0.2·1 = 1.3,

U2 = 2 : E { .} = 2 + 0.1 . 4 + 0.7 . 1 3.1.

where k = 0,1,2, and Xk, 'Uk, Wk can take the values 0,1, and 2.

Period 2: We compute J 2 (X2) for each of the three possible states. We have

Jk(Xk) = min WEk {'Uk + (Xk +Uk -Wk)2 +Jk+1 (max(O, Xk +'Uk -Wk))},
o:::;'uk:::;'2- x k

uk=O,I,2

Hence we have, by selecting the minimizing U2,

since the terminal state cost is 0 [ef. Eq. (1.5)]. The algorithm takes the form
[cf. Eq. (1.6)]

The system can also be represented in terms of the transition probabilities
Pij (u) between the three possible states, for the different values of the control
(see Fig. 1.3.3).

The starting equation for the DP algorithm is

The terminal cost is assumed to be 0,

The planning horizon N is 3 periods, and the initial stock Xo is O. The demand
Wk has the same probability distribution for all periods, given by

Sec. 1.8Chap. 1The Dynamic Programming A.lgorithm

+ 2rE{wI} ((1 a)xl + aUl - T) + rE{wi}].

J1(xI) min E {ut + r((l - a)xl + aUl + WI - T)2}
til wI

= min [ut + r((l a)xl + aUl - T)2
tq

We also assume that there is an upper bound of 2 units on the stock that can
be stored, i.e. there is a constraint Xk + Uk ::; 2. The holding/storage cost for
the kth period is given by

l'..;x;ample 1.3.2

To illustrate the computational aspects of DP, consider an inventory control
problem that is slightly different from the one of Sections 1.1 and 1.2. In
particular, we assume that inventory Uk and the demand Wk are nonnegative
integers, and that the excess demand (Wk - Xk - Uk) is lost. As a result, the
stock equation takes the form

Comparing this equation with Eq. (1.7), we see that the presence of WI

has resulted in an additional inconsequential term, TE{wi}. Therefore,
the optimal policy for the last stage remains unaffected by the presence
of WI, while JI(XI) is increased by the constant term TE{wi}. It can be
seen that a similar situation also holds for the first stage. In particular,
the optimal cost is given by the same expression as before except for an
additive constant that depends on E{w6} and E{wi}.

If the optimal policy is unaffected when the disturbances are replaced'
by their means, we say that certainty equivalence holds. We will derive
certainty equivalence results for several types of problems involving a linear
system and a quadratic cost (see Sections 4.1, 5.2, and 5.3).

Since E{Wl} = 0, we obtain

and finite variance. Then the equation for Jl ref. Eq. (1.6)] becomes

28

Ij,~ (0) 1.

implying a penalty both for excess inventory and for unmet demand at the
end of the kth period. The ordering cost is 1 per unit stock ordered. Thus
the cost per period is

For X2 = 1, we have

h (1) = min E { U2 + (1 + '1l2 - W2) 2 }
u2=O,1 'w2

= min [U2 + 0.1(1 + U2)2 + 0.7('U2)2 -I- 0.2('1l2 1)2].
u2=O,1
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j1,~(2) O.

j1,;(2) = O.

J l (2) 1.68,

J2(2) = E {(2 W2)2} = 0.1 ·4 + 0.7·1 = 1.1,
lU2

The Dynamic Programming Algorithm

For X2 2, the only admissible control is 'Lt2 = 0, so we have

For Xl = 1, we have

Period 0: Here we need to compute only Jo(O) since the initial state is known

to be O. We have

J l (2) = ,E{ { (2 - W1)2 + h (max(O, 2 tut))}

= 0.1 (4 + J2 (2)) + 0.7(1 -\- J2 (1)) + 0.2· J2 (0)

= 1.G8,

For Xl = 2, the only admissible control is 'Ltl = 0, so we have

Jo(O) = min E {'llO + ('LtO WO)2 -\- h(max(O,'Uo wo))},
uO=O,1,2 Wo

'Lto 0 : E { .} = 0.1 . J 1 (0) + 0.7 (1 + J 1 (0)) + 0.2 (4 + ,It (0)) = 4.0,

110 = 1: E {-}= 1 + 0.1 (1 + J1 (1)) + 0.7 . J 1 (0) + 0.2 (1 + J1 (0)) = 3.7,

110 = 2: E{-} = 2 + 0.1(4 + J1(2)) + 0.7(1 + J1(1)) + 0.2· h(O) = 4.818,

111 = 0: E{·} = 0.1(1 + ,h(l)) + 0.7· J2 (0) + 0.2(1 + h(O)) = 1.5,

1ll 1: E{-} = 1 + 0.1(4 + J2 (2)) + 0.7(1 + J2 (1)) + 0.2· h(O) 2.68,

J 1 (1) 1.5, jti (1) = O.

'Ltl = 0 : E{·} = 0.1 . J2(0) + 0.7(1 + J2(0)) + 0.2(4 -\- J2(0)) 2.8,

'Ltl = 1 : E{-} = 1 + 0.1(1 + J 2 (1)) + 0.7· h(O) + 0.2(1 + J 2 (0)) = 2.5,

1ll = 2: E{·} = 2 + 0.1(4 + J2(2)) + 0.7(1 + J2(1)) -+- 0.2· h(O) = 3.68,

J l (0) = 2.5, jL~ (0) = 1.

Period 1: Again we compute Jl (Xl) for each of the three possible states
Xl = 0,1,2, using the values J2(0), J2(1), ,h(2) obtained in the previous
period. For Xl 0, we have

Sec. 1.3Chap. 1

Stock::; 1

Stock::; 2
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Stock::; 1

Stock =2
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Stock::; 2 0

Stock purchased::; 2
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Stock::; 0

Stock::;1 0

Stock=2 0

Stock purchased::; 0

Figure 1.3.3 System and DP results for Example 1.3.2. The transition proba
bility diagrams for the different values of stock purchased (control) are shown.
The numbers next to the arcs are the transition probabilities. The control
'It = 1 is not available at state 2 because of the limitation Xk -\- Uk ~ 2. Simi
larly, the control u = 2 is not available at states 1 and 2. The results of the
D P algorithm are given in the table.

'U2 = 0: E{-} = 0.1 . 1 + 0.2·1 = 0.3,

'Lt2 = 1 : E{·} = 1 + 0.1· 4 + 0.7·1 = 2.1.

Hence

The expected value in the right side is

Stage 0 Stage 0 Stage 1 Stage 1 Stage 2 Stage 2

Stock Cost-to-go Optimal Cost-to-go Optimal Cost-to-go Optimal
stock to stock to stock to
purchase purchase purchase

----

0 ~3. 7 1 2.5 1 1.3 1

l 2.7 0 1.5 0 0.3 0

2 2.818 0 1.68 0 1.1 0

Stocl< = 0 0 1.0 Stock::; 0

Stock::; 1

Stock::; 2
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(1.10)

optirnal play: either

if XN > 0,
if XN = 0,
if XN < O.

The Dynamic Programming Algorithm

IN-2(0) = max [PdPW + (1 - Pd)P:, pw (Pd + (1 - Pd)Pw) + (1- Pw)p~)}

= pw (Pw + (Pw + Pd)(l Pw))

Also, given IN-l(XN-1), and Eqs. (1.8) and (1.9) we obtain

IN-1(1) = max[pd + (1 - Pd)Pw, P111 + (1 Pw)Pw]

Pd + (1 - Pd)Pw; optimal play: timid

IN-1(0) = pw; optimal play: bold

J N -1 ( -1) = P;v; optimal play: bold

IN-l(XN-1) = 0 for XN-1 < -1; optimal play: either.

Example 1.3.4 (Finite-State Systems)

We mentioned earlier (d. the examples in Section 1.1) that systems with
a finite number of states can be represented either in terms of a discrete
time system equation or in terms of the probabilities of transition between
the states. Let us work out the DP algorithm corresponding to the latter
caSe. We assume for the sake of the following discussion that the problem
is stationary (i.e., the transition probabilities, the cost per stage, and the
control constraint sets do not change from one stage to the next). Then, if

and, as noted in the preceding section, it includes points where pw < 1/2.

and that if the score is even with 2 games remaining, it is optirnal to play
bold. Thus for a 2-game match, the optimal policy for both periods is to
play timid if and only if the player is ahead in the score. The region of pairs
(Pw,Pd) for which the player has a better than 50-50 chance to win a 2-game
match is

In this equation, we have IN(O) = pw because when the score is even after N
games (XN = 0), it is optimal to play bold in the first game of sudden death.

By executing the DP algorithm (1.8) starting with the terminal condi
tion (1.10), and using the criterion (1.9) for optimality of bold play, we find
the following, assuming that Pd > pw:

The dynamic programming recursion is started with

Sec. 1.8

(1.9)

(1.8)

Chap. 1

fL~(2) = O.

fL~(l) 0,

fL~(O) = 1.

Jk+1 (Xk) - Jk+1 (Xk - 1)
Jk+1(Xk + 1) Jk+1(Xk - 1)·

The Dynamic Programming Algorithm

Jo(l) = 2.7,

Jo(O) = 3.7,

Jo(2) = 2.818,

Pw "
-/

Pd

JdXk) = max [PdJk+1 (Xk) + (1 - Pd)Jk+1(Xk - 1),

PwJk+1(Xk + 1) + (1 - Pw)Jk+I(Xk -1)].

or equivalently, if

The maximum above is taken over the two possible decisions:

(a) Timid play, which keeps the score at Xk with probability Pd, and changes
;r;k to ;r;k 1 with probability 1 Pd.

(b) Bold play, which changes Xk to Xk + 1 or to Xk - 1 with probabilities
Pw or (1- Pw), respectively.

It is optimal to play bold when

Consider the chess match example of Section 1.1. There, a player can select
timid play (probabilities Pd and 1 - Pd for a draw or loss, respectively) or
bold play (probabilities pw and 1 - Pw for a win or loss, respectively) in each
game of the match. We want to formulate a DP algorithm for finding the
policy that maximizes the player's probability of winning the match. Note
that here we are dealing with a maximization problem. We can convert the
problem to a minimization problem by changing the sign of the cost function,
but a simpler alternative, which we will generally adopt, is to replace the
minimization in the DP algorithm with maximization.

Let us consider the general case of an N-game match, and let the state
be the net score, that is, the difference between the points of the player
minus the points of the opponent (so a state of 0 corresponds to an even
score). The optimal cost-to-go function at the start of the kth game is given
by the dynamic programming recursion

Example 1.3.3 (Optimizing a Chess Match Strategy)

Thus the optimal ordering policy for each period is to order one unit if the
current stock is zero and order nothing otherwise. The results of the DP
algorithm are given in tabular form in Fig. 1.3.3.

If the initial state were not known a priori, we would have to compute
in a similar manner J o(l) and J o(2), as well as the minimizing Uo. The reader
may verify (Exercise 1.2) that these calculations yield
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(a) Show that the problem can be formulated as a shortest path problem, and
write the corresponding DP algorithm.

(b) Suppose he is at location i on day k. Let

where zdenotes the location that is not equal to i. Show that if Rb ::::; 0 it
is optimal to stay at location i, while if R1 2: 2c, it is optimal to switch.

(c) Suppose that on each day there is a probability of rain Pi at location 'l
independently of rain in the other location, and independently of whether
it rained on other days. If he is at location i and it rains, his profit for the
day is reduced by a factor (J'i. Can the problem still be formulated as a
shortest path problem? Write a DP algorithm.

(d) Suppose there is a possibility of rain as in part (c), but the businessman
receives an accurate rain forecast just before making the decision to switch
or not switch locations. Can the problem still be formulated as a shortest
path problem? Write a DP algorithm.
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3.1 CONTINUOU8-TIl\!IE OPTIMAL CONTROL

where the functions 9 and h a.re continuously differentiable with respect to
~r;, and 9 is continuous with respect to u.

107

:b(t) = u(t),

for all t E [0, T].

for alIt E [0, T].

o :S u(t) :S 1,

~b (t) = X2(t),

lu(t)1 ::; 1,

h(x(T)) = !:r:I(T) _XI!2 + IX2(T) _x21 2
,

g(x(t),u(t)) = 0, for all t E [0,1'].

Continuo llS-Time Optimal Control

subject to

x(t) = ju(t)x(t),

A producer with production rate x(t) at time t may allocate a portion u(t)
of his/her production rate to reinvestment and 1 - ?t(t) to production of a
storable good. Thus x(t) evolves according to

The initial production rate x(O) is a given positivenurnber.

There are many variations of the problem; for example, the final posi
tion and/or velocity may be fixed. These variations can be handled by various
reformulations of the general continuous-time optimal control problem, which
will be given later.

,f' (1 ~ n(t))x(t)dl

Example 3.1.2 (Resource Allocation)

where j > 0 is a given constant. The producer wants to maximize the total
amount of product stored

and the problem fits the general framework given earlier with cost functions
given by

The corresponding continuous-time system is

subject to the control constraint

A unit mass moves on a line under the influence of a force '/1,. Let Xl (t)
and X2(t) be the position and velocity of the mass at time t, respectively.
From a given (Xl (0), X2 (0)) we want to bring the mass "near" a given final
position-velocity pair (Xl, X2) at time T. In particular, we want to

Example 3.1.1 (lV!otion Control)

Sec. 3.1

(3.1)

Chap. 3

°::; t ::; T,x(t) = f(x(t),u(t)),

Deterministic Continuous-Time Optimal Control

x(o) : given,

where ~r;(t) E 3tn is the state vector at time t, j;(t) E 3tn is the vector of first
order time derivatives of the states at time t, u(t) E U c 3tm is the control
vector at time t, U is the control constraint set, and T is the terminal time.
The components of f, ::C, i~, and 'u will be denoted by fi, Xi, Xi, and Ui,
respectively. Thus, the system (3.1) represents the n first order differential
equations

h(x(T)) +[' g(x(t),1t(t))dt,

dXi(t). ( )
~ = Ii l:(t),U(t) , i = 1, ... ,no

We view j;(t), l;(t), and u(t) as column vectors. We assume that the system
function Ii is continuously differentiable with respect to X and is continuous
with respect to U. The admissible control functions, also called control
t'f'ajectoTies, are the piecewise continuous functions {u(t) I t E [0, Tn with
u(t) E U for all t E [0, T).

We should stress at the outset that the subject of this chapter is
highly sophisticated, and it is beyond our scope to develop it according
to high standards of mathematical rigor. In particular, we assume that,
for any admissible control trajectory {u( t) I t E [0, Tn, the system of
differential equations (3.1) has a unique solution, which is denoted {xu(t) I
f; E [0, T)} and is called the corresponding state tmjectory. In a more
rigorous treatment, the issue of existence and uniqueness of this solution
would have to be addressed more carefully.

We want to find an admissible control trajectory {v.(t) It E [0, Tn,
which, together with its corresponding state trajectory {x(t) I t E [0, Tn,
minimizes a cost function of the form

'Ve consider a continuous-time dynamic system

In this chapter, we provide an introduction to continuous-time determin
istic optimal control. We derive the analog of the DP algorithm, which is
the Hamilton-Jacobi-Bellman equation. Furthermore, we develop a cele
brated theorem of optimal control, the Pontryagin Minimum Principle and
its variations. We discuss two different derivations of this theorem, one of
which is based on DP. We also illustrate the theorem by means of examples.
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which is equal to

JW9

Figure 3.Ll Problem of finding a
curve of minimum length from a given
point to a given line, and its for
mulation as a calculus of variations
problem.

k = 0,1, ,N,

'. k = 0, 1, , N,

T
/5= N'

Xk x(k/5),

Uk = ll(k/5),

Length =: Iifi + (u(t»2dt

\ I
~

\(t) :'"
I Given
I Line
I

The Hamilton-Jacobi-BelIman Equation

)«t) =: u(t)

o

a
Given/
point

]*(t, x) : Optimal cost-to-go at time t and state::r

for the discrete-time approximation.

and the cost function by

N-]

h(;I.:N) + l:: g(Xk,Uk;)' I).
k=()

J*(t,:.r;) : Optima.l cost-ta-go a.t time t and state x

for the continuous-time problem,

We now apply DP to the discrete-time approximation. Let

and we approximate the continuous-time system by

Vlfe denote

We will now derive informally a partial differential equation, which is sat
isfied by the optimal cost-to-go function, under certain assumptions. This
equation is the continuous-time analog of the DP algorithm, and will be mo
tivated by applying DP to a discrete-time approximation of the continuous
time optimal control problem.

Let us divide the time horizon [0, T] into N pieces using the discretiza
tion interval

Sec. 3.2

3.2 THE HAMILTON-JACOBI-BELLMAN EQUATION
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x(O) = a.xCt) = 1l(t),

Detenninistic ConUnuous-Time Optimal Control

Our problem then becomes

minimize 1T
)1 + (X(i))2 dl

subject to x(O) = a.

To refonnulate the problem as a continuous-time optimal control problem,
we introduce a control'll and the system equation

)1 + (X(t))2 dt.

This is a problem that fits our continuous-time optimal control framework.

minimize 1" )1 + ("(i))2 dl,

T'he length of the entire curve is the integral over [0, T] of this expression, so
the problem is to

Caleulus of variations problems involve finding (possibly multidimensional)
curves x(t) with certain optimality properties. They are among the most
celebrated problems of applied mathematics and have been worked on by
many of the illustrious mathematicians of the past 300 years (Euler, Lagrange,
Bernoulli, Gauss, etc.). We will see that calculus of variations problems can
be reformulated as optimal control problems. We illustrate this reformulation
by a simple example.

Suppose that we want to find a minimum length curve that starts at
a given point and ends at a given line. The answer is of course evident, but
we want to derive it by using a continuous-time optimal control formulation.
Without loss of generality, we let (0, a) be the given point, and we let the
given line be the vertical line that passes through (T, 0), as shown in Fig. 3.1.1.
Let also (t, :r;(t)) be the points of the curve (0 :S t :S T). The portion of the

curve joining the points (t, x(t») and (t + dt, x(t + dt») can be approximated,
for small dt, by the hypotenuse of a right triangle with sides dt and x(t)dt.
Thus the length of this portion is

"'-J.".VLU".I!.n,'V 3.1.3 (Calculus of Variations Problems)
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we obtain the following equation for the cost-to-go function J*(t, x):

Assuming that }* has the required differentiability properties, we expand
it into a first order Taylor series around (ko, x), obtaining

}*((k + 1)· O,X + j(x,u). 0) = }*(ko,x) + "Vt}*(ko,x). 0

+ "VxJ*(k6, x)' j(x, u) . 0 + 0(0),

111

(3.2)
(3.3)

for all t, x,

for all t, x.

for all :r;.V(T, x) = h(x),

V(t,:1;) = J*(t,x),

The Hamilton-Jacobi-Bellman Equation

0= min[g(x,u) + "VtV(t,x) + "VxV(t,x)'j(:1;,u)],
'!LEU

I.e.,

g(x(t),ft(t)) + ~~(V(t,x(t))),

0<:: 1"'g(x(t), il(t))dt + V(1', x(1')) V(O,x(O)).

Furthermore, the control trajectory {u*(t) I t E [0, T]} is optimal.

o:s; g(x(t),ft(t)) + "VtV(t,x(t)) + "VxV(t,x(t))'j(:i;(t),u(t)).

V(O,x(O)) <:: h(x(1')) +,fg(x(t),l,(t))dt,

Suppose also that JL*(t, x) attains the minimum in Eq. (3.2) for all t
and x. Let {x*(t) It E [O,TJ} be the state trajectory obtained from
the given initial condition x(O) when the control trajectory 1L*(t) =
p*(t,x*(t)), t E [O,T] is used [that is, x*(O) = :c(O) and for all t E

[O,T], ;i;*(t) j(x*(t),p*(t,x*(t))); we assume that this differential
equation has a unique solution starting at any pair (t,:£) and that the
control trajectory {p,*(t,x*(t)) It E [O,TJ} is piecewise continuous as
a function of t]. Then V is equal to the optimal cost-to-go function,

Proposition 3.2.1: (Sufficiency Theorem) Suppose V(t, :1;) is a
solution to the HJB equation; that is, V is continuously differentiable
in t and :.c, and is such that

Proof: Let {{l(t) I t E [0, Tn be any admissible control trajectory and let
{x(t) I t E [0, Tn be the corresponding state trajectory. From Eq. (3.2) we
have for all t E [0, T]

where djdt(·) denotes total derivative with respect to t. Integrating this
expression over t E [0, T], and using the preceding inequality, we obtain

Thus by using the terminal condition V(T, x) = h(::c) of Eq. (3.3) and the
initial condition X(O) = :1;(0), we have

Using the system equation i: (t) = j (x(t), ft (t) ), the right-hand side of the
above inequality is equal to the expression

Sec. 3.2Chap. 3

for all t, x,

for all t, x,

Deterministic Continuous-Time Optimal Control

l~m J*(ko, x) = J*(t, x),
k-.oo, 0-.0, k8=t

o min[g(x;,u) + "VtJ*(t,x) + "VxJ*(t,x)'j(x,u)],'!LEU
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'rhe DP equations are

J*(No,x) = h(x),

}*(k6, :1;) = min [g(:1;, u)·o+}* ((k+1).0, x+ j(x, U)'6)], k = 0, ... , N-1.ltEU

}*(k6,:1;) = IYlin[g(x,u). 0 + }*(ko,x) + "Vt}*(ko,x). 0
ltEU

+ "Vx}*(ko, x)' j(x, u) . 0 + 0(0)].

where 0(0) represents second order terms satisfying lim8--+0 o(0) j 0 = 0,
"V t denotes partial derivative with respect to t, and "Vx denotes the n
dilnensional (column) vector of partial derivatives with respect to x. Sub
stituting in the DP equation, we obtain

with the boundary condition J*(T, x) = h(x).
This is the Hamilton-Jacobi-Bellman (HJB) equat'ion. It is a partial

clifferential equation, which should be satisfied for all time-state pairs (t, x)
by the cost-to-go function J*(t, x), based on the preceding informal deriva
tion, which assumed among other things, differentiability of J*(t, x:). In fact
we do not Imow a priori that J*(t, x) is differentiable, so we do not know
if J* (t,:.c) solves this equation. However, it turns out that if we can solve
the HJB equation analytically or computationally, then we can obtain an
optimal control policy by minimizing its right-hand-side. This is shown in
the following proposition, whose statement is reminiscent of a correspond
ing statement for discrete-time DP: if we can execute the DP algorithm,
which may not be possible due to excessive computational requirements,
we can find an optimal policy by minimization of the right-hand side.

Canceling J*(ko,x) from both sides, dividing by 0, and taking the limit as
() -+ 0, while assuming that the discrete-time cost-to-go function yields in
the limit its continuous-time counterpart,



For a given initial time t and initial state x, the cost associated with this
policy can be calculated to be

113

O. The

if x> T - i,

if x < -(T - i),

if Ixl :::; T - t,

Figure 3.2.1 Optimal cost-to-go func

tion J* Ct, x) for Example 3.2.1.

xT-t

J*(t,x)

o

h(x(T»),

" fh(x-(T-t»)

J (t,x) = l ~(x+ (T - t))

The Hamilton-Jacobi-Bellman Equation

-(T- t)

and can be similarly verified to be a solution of the HJB equation.

where h is a nonnegative differentiable convex function with h(O)
corresponding optimal cost-to-go function is

0= min [1 + sgn(x)· 'lL] max{O, 13::1- (T - t)},
l'ul9

\7 t J*(t,x) = max{ O,lxl- (T - t)},

\7 xJ* (t, x) = sgn(x) . max{ 0, lxl - crt - i)}.

which can be seen to hold as an identity for all (i,x). Purthermore, the min
imum is attained for'll = -sgn(x): We therefore conclude based on Prop.
3.2.1 that J*(t,x) as given by Eq. (3.7) is indeed the optimal cost-to-go func
tion, and that the policy defined by Eq. (3.6) is optimal. Note, however,
that the optimal policy is not unique. Based on Prop. 3.2.1, any policy for
which the minimum is attained in Eq. (3.8) is optimal. In particular, when
IX(i)1 :s; T - i, applying any control from the range [-1,1) is optimal.

The preceding derivation generalizes to the case of the cost

Substituting these expressions, the HJB Eq. (3.4) becomes

This function, which is illustrated in Fig. 3.2.1, satisfies the terrninal condition
(3.5), since J*(T,x) = (1/2)x 2

. Let us verify that this function also satisfies
the HJB Eq. (3.4), and that'll = -sgn(x) attains the minimum in the right
hand side ofthe equation for all t and x. Proposition 3.2.1 will then guarantee
that the state and control trajectories corresponding to the policy p* (l, x) are
optimal.

Indeed, we have

Sec. 3.2

(3.4)

(3.5)

(3.7)

(3.6)

ClJap.3

for all t, x,

for all t, x.V(t,x) = J*(t,x),

{

I if x < 0
p*(t,x) = -sgn(x) = 0 if x = 0,

-1 if x> O.

* 1( { )2J (t, x) = 2" max 0, Ixl- (T - t)} .

Deterministic Continuous-Time Optimal Control

0= min [\7 t Vet, x) + \7 x V(t, x)'lL]
lul:::;l '

Example 3.2.1

The HJB equation here is

with the terminal condition

v (0, x(O)) = h (x' (T)) + foT g(x"(tj, u' (t)) dt,

There is an evident candidate for optimality, namely moving the state
towards 0 as quickly as possible, and keeping it at 0 once it is at O. The
corresponding control policy is

To illustrate the HJB equation, let us consider a simple example involving
the scalar system

x(t) = 'lL(t),

with the constraint 1'lL(t) I :s; 1 for all t E [0, TJ. The cost is

112

Q.E.D.

!f we us: :ll* (t) and x* (t) in place of 11(t) and x( t), respectively, the preceding
mequaJlt18S becomes equalities, and we obtain

:11erefore the cost corresponding to {u*(t) It E [O,T]} is V(O,x(O)) and
IS no larger than the cost corresponding to any other admissible. control
trajectory {u(t) It E [0, Tn· It follows that {u*(t) It E [0, T]} is optimal
and that

V(O,x(O)) = J*(O,x(O)).

We now note that the preceding argument can be repeated with any initial
time t E [0, TJ and any initial state x. We thus obtain



or

2B
I
K(t)x + 2R'l.L = 0
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(3.15)

for all t, ;t.

for all :r;.J*(T,x) = hex),

J1*(t, x) = arg min F(t, x, u),
uEU

argmin [g(x*(t),u) + \lxJ*(t,:r:*(t))'j(:r*(t),'1L)].
uEU

The Pontryagin lVfinimum Principle

u*(t)

Then

Lernma 3.3.1: Let F(t, x, u) be a continuously differentiable function
of t E ai, x E ain , and 'It E aim, and let U be a convex subset of aim.
Assume that JL*(t, x) is a continuously differentiable function such that

Vife argued that the optimal cost-to-go function J* (t, :r;) satisfies this equa
tion under some conditions. Furthermore, the sufficiency theorem of the
preceding section suggests that if for a given initial state :r;(O), the control
trajectory {u*(t) It E [0, Tn is optimal with corresponding state trajectory
{:r;*(t) It E [O,T]}, then for all t E [O,T],

Note that to obtain the optimal control trajectory via this equation, we
do not need to know \lxJ* at all values of x and t; it is sufficient to know
\1xJ* at only one value of x for each ~~, that is, to know only \lxJ* (t, :r:* (t)).

The Minimum Principle is basically the preceding Eq. (3.16). Its ap
plication is facilitated by streamlining the computation of \l:D J* (t, ~x;* (t)) .
It turns out that we can often calculate \lxJ*(t,~r*(t)) along the optimal
state trajectory far more easily than we can solve the HJB equation. In
particular, \lxJ* (t, x* (t)) satisfies a certain differential equation, called the
adjo'int equation. We will derive this equation informally by differentiat
ing the HJB equation (3.14). We first need the following lemma, which
indicates how to differentiate functions involving minima.

0= min[g(x,'U) + \ltJ*(t,x) + \lxJ*(t,x)'j(x,u)], for all t,x, (3.14)
uEU -

Recall the HJB equation

3.3.1 An Informal Derivation Using the HJB

In this section we discuss the continuous-time and the discrete-time versions
of the Minimum Principle, starting with a DP-based informal argument.

Sec. 3.3
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K(T) = QT.

Deterministic Continuous-Time Optimal Control

Reversing the argument, we see that if K(t) is a solution of the Riccati
equation (3.12) with the boundary condition (3.13), then Vet, x) = Xl K(t)x
is a solution of the HJB equation. Thus, by using Prop. 3.2.1, we conclude
that the optimal cost-to-go function is

J*(t,x) = xIK(t)x.

F'urthermore, in view of the expression derived for the control that minimizes
in the right-hand side of the HJB equation [ef. Eq. (3.11)], an optimal policy
is

~L* (t, :x:) = _R- 1 B'K(t):r.

'It = _R- 1 B IK(t)x. (3.11)

Substituting the minimizing value of u in Eq. (3.10), we obtain

o :x:
1
(k(t) + K(t)A + AIK(t) - K(t)BR- 1 B IK(t) + Q)x, for all (t, x).

Therefore, in order for Vet, x) = Xl K(t)x to solve the HJB equation,
K (t) must satisfy the following matrix differential equation (known as the
contimunts-time Riccati equation)

k(t) = -K(t)A AI K(t) + K(t)BR- 1 B IK(t) Q (3.12)

with the terminal condition

Consider the n-dimensional linear system

x(t) = Ax(t) + Bu(t),

where A and B are given matrices, and the quadratic cost

x(T)'Ql'x(T) +l'(x(t)'Qx(t) + v(t)'Rv(t)) dt,

where the matrices QT and Q are symmetric positive semidefinite, and the
rnatrix R is symmetric positive definite (Appendix A defines positive definite
and semidefinite matrices). The HJB equation is

0= min [:r
I
Q:r+1L

I
R1L+'7tV(t,x)+'7 x V(t,x)/(Ax+Bu)], (3.9)

'ltE3c fn -

V(T,x) = :t:'QTX.

Let us try a solution of the form

Vet, x) = Xl K(t):x;, K(t) : n x n symmetric,

and see if we can solve the HJB equation. We have '7 x V (t, x) = 2K(t)x and
'7 LV(t, :c) = Xl k(t):x:, where k(t) is the matrix with elements the first order
derivatives of the elements of K(t) with respect to time. By substituting
these expressions in Eq. (3.9), we obtain

o= min [Xl Qx + '1/Ru + Xl i((t)x + 2x l K(t)Ax + 2x l K(t)Bu]. (3.10)
'It

The minimum is attained at a 'U for which the gradient with respect to u is
zero, that is,

!~:x:a:nllpj[e 3.2.2 (Linear-Quadratic Problelns)
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iInplying that

(3.19)
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(3.18)

(3.17)

BIn)BXl

Bin
aXn

5!.- (V tJ* (t, x*(t))).
elt

pet) = VxJ*(t,x*(t)),

The Pontryagin Minimum Principle

Thus, by denoting

Similarly, the term

in Eq. (3.18) is equal to the total derivative

0= VrtJ*(t,x) + V;t J*(t,x)'J(l;,IL*(t,X:)),

where V xf (x, ft* (t, x)) is the matrix

with the partial derivatives evaluated at the argument (x, 1),* (t, x) ) .
The above equations hold for all (t, :r;). Let us specialize them along

an optimal state and control trajectory {(x*(t),u*(t)) \ t E (O,Tn, where

u*(-t) = IL*(t,X*(t)) for all t E (O,Tl. We have for all t,

x*(t) = J(x* (t), u* (t)),

5!.- (VxJ* (t, x* (t))).
elt

V;t J* (t, x*(t)) + V~xJ* (t, x* (t)) f (x* (t), 'U*(t))

so that the term

in Eq. (3.17) is equal to the following total derivative with respect to t

and we rely on Lemma 3.3.1 to disregard the terms involving the derivatives
of jt*(t, x) with respect to t and x. We obtain for all (t, x),

0= Vxg(X,fL*(t,X)) + V;tJ*(t,x) + V~xJ*(t,:x;)f(:r,IL*(t,:I;))

+ Vxf(x, jt*(t, x))VxJ*(t, x),

We differentiate both sides of the fIJB equation with respect to x and
with respect to t. In particular, we set to zero the gradient with respect to

:1; and t of the function

g(x, fL*(t, x)) + VtJ*(t,x) + VxJ*(t,:c)' f(:1;,p,*(t,:r)),

Sec. 3.3Cl1ap. 3

for all Liy,

for all t, x,

for all u E U,

Deterministic Continuolls-Time Optimal Control

V t {~D F(-t, x, u)} = V tF(t, x, p,*(t, x)),

V x {min F(t, x, u)} = V xF(t, x, /-L*(t, .T)) , for all t, x.
uEU

[Note: On the left-hand side, V t {-} and Vx {-} denote the gradients
of the function G(t,x) = minuEuF(t,x,u) with respect to t and x,
respectively. On the right-hand side, V t and V x denote the vectors of
partial derivatives of F with respect to t and x, respectively, evaluated
at (t,x,fL*(t,X)).]

Consider the HJB equation (3.14), and for any (t, x), suppose that
p,*(t, :r;) is a control attaining the minimum in the right-hand side. We
~nake the restrictive assumptions that U is a convex set, and that f-t*(t,x)
IS continuously differentiable in (t,x), so that we can use Lemma 3.3.1.
(We note, however, that alternative derivations of the Minimum Principle
do not require these assumptions; see Section 3.3.2.)

Q.E.D.

Vrt*(y)VuF(y, Jt*(y)) = O.

V {minF(y,u)} = VyF(Y,fL*(Y)) + V;t*(y)VuF(y,/-t*(y)).
uEU

[see Eq. (B.2) in Appendix B]. Now by Taylor's Theorem, we have that
when y changes to y + 6y, the minimizing /-t*(y) changes from jt*(y) to
some vector p*(y + 6y) = f),*(Y) + Vp,*(y)'6y + o(1l6yl\) of U, so

We will prove the result by showing that the second term in the right
hand side above is zero. This is true when U = 3{m, because then jt*(y)
is an unconstrained minimum of F(y, u) and VuF(y, ft*(y)) = O. More
generally, for every fixed y, we have

Proof: For notational simplicity, denote y = (t,x), F(y,u) = F(t,x,u),
and fL*(Y) = IL*(t, x). Since minuEu F(y,u) = F(y,;L*(y)),
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We state the Minimum Principle in terms of the Hamiltonian function.

H(x, u,p) = g(:1:, u) +p' f(x, 'u).

Note that both the system and the adjoint equations can be compactly
written in terms of the Hamiltonian as

119

for all t E [0, T].

x* (0) = ':1;(0) : given.

H(x*(t),u*(t),p(t)) = 0,

x*(t) = f(x*(t),u*(t)),

The Pontryagin l\!Iinimum Principle

Proposition 3.3.1: (Minimum Principle) Let fa* (t) It E [0, TJ}
be an optimal control trajectory and let {':1;* (t) I t E [0, TJ} be the
corresponding state trajectory, i.e.,

with the boundary condition

p(T) = Vh(x*(T)),

u*(t) = argminH(x*(t),u,p(t)).
ttEU

where h(·) is the terminal cost function. Then, for all t E [0, T],

p(t) = -VxH(x*(t),'It*(t),p(t)),

Let also p(t) be the solution of the adjoint equation

Furthermore, there is a constant 0 such that

and poet) is constant by Eq. (3.22). We should note here that the Hamil
tonian function need not be constant along the optimal trajeetory if the
system and cost are not time-independent, contrary to our assumption thus
far (see Section 3.4.4).

It is important to note that the Minimum Principle provides Tu-;ces

SetTy optimality conditions, so all optimal control trajectories satisfy these
conditions, but if a control trajectory satisfies these conditions, it is not
necessarily optimal. Further analysis is needed to guarantee optimality.
One method that often works is to prove that an optirnal control trajec
tory exists, and to verify that there is only one control trajectory satisfying
the conditions of the Minimum Principle (or that all control trajectories
satisfying these conditions have equal cost). Another possibility to con
clude optimality arises when the system function f is linear in (':1;, 'It), the

All the assertions of the Minimum Principle have been (informally)
derived earlier except for the last assertion. To see why the Hamiltonian
fLmction is constant for t E [0, T] along the optimal state and control trajec
tories, note that by Eqs. (3.14), (3.19), and (3.20), we have for all t E [0, T]

H(x*(t),u*(t),p(t)) = -VtJ*(t,x*(t)) = -poet),

Sec. 3.3

(3.23)

(3.22)

(3.21 )

(3.20)

Chap. 3

for all t E [0, T].

(3.24)

for all x,

p(t) = -VxfI(x*(t),u*(t),p(t)).

for all t E [0, T].

p(T) = Vh(x*(T)).

Po (t) = V t J * (t, x *(t)) ,

J*(T,x) =h(x),

po(t) = constant,

Dei;erministic Continuous-Time Optimal Control

;i;*(t) VpH(x*(t),u*(t),p(t)),

'IL* (t) = arg min [g(x* (t), u) + p(t)' f(x*(t), u)],
'/lEU

Harniltonian Formulation

Motivated by the condition (3.24), we introduce the Hamiltonian function
mapping triplets (;r;, u, p) E ~n x ~m X ~n to real numbers and given by

Thus, we have a terminal boundary condition for the adjoint equation
(:3.21).

To summarize, along optimal state and control trajectories x* (t),
n*(t), t E [0, T], the adjoint equation (3.21) holds together with the bound
ary condition (3.23), while Eq. (3.16) and the definition of p(t) imply that
'11,* (t) satisfies

we have, by differentiation with respect to x, the relation VxJ*(T,x)
Vh(':1;), and by using the definition VxJ*(t,x*(t)) = p(t), we obtain

Equation (3.21) is a system of n first order differential equations
known as the adjo'int equation. From the boundary condition

po(t) = °

pet) = -Vxf(x*(t),u*(t))p(t) - Vxg(x*(t),u*(t))

or equivalently,

and Eq. (3.18) becomes

Eq. (3.17) becomes
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minimizes

Let us apply the preceding necessary conditions. The Hamiltonian is

JL21

for all t E [0, T].

for all t E [0, T]'

x(O) > 0 : given.

for all t E [0, TJ.x*(t) = a,

u*(t) = argmin~ = 0,
uE3"~

The Pontryagin l\!Iinimum Princ;iple

o :S u(t) :S 1,

xCt) = 'Y11.(t)x(t),

The Hamiltonian is

subject to

Consider the optimal production problem (Example ~!.1.2). We want to max-

pU) = -,u* (t)p(t) - 1 + 'u* (t),

peT) = 0.

Example 3.3.2 (Resource Allocation Continued)

Maximization of the Hamiltonian over u E [0, 1] yields

.f.T

(1 - ,,(t) )x(i)dt

* { 0 if p(t) < l,
u (t) = 1 if p(t) 2: ~.

The adjoint equation is

We thus obtain the (a priori obvious) optimal solution, which is the horizontal
line passing through (0, a). Note that since the Minimum Principle is only a
necessary condition for optimality, it does not guarantee that the horizontal
line solution is optimal. For such a guarantee, we should invoke the linearity
of the system function, and the convexity of the cost function. As rnentioned
(but not proved) earlier, under these conditions, the Minimum Principle is
both necessary and sufficient for optimality.

Since peT) = 0, for t close to T we will have pet) < 1/, and u* (t) = O.
Therefore, for t near T the adjoint equation has the form p(t) = -] and p(t)
has the form shown in Fig. 3.3.1.

imize

H(x, u,p) = (1 - 11.)x + p,'ax.

Therefore we have x* (t) = °for all t, which implies that x* (t) is constant.
Using the initial condition x* (0) = a, it follows that

so minimization of the Hamiltonian gives

Sec. 3.3Chap. 3

x(O) = a.

peT) = O.

for all t E [0, T],

peT) = Vh(x*(T)).

x(t) = 'aCt),

~x;* (0) = x(O),

Deterministic Continuous-Time Optimal Control

pet) = 0,

pet) = 0,

and the adjoint equation is

It follows that

subject to

to express u*(t) in terms of x*(t) and pet). We then substitute the result
into the system and the adjoint equations, to obtain a set of 2n first order
diflerential equations in the components of x*(t) and pet). These equations
can be solved using the split boundary conditions

E:x:anrlplle 3.3.1 (Calculus of Variations Continued)

Consider the problem of finding the curve of minimum length from a point
(0, a) to the line {(T, y) lyE ~}. In Section 3.1 , we formulated this problem
as the problem of finding an optimal control trajectory {u(t) I t E [0, Tn that

11* (t) = arg min H (x*(t), 11, p(t)),
1lEU

H(x, 11.,p) = VI + 11.2 + p11.,

The number of boundary conditions (which is 2n) is equal to the number
of differential equations, so that we generally expect to be able to solve
these differential equations numerically (although in practice this may not
be simple).

Using the Minimum Principle to obtain an analytical solution is pos
sible in many interesting problems, but typically requires considerable cre
ativity. We give some simple examples.

constraint set U is convex, and the cost functions hand g are convex.
Then it can be shown that the conditions of the Minimum Principle are
both necessary and sufficient for optimality.

The Minimum Principle can often be used as the basis of a numerical
solution. One possibility is the two-point boundary problem method. In
this method, we use the minimum condition
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(3.26)

(3.25)-bp(t).

for all t E [0, T]'

The Pontryagin l\!linimum Principle

where ~ = p(O) is an unknown parameter. The last two equations yield

This differential equation, together with the given initial condition 2;* (0)
x(O) and the terminal condition

1 2
H(x, u,p) = -'u + p(ax + bu),

2

x*(T) = e-aT~,
q

i;* (t) = ax* (t) - b2 p(t).

p(T) qx* (T).

Also, from the adjoint equation, we see that

We will extract the optimal solution from these conditions using two different
approaches.

In the first approach, we solve the two-point boundary value problem
discussed following Prop. 3.3.1. In particular, by eliminating the control from
the system equation using Eq. (3.25), we obtain

p(t) = -ap(t),

The optimal control is obtained by minimizing the Hamiltonian with respect
to u, yielding

with the terminal condition

and the adjoint equation is

where a and b are given scalars. We want to find an optirnal control over a
given interval [0, T] that minimizes the quadratic cost

where q is a given positive scalar. There are no constraints on the control, so
we have a special case of the linear-quadratic problem of Example ~1.2.2. We
will solve this problem via the Minimum Principle.

The Hamiltonian here is

Sec. 3.3Chap. 3

Figure 3.3.1 Form of the adjoint variable
p(t) for t near T in the resource allocation
example.

Figure 3.3.2 Form of the adjoint variable
p(t) and the optimal control in the resource
allocation example.

T

T

T

p(t)

/

u'(t}=o

/

T - 1/y

T- 1/y

T - 1/y

Deterministic ConUnuous-Time Optimal Control

,/
11 (t) =1

p(t)

u'(t)

o

o

o

x(t) = ax(t) + bu(t),

p(t) = -IP(t)

Thus, near t = T, p(t) decreases with slope -1. For t = T - ]/''1, p(t)
is equal to 1/1 , so u*(t) changes to u*(t) = 1. It follows that for t < T-l/I ,
the adjoint equation is

or

p(t) e--yt . constant.

Piecing together p(t) for t greater and less than T - ]/''1, we obtain the form
shown in Fig. 3.3.2 for p(t) and u*(t). Note that if T < 1/1 , the optimal
control is 7L * (t) = 0 for all t E [0, TJ; that is, for a short enough horizon, it
does not pay to reinvest at any time.

Exarnple 3.3.3 (A Linear-Quadratic Problem)

Consider the one-dimensional linear system

1/y
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which by substitution in the system equation, yields

By combining the last two relations, we have

125

(3.29)

(3.28)

(3.27)

h(x(T)) + y(T),

yet) = g(x(t), 11,(t)).

h(x(T)) +.r g(x(t), u(/) )dt

The Pontryagin Minimum Principle

The convexity assumption is satisfied if U is a convex set and f is
linear in 11, [and 9 is linear in 'lJ, in the case where there is an integral cost
of the form (3.27), which is reformulated as a terminal cost by using the
additional state variable y of Eq. (3.28)]. Thus the convexity assumption is
quite restrictive. However, the Minimum Principle typically holds without
the convexity assumption, because even when the set D = {f(x, u) 1'/1, E U}
is nonconvex, any vector in the convex hull of D can be generated by
quick alternation between vectors from D (for an example, see Exercise
3.10). This involves the complicated mathematieal concept of mndomized
or relaxed controls and will not be discussed further.

Convexity Assumption: For every state x the set

h(x(T)).

is convex.

D = {f(x,11,) 111, E U}

and the Minimum Principle corresponding to this terminal cost yields the
Minimum Principle for the general cost (3.27).

We introduce some assumptions:

The cost then becomes

can be reformulated as a terminal cost by introducing a new state variable
y and the additional differential equation

The more general cost

In this subsection we outline an alternative and more rigorous proof of the
Minimum Principle. This proof is primarily directed towards the advanced
reader, and is based on making small variations in the optimal trajectory
and comparing it with neighboring trajectories.

For convenience, we restrict attention to the case where the cost is

Bee. 3.3

3.3.2 A Derivation Based on Variational ]Ideas

Chap. 3

for all t E [0, T]'K(t)x*(t) = p(t),

Deterministic Continuol1s-Time Optimal Control

This is the Riccati equation of Example 3.2.2, specialized to the problem of
the present example. This equation can be solved using the terminal condition

from which we see that K(t) should satisfy

k(t)x* (t) -+ K(t):i;* (t) = Nt) = -ap(t) = -aK(t)x* (t).

k(t)x*(t) -+ K(t) (a - b2 K(t))x*(t) = -aK(t)x*(t),

K(T) = q,

By differentiating the equation K(t)x* (t) = p(t) and by also using the adjoint
equation, we obtain

±* (t) = (a b2 K(t) )x* (t).

which is implied by the terminal condition p(T) = qx* (T) for the adjoint
equation. Once K(t) is known, the optimal control is obtained in the closed
loop form u*(t) = -bK(t)x*(t). By reversing the preceding arguments, this
control can then be shown to satisfy all the conditions of the Minimum Prin
ciple.

*(t) - (0) at -+ b2~ (-at at)X -x e - e -e ,
2a

u* (t) = -bK(t)x* (t),

and we show that K(t) can be obtained by solving the Riccati equation.
Indeed, from Eq. (3.25) we have

and f;, can be obtained from the last two relations. Given~, we obtain p(t) =
e-atf;" and from p(t), we can then determine the optimal control tnijectory
as u* (t) = -bp(t), t E [0, T] [ef. Eq. (3.25)].

In the second approach, we basically derive the Riccati equation en
countered in Example 3.2.2. In particular, we hypothesize a linear relation
between x*(t) and p(t), that is,

(which is the terminal condition for the adjoint equation) can be solved for
the unknown variable 1;,. In particular, it can be verified that the solution of
the differential equation (3.26) is given by
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;y;* (0)

(3.35)

(3.36)

(~~.33)

f(;Y;*(T),U*(T)) )(IT,
(3.~34)

t E [0, T],

\7h(x*(T)),'~(T) 2 0.

((t) = A~(t) + B(u(t) - 'u*(t)),

;y;€(t) = x*(t) + c:~(t),

The Pontryagin l\!linimum Principle

~(1') = [ <p(T, t) (J (x' (t),u(t)) - I (x' (t), u' (t)) ) dt

Sec. 3.3

f(x€(t),u(t)) = (1- c:).f(xE(t),u*(t)) + c:f(x€(t),u(t)).

h(x*(T)) ~ h(x;(T))

h(x*(T) + c:~(T) +. o(c:))

= h(x*(T)) + E\7h(x*(T))'~('T) + o(c:),

respectively. Thus, taking into account the initial conditions :1;€(0)
and ~(O) = 0, we see that

Using a standard result in the theory of linear difFerential equations
(see e.g. [CoL65]), the solution of the linear differential system (::3.~32) can
be written in closed form as

and

where the square matrix ([} satisfies for all t and T,

which implies that

Thus, the state trajectory {x€(t) I t E [0, T]} of Eq. (3.30) corresponcls
to the admissible control trajectory {u( t) I t E [0, Tn. Hence, using the
optimality of {x*(t) It E [0, Tn and the regularity assumption, we have

iJ?(t, t) I.

Since ~(O) = 0, we have from Eq. (3.34),

so the regularity condition (3.31) is satisfied.
We now prove the Minimum Principle assuming the convexity and

regularity assumptions above. Suppose that {It*(t) I t E [0, Tn is an
optimal control trajectory, and let {x*(t) It E [0, Tn be the corresponding
state trajectory. Then for any other admissible control trajectory {u(t) I
t E [0, T]} and any c: E [0, 1], the convexity assumption guarantees that for
each t, there exists a control u(t) E U such that

Chap. 3

(3.30)

(3.31)

t E [0, T],

xE(t) = x*(t) + c:~(t) + o(c:) ,

~(t) = lim J;y;(t)/c:,
€-.O

Deterministic ConUnuolls-Time Optimal Control

with ;rE(O) = ;y;*(0), satisfies

126

Jx(t) = x€(t) - x*(t).

5;(t) = Ax(t) + Bu(t),

XI'(/;) - ;j;*(t) = f(xE(t),u*(t)) - f(x*(t),u*(t))

+ c:(f(xE(t),u(t)) f(;Y;E(t),U*(t))),

with initial condition ~(O) 0.

J;i:(t) = \7f(x*(t),u*(t))'Jx(t) + o(IIJx(t)ll)

+ c:(f(;Y;E(t),U(t)) - f(;y;€(t),u*(t))),

Assumption: Let u(t) and u*(t), t E [0, T], be any two
admissible control trajectories and let {x* (t) I t E [0, Tn be the state
trajectory corresponding to u*(t). For any c: E [0,1]' the solution
{;rE(t) It E [0, Tn of the system

x€(t) = Ax€(t) + Bu*(t) + c:B(u(t) u*(t)),

((t) \7xf(x*(t),u*(t))~(t)+f(x*(t),u(t)) - f(;y;*(t), 11,* (t)) , (3.32)

where {~(t) I t E [0, T]} is the solution of the linear differential system

The regularity assumption "typically" holds because from Eq. (3.30)
we have

Dividing by c: and taking the limit as c: ~ 0, we see that the function

so from a first order Taylor series expansion we obtain

where

should "typically" solve the linear system of differential equations (3.32),
while satisfying Eq. (3.31).

In fact, if the system is linear of the form

where A a,nd B are given matrices, it can be shown that the regularity
assumption is satisfied. To see this, note that Eqs. (3.30) and (3.32) take
the forms



with the terminal condition

peT) = \7h(x*(T)).
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xo: given,

k = 0, ... , N 1.

The Pontlyagin lVfinimllm Principle

We first develop an expression for the gradient \7 J(uo, . .. ,UN-I). We
have, using the chain rule,

\7UN -1 J(uo, ... ,'UN-I) = \71LN_1 (9N (fN -1 (l:N-l, 'llN -1))

+gN-] ,UN-I))

= \JUN_l]N-l . \JgN + \JUN_lgN--l,

In this subsection we briefly derive a version of the Minimum Principle for
discrete-time deterministic optimal control probleIns. Interestingly, it is
essential to make some convexity assumptions in order for the Minimum
Principle to hold. For continuous-time problems these convexity assump
tions are typically not needed, because, as mentioned earlier, the differential
system can generate any 5:(t) in the convex hull of the set of possible vec
tors f(x(t), u(t)) by quick alternation between different controls (see for
example Exercise 3.10).

Suppose that we want to find a control sequence ('uo, 'Ill,·.·, 'UN-I)

and a corresponding state sequence (xo, Xl, . .. , ;X:N), which minimize

N-l
J(u) = gN(;r:N) + L gk(;r;k, 'Ilk)'

k=O

3.3.3 l\t1inimum Principle for Discrete-Tinne Problmns

we would then obtain a contradiction of Eq. (3.38).
We have thus proved the Minimum Principle (3.39) under the con

vexity and regularity assumptions, and the assumption that there is only
a terminal cost h(x(T)). We have also seen that in the case where the
constraint set U is convex and the system is linear, the convexity and reg
ltlarity assumptions are satisfied. To prove the Minimum Principle for the
more general integral cost function (3.27), we can apply the preceding de
velopment to the system of differential equations i; = f(x;, u) augmented
by the additional Eq. (3.28) and the equivalent terminal cost (:i.29). The
corresponding convexity and regularity assumptions (\,re automatically sat
isfied if the constraint set U is convex and the system function f (x, 11,) as
well as the cost function g(x, u) are linear. This is necessary in order to
maintain the linearity of the augmented system, thereby maintaining the
validity of the regularity assumption.

and the control constraints

subject to the discrete-time system constraints

Sec. 3.3

(3.37)

(3.38)

(3.39)

Chap. 3

for all u E U.

for t E 1,
for t ¢: 1,

pet) = <p(T, t)'p(T), t E (0, T].

'(t) o<P(T, t),
p = ot peT).

{
fl

u(t) = u*(t)

p(t)'f(x*(t),u*(t)) > p(t)'f(x*(t),'L1),

Deterministic Contin llO llS-Time Optimal Control

peT) = \7h(x*(T)),

p(t)'f(~r*(t),u*(t)) ::; p(t)'f(x*(t),u),

°::; p(T)'~(T)
= p(T)' loT 1>(1', t) (f(x«t),-It(t)) - f(x«t), u«t)) )elt

= lr p(t)' (t (J;< (t), u(t)) - f (x'(t), u< (t)) ) elt,
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By differentiating with respect to t, we obtain

Define

~oml~ining this eq~lation :Vith Eq~. (3.35) and (3.37), we see that p(t) is
generated by the dIfferentIal equatIOn

pet) = -\7xf(x*(t),u*(t))p(t),

This is the adjoint. equatio~ :orresponding to {(x*(t), u*(t)) It E [0, Tn.
. Now, to obtam the Mmllnum Principle, we note that from Eqs. (3.33)

(3.36), and (3.37) we have '

Indeed, if for some 'l'i, E U and to E [0, T), we have

from which it can be shown that for all t at which u* (.) is contI'
1 nuous, welave

p(to)' f (;x;*(to), 'u*(to)) > p(to)'f(x*(to), 11),

while {'I1.*(t) I t E [0, Tn is continuous at to, we would also have

for all t in some nontrivial interval 1 containing to. By taking



131

(3.43)

k = 1, ... ,N 1,

for all k 0, ... ,N 1. (3.44)

Extensions of the l\ifinimum PrincipleSec. 3."1

The partial derivatives above are evaluated along the optimal state and
control trajectories. If, in addition, the Hamiltonian fh is a convex
function of Uk for any fixed Xk and Pk+.l, we have

where the vectors PI, ... ,PN are obtained from the adjoint equation

Proposition 3.3.2: (Discrete-Time Minimllm Sup
pose that (uo,ui ... ,'uN-I) is an optimal control trajectory and that
(xo, x;i ,... ,xN) is the corresponding state trajectory. Assume also
that the constraint sets Uk are convex. Then for all k = 0, ... , N - 1,
we have

Proof: Equation (3.43) is a restatement of the necessary condition (3.42)
using the expression (3.41) for the gradient of J. If 11k is convex with
respect to Uk, Eq. (3.42) is a sufficient condition for the minimum condition
(3.44) to hold (see Appendix B). Q.E.D.

with the terminal condition

(3.40)

(3.41 )

Chap. 3

k = 1, ... ,N -1,

+ \l'Ukfk . V xk-Hgk+1

+ \ll£k9k,

DeterminisUc Continuolls-Time Optimal Control

\lUkJeuO, ... ,UN-I) = \lukfk' \lxk+lfk+l'" \lxN_ 1 fN-1' \l9N

+ \lukfk' \lxk+lfk+l'" \lxN_2 fN-2' \lxN_ 1 9N-1

where all gradients are evaluated along the control trajectory (uo, ... ,UN-1)
and the corresponding state trajectory. Similarly, for all k,

which can be written in the form

where 11k is the Hamiltonian function defined by

for an appropriate vector Pk+l, or

with terminal condition

It can be seen from Eq. (3.40) that the vectors Pk+l are generated back
wanls by the discrete-time adjoint equation

We will assume that the constraint sets Uk are convex, so that we can
apply the optimality condition

3.4 EXTENSIONS OF THE MINIlVfUM PRINCIPLE
N-I

\l'UkJ(UO"'" uN_I)'(uk u'J:J:2: 0,
k=O

We now consider some variations of the continuous-time optimal control
problem and derive corresponding variations of the Minimum Principle.

for all feasible (uo, ... ,'UN-I) (see Appendix B). This condition can be
decomposed into the N conditions

3.4.1 Fixed Terminal State

Suppose that in addition to the initial state x(O), the final state x;(T) is
given. Then the preceding informal derivations still hold except that the
terminal condition J*(T, x) = h(x) is not true anynlOre. In effect, here we
have

if x = x(T),
otherwise.

J*(T,X)={~

for all 'Uk E Uk, k = 0, ... ,N - 1.

(3.42)
We thus obtain:
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Extensions of the Minimum Principle

the Hamiltonian is

H(:I:, ll, p) = g(x, v,) + pll.

We minimize the Hamiltonian by setting to zero its derivative with respect
to 11,:

pet) = -Vug(x*(t),u*(t)).

j'T~0)i~ cit,
o V 2')'x(t)

VI + u 2

g(x, v,) = -J'FYX '
2')'x

where')' is the acceleration due to gravity. Here {(t,-:r(t)) It E [O,TJ}, is

the desired curve, the term)1 + (x(t)) 2 cit is the length of the curve from

x;(t) to x(t + dt), and the term J2')'x(t) is the velocity of the body upon
reaching the level x(t) [if m and v denote the mass and the velocity of the
body, the kinetic energy is mv2 /2, which at level :I:(t) must be equal to the

change in potential energy, which is m')'x(t); this yields vV2')':c(t) ].
We introduce the system x = u, and we obtain a fixed terminal state

problem [x(O) = 0 and x(T) = b]. Letting

In 1696 Johann Bernoulli challenged the mathematical world of his time with
a problem that played an instrumental role in the development of the calculus
of variations: Given two points A and B, find a curve connecting A and B
such that a body moving along the curve under the force of gravity reaches
B in minimum time (see Fig. 3.4.2). Let A he (0,0) and B be (T, -b) with
b> O. Then it can he seen that the problem is to find {:c(t) It E [0, T]} with
x(O) = 0 and x(T) = b, which minimizes

Example 3.4.2 (The Brachistochrone

Figure 3.4.1 Optimal solution of the problem of connecting the two points (0, n)
and (T, (3) with a minimum length curve (cf. Example 3.4.1).

8ee. 3.4Chap. 3

for all j tf- I,

for all i E I,

x(T) = {3,

for all t E [0, T].

.fVI + (U(t))2 dt.

x(O) = Ct,

xi(T) : given,

.( ) _ 8h(x*(T))
Pl T - 8 '

:I:j

Deterministic Continuous-Time Optimal Control

and the cost is

p(t) = constant,

Minimization of the Hamiltonian,

implying that

x(t) = u(t),

The adjoint equation is

jJ(t) = 0,

Consider the problem of finding the curve of minimum length connecting two
points (0, Ct) and (T, {3). This is a fixed endpoint variation of Example 3.3.1
in the preceding section. We have

x(T) : given,

min [Jl + u2 + p(t)u] ,
'UErrl

u* (t) = constant, for all t E [0, T].

'rhus the optimal trajectory {x* (t) I t E [0, Tn is a straight line. Since
this trajectory must pass through (0, Ct) and (T, {3), we obtain the (a priori
obvious) optimal solution shown in Fig. 3.4.1.

thus maintaining the balance between boundary conditions and unknowns.
If only some of the terminal states are fixed, that is,

Thus J*(T, ;r:) cannot be differentiated with respect to x, and the terminal
boundary condition p(T) = \7h (x* (T)) for the adjoint equation does not
hold. However, as compensation, we have the extra condition

where I is some index set, we have the partial boundary condition

for the adjoint equation.
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O.

for alIt E [0, T*],

o

for all :1; E 3'(n,

\7x{£(x) + J(O,x)}lx=x*co)

J*(O,x*(O)) ::; J*(O,x),

Extensions of the Minimum Principle

'u*(t) = argminH(;r;*(t),l£,p(t)),
uEU

p(O) -\7£(x* (0)).

where p(t) is the solution of the adjoint equation. What we lose with the
terminal time being free, we gain with an extra condition derived as follows.

We argue that if the terminal time were fixed at T* and the initial
state were fixed at the given x(O), but instead the initial time were subject
to optimization, it would be optimal to start at t = O. This mea,ns that
the first order variation of the optimal cost with respect to the initial time
must be zero;

p(O) = O.

'VtJ*(t,x*(t))lt=o = O.

Also if there is a cost £(:1;(0)) on the initial state, i.e., the cost is

3.4.3 Free Terminal Time

This follows by setting to zero the gradient with respect to ;y; of e(x) +
J(O, x), Le.,

Suppose the initial state and/or the terminal state are given, but the ter
minal time T is subject to optimization.

Let {(x* (t) , 1£* (t)) I t E (0, TJ) be an optimal state-control trajectory
pair and let T* be the optimal terminal time. Then if the terminal time
were fixed at T*, the pair {(l£*(t),x*(t)) It E [O,T*J} would satisfy the
conditions of the Minimum Principle. In particular,

the boundary condition becomes

Sec. 3.L1

and the extra boundary condition for the adjoint equation

yielding

3.4.2 Free Initial State

If the initial state x(O) is not fixed but is subject to optimization, we have

CJlap. .1

for all t E [0, T],

for allt E [0, T].

for all t E [0, T].

for all t E [0, T].

Distance A to"CB =Arc"CB to B

Distance A to"Cc = Arc"Cc to C

"Cc T is

C x*(t)
;[;* (t)

Deterministic ConUnuous-Time Optimal Control

i;* (t) =

1
~=====----- = constant,VI + (11,* (t))2 V2,x*(t)

g(x*(t),11,*(t)) - \7ug(x*(t),11,*(t))11,*(t) = constant,

Using the expression for g, this can be written as

x*(t)(1+x*(t)2)=C, for all tE[O,T],

We know from the Minimum Principle that the Hamiltonian is constant along
an optimal trajectory, Le.,

VI + (1L*(t))2

.J2,x*(t)

or equivalently

Using the relation x* (t) = 'LL * (t), this yields

for some constant C. Thus an optimal trajectory satisfies the differential
equation

The solution of this differential equation was known at Bernoulli's time to
be a cycloid; see Fig. 3.4.2. The unknown parameters of the cycloid are
determined by the boundary conditions x* (0) = °and x* (T) = b.

Figure 3.4.2 Formulation and optimal solution of the brachistochrone problem.
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if p2(t) < 0,
if P2(t) 2: O.
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P2(t) P2(1) P2(t) P2(1)

, ,
I ,, ,, ,

I, ,
I, , ,
II , , ,, , ,
I

T I
T: T' T:I ,

I , ,
~ !

u* (t) = { 1
-1

Figure 3.4.3 (a) Possible forms of the adjoint variable P2(t). (b) Correspond
ing forms of the optimal control trajectory.

To determine the precise form of the optimal control trajectory, we use
the given initial and final states. For li(t) == (, where ( = ±1, the system
evolves according to

The adjoint equation is

Therefore

where CI and C2 are constants. It follows that {p2(t) I t E [0, Tn has one of

the four forms shown in Fig. 3.4.3(a); that is, {p2(t) I t E [0, Tn switches
at most once in going from negative to positive or reversely. [Note that it
is not possible for P2(t) to be equal to 0 for all t because this implies that
Pl (t) is also equal to 0 for all t, so that the Hamiltonian is equal to 1 for
all t; the necessary conditions require that the Hamiltonian be 0 along the
optimal trajectory.] The corresponding control trajectories are shown in Fig.
3.4.3(b). The conclusion is that, for each t, u*(t) is either +1 or -1, and
{u*(t) It E [0, Tn has at most one switching point in the interval [0, T].

so

(a)

U'(l) u'(t) u'(t) u'(t)

"'"1,,
.....i ,

0 T I iT, t T
-1 !

-1 '--' -1

(b)

8ec. 3.4Chap. 3

for all t E [O,T*)

for all t E [0, T*).

for all t.

x2(T) = O.xI(T) = 0,

-1 :::; 1i ( t) :::; 1,

Deterministic Continuous-Time Optimal Control

H(J;*(t),u*(t),p(t)) = 0,

'VtJ*(t,x*(t)) = -H(X*(t),1t*(t),p(t)),

We want to accomplish this transfer in minimum time. Thus, we want to

where yet) is the position of the object at time t. Given the object's initial
position y(O) and initial velocity iJ(O), it is required to bring the object to
rest (zero velocity) at a given position, say zero, while using at most unit
magnitude force,

Xl (t) = yet),

y(t) = u(t),

Example 3.4,3 (lVIinimum-Time Problem)

minimize T = iT 1dt.

H(x*(O), u*(O),p(O)) = O.

A unit mass object moves horizontally under the influence of a force u(t), so
that

Note that the integral cost, g(x(t),u(t)) == 1, is unusual here; it does not
depend on the state or the control. However, the theory does not preclude
this possibility, and the problem is still meaningful because the terminal time
T is free and subject to optimization.

Let the state variables be

If {u*(t) It E [0, Tn is an optimal control trajectory, 1L*(t) must mini
mize the Hamiltonian for each t, Le.,

The initial state (XI(0),X2(0)) is given and the terminal state is also given

so the system equation is

The I-IJB equation can be written along the optimal trajectory as

[cf. Eqs. UL14) and (3.19)), so the preceding two equations yield

Since the Hamiltonian was shown earlier to be constant along the optimal
trajectory, we obtain for the case of a free terminal time
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(3.45)

Figure 3.4.5 Switching curve (shown
with a thick line) and closed-loop opti
mal control for the minimmn time ex
ample.

y(O) = 0,li(t) = 1,

u*(t) is -1
-~

u*(t) = arg min H (x*(t), 11" pet), t)
uEU

Extensions of the Minimum Principle

.------+-----;---.-
Xi

Sec. 3.4

~E(t) = f(x(t), 11,(t) , y(t)), ;r;(0) : given,

j
'T

cost = h(x(T)) + 0 g(;r;(t),11,(t),y(t))dt.

After working out the corresponding optimality conditions, we see
that they are the same as when the system and cost are time-independent.
The only difference is that the Hamiltonian need not be constant along the
optimal trajectory.

3;.4.5 Singular Problelms

In some cases, the minimum condition

we can convert the problem to one involving a time-independent system
and cost by introducing an extra state variable y(t) representing time:

T

cost = h(x(T)) +1 g(~r;(t), 'u(t), t)dt,

is insufficient to determine u*(t) for all t, because the values of :1;*(t) and
p(t) are such that H(x*(t), u,p(t), t) is independent of u over a nontrivial
interval of time. Such problems are called singulaT. Their optimal trajecto
ries consist of portions, called Teg'ular aTCS, where 11,* (t) can be determined
from the minimum condition (3.45), and other portions, called singv.lar
Q,TCS, which can be determined from the condition that the Hamiltonian is
independent of 'Lt.

Chap. 3

(b)(a)

Detenninistic Cont;inuous-Time Optimal Control

1 ()2 1 ( 2
Xl (t) - 2( X2(t) = Xl (0) - 2( X2(0)) .

Thus for intervals where 1L(t) == 1, the system moves along the curves where

Xl(t) - ~(X2(t))2 is constant, shown in Fig. 3.4.4(a). For intervals where

u( t) == -1, the system moves along the curves where Xl (t) + ~ (X2 (t) ) 2 is
constant, shown in Fig. 3.4.4(b).

13y eliminating the time t in these two equations, we see that for all t

Figure 3.4.4 State trajectories when the control is u(t) == 1 [Fig. (a)] and
when the control is 'u(t) -1 [Fig. (b)].

(c) If the initial state lies on the top (bottom) part of the switching curve,
use 1t*(t) == -1 [u*(t) == 1, respectively] until reaching the origin.

10 bring the system from the initial state (XI(0),X2(0)) to the origin
with at most one switch in the value of control, we must apply control ac
cording to the following rules involving the switching c'urve shown in Fig.
~3.4.5.

(a) If the initial state lies above the switching curve, use u*(t) == -1 until
the state hits the switching curve; then use u* (t) == 1 until reaching the
origin.

(b) If the initial state lies below the switching curve, use u *(t) == 1 until the
state hits the switching curve; then use u * (t) == -1 until reaching the
origin.

a.4.4 Thne-Varying System and Cost

If the system equation and the integral cost depend on the time t, Le.,

j;(t) = f(x(t), 11,(t) , t),
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0;
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that is, the total fill-in should be equal to the total e:r:cavat'ion w'ithin (see
Fig. 3.4.6). Similarly, each sharply downhill interval I should be contained
within a larger maximum downhill slope interval ~ ::) L which is such that
p(t) > 0 within~, while the total fill-in should be equal to the total e:rcavation
within~, (see Fig. 3.4.6). Thus the regular arcs consist of the intervals 17
and ~ described above. Between the regular arcs there can be one or IllOre
singular arcs where x*(t) z(t). The optimal solution can be pieced together
starting at the endpoint t = l' [where we know that p(T) = 0], and proceeding
backwards.

at the endpoints tl and t2 of 17. In view of the fornl of the adjoint equation,
we see that the endpoints tl and t2 of 17 should be such that

Optimal solutions can be obtained by a graphical method using the
above observations. Consider the sharply uphill intervals 1 such that z(t) ~ a
for all t E 1, and the sharply downhill 'inte'tvals I such that z(t) S; -a for
alIt E L Clearly, within each sharply uphill interval I the optimal slope is
'll* (t) = a, but the optimal slope is also equal to a within a larger maximum
uphill slope interval 17 ::) 1, which is such that p(t) < 0 within 17 and

Figure 3.4.6 Graphical method for solving the road construction exarnp1e. The
sharply uphill (downhill) intervals I (respectively, D are first identified, and are
then embedded within maximum uphill (respectively, downhill) slope regular arcs
V (respectively, .E:) within which the total fill-in is equal to the total excavation.
The regular arcs are joined by singular arcs where there is no fill-in or excavation.
The graphical process is started at the endpoint t = T.

Sec. 3.4Chap. 3

t E [0,1'].

t E [0,1'],

p(t) -x*(t) + z(t),

x(t) = 1L(t),

j'll(t) I S; a,

Deterministic Continuous- Time Optimal Control

The adjoint equation here is

p(T) = o.

with the terminal condition

where

Minimization of the Hamiltonian

1 {T
2 Jo (x(t)

H(x*(t),u,p(t),t) = ~(x*(t) - Z(t))2 +p(t)'ll

z(t) = 'll* (t) E [-a, aJ.

for all t, and shows that optimal trajectories are obtained by concatenation
of three types of arcs:

(a) Regular arcs where p(t) > 0 and 'll*(t) = -a (maximum downhill slope
arcs).

(b) H.egular arcs where p(t) < 0 and 'll*(t) = a (maximum uphill slope arcs).

(c) Singular arcs where p(t) = 0 and 'll*(t) can take any value in [-a, a] that
maintains the condition p(t) = O. From the adjoint equation we see that
singular arcs are those along which p(t) = 0 and x* (t) = z(t), Le., the
road follows the ground elevation (no fill-in or excavation). Along such
arcs we must have

with respect to 'll yields

'll*(t) = arg min p(t)'ll,
lulS;a

Suppose that we want to construct a road over a one-dimensional terrain
whose ground elevation (altitude measured from some reference point) is
known and is given by z(t), t E [0, T]. The elevation of the road is de
noted by x(t), t E [0,1'], and the difference x(t) - z(t) must be made up by
fill-in or excavation. It is desired to minimize

J£xarnple 3.4.4 (Road Construction)

subject to the constraint that the gradient of the road x(t) lies between -a
and a, where a is a specified maximum allowed slope. Thus we have the
constraint

140
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0.5. Solve the

Figure 3.5.1 Reservoir system for Bx
ercise ~3.3.

Xi : Level of reservoir 1

x2 : Level of reservoir 2

u : Inflow to reservoir 1

Notes, Sources, and Exercises

Xl (0) = X2(0) = O.

liVe want to maximize X2(1) subject to the constraint :rl(l)
problem.

3.3

Here f3 is some positive scalar, which serves to discount future enjoyment. Find
the optimal {u(t) I t E [0, T)}.

and the control constraint is 0 :s; u(t) :s; 1 for all t. Initially

dx(t)-- = ax(t) - tl(t) ,
dt

~h(t) = -XI(t) + u(t),

X2(t) = Xl (t),

Consider the system of reservoirs shown in Fig. 3.5.1. The system equations are

where x(O) S is his initial capital, ex > 0 is a given interest rate, and 'n(t) 2: 0
is his rate of expenditure. The total enjoyment he will obtain is given by

A young investor has earned in the stock market a large amount of money Sand
lans to spend it so as to maximize his enjoyment through the rest of his life

~rithout working. He estimates that he will live exactly T more years and that
his capital x(t) should be reduced to zero at time T, i.e., x(T) = O. Also he
l1l0dels the evolution of his capital by the differential equation

Sec. 3.5

3.2

Chap. .3Deterministic Continuous-Time Optimal Control

SOURCES, AND EXERCISES

Solve the problem of Example 3.2.1 for the case where the cost function is

t In the 30s and 40s journal space was at a premium, and finite-dimensional
optimization research was thought to be a simple special case of the calculus
of variations, thus insufficiently challenging or novel for publication. Indeed the
modern optimality conditions of finite-dimensional optimization subject to equal
ity and inequality constraints were first developed in the 1939 Master's thesis by
Karush, but first appeared in a journal quite a few years later under the names
of other researchers.

(X(T)) 2 + rT

(a(t)) 2dt .
.10

Also, calculate the cost-to-go function J* (t, x) and verify that it satisfies the HJB
equation.

3.1

EXERCISES

The calculus of variations is a classical subject that originated with the
works of the great mathematicians of the 17th and 18th centuries. Its
rigorous developrnent (by modern mathematical standards) took place in
the 19~30s and 19/10s, with the work of a group of mathematicians that
originated mostly from the University of Chicago; Bliss, McShane, and
Hestenes are some of the most prominent members of this group.· Curi
ously, this development preceded the development of nonlinear program
ming by many years. t The modern theory of deterministic optimal control
has its roots primarily in the work of Pontryagin, Boltyanski, Gamkrelidze,
and Mishchenko in the 1950s [PBG65]. A highly personal but controversial
historical account of this work is given by Boltyanski in [BMS96]. The
theoretical and applications literature on the subject is very extensive. We
give three representative references: the book by Athans and Falb [AtF66]
(a classical extensive text that includes engineering applications), the book
by Hestenes [Hes66] (a rigorous mathematical treatment, containing im
portant work that predates the work of Pontryagin et a1.), and the book
by Luenberger [LlIe69) (which deals with optimal control within a broader
infinite dimensional context). The author's nonlinear programming book
[13er99] gives a detailed treatment of optimality conditions and computa
tional methods for discrete-time optimal control.
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Notes, Sources, and Exercises

A unit mass object moves on a straight line fronl a given initial position Xl (0)
and velocity X2(0). Find the force {u(t) I t E [O,IJ} that brings the object at
time 1 to rest [X2(1) = 0] at position x1(1) = 0, and minimizes

/,1 (U(t))2 dt .

where Xl (t) and X2(t) are the positions of the boat paraUel and perpendicular to
the stream velocity, respectively. Show that the optimal solution is to steer at a
constant angle.

A boat moves with constant unit velocity in a stream moving at constant velocity
s. The problem is to find the steering angle u(t), 0 ::::; t ::::; T, which minimizes the
time T required for the boat to move between the point (0,0) to a given point
(a, b). The equations of motion are

Xl (t) = s + cos u(t),

where d and D are some constants.

Let a, b, and T be positive scalars, and let A = (0, a) and 13 (T, b) be two points
in a medium within which the velocity of propagation of light is proportional to
the vertical coordinate. Thus the time it takes for light to propagate from A to
B along a curve {x(t) I t E [0, TJ} is

i T 'VI + (X(t))2

( )
dt,

o C:£ t,

where C is a given positive constant. Find the curve of minimum travel time of
light from A to 13, and show that it is an arc of a circle of the form

X(t)2 + (t d)2 = D,

3.7

3.6 (L'Hopital's Problern)

Sec. 8.5

where a, b, and L are given positive scalars. The last constraint is known as
an isoperimetric constraint; it requires that the length of the curve be L. Hint:
Introduce the system Xl = U, X2 JI + u 2 , and view the problem as a fixed
terminal state problem. Show that the sine of the optimalu" (t) depends linearly
on t. Under some assumptions on a, b, and L, the optimal curve is a circular arc.

subject to the constraints

Chap. 8
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3.Lj

y(t) = -ay(t) + u(t),

Figure 3.5.2 State trajectories of the system of Exercise 3.4 for u(t) == -1 and
u(t) == L

iT x(t)dt,

JJI (t) = 0,

P2(t) = -PI (t) + ap2(t),

Work out the minimum-time problem (Example 3.4.3) for the case where there
is friction and the object's position moves according to

where a > 0 is given. Hint: The solution of the system

is

PI (t) = PI (0),

P2(t) = !:.(l- eat)PI(O) + eatp2(0).
a

The trajectories of the system for ll(t) == -1 and u(t) == 1 are sketched in Fig.
~1.5.2.

3.5 (Isoperirnetric Problem)

Analyze the problem of finding a curve {x(t) I t E [0, Tn that maximizes the
area under :1:,
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k = 0, ... ,N -1,

Deterministic Continuous-Time Optimal Control

Consider the discrete-time optimal control problem of Section 3.3.3, where there
are no control constraints (U = ~m). Introduce a Lagrange multiplier vector
Pk+l for each of the constraints

Use the discrete-time Minimum Principle to solve Exercise 1.15 of Chapter 1,
assuming that Ik and Ih are fixed at known deterministic values.

(cL Appendix B). View both the state and the control vectors as the optimiza
tion variables of the problem, and show that by differentiation of the Lagrangian
function with respect to Xk and Uk, we obtain the discrete-time Minimum Prin
ciple.

Use the discrete-time Minimum Principle to solve Exercise 1.14 of Chapter 1,
assuming that each 'Wk is fixed at a known deterministic value.

and form the Lagrangian function

N-l

gN(XN) + 2: (9k(Xk, Uk) + P~+l (Jk(Xk' Uk) - Xk+l) )
k=O

3.13 (Lagrange Multipliers and the Minimum Principle)

Solve the continuous-time problem involving the system x(t) = u(t), the terminal

cost (x;(1')) 2, and the control constraint u(t) = -lor 1 for all t, and show that
the solution satisfies the Minimum Principle. Show that, depending on the initial
state Xo, this may not be true for the discrete-time version involving the system
Xk-H :r:k + Uk, the terminal cost x't, and the control constraint Uk = -lor 1
for all k.

3.10 (On the Need for Convexity Assumptions)

Use the Minimum Principle to solve the linear-quadratic problem of Example
i~.2.2. Hint: Follow the lines of Example 3.3.3 ..

14Q:$

3.9
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where by straightforward calculation, the matrix J(N -1 is verified to be

By substitution into the expression for IN-1, we have

The matrix multiplying UN -1 on the left is positive definite (and hence
invertible), since RN-l is positive definite and 13N_1QN13N-1 is positive
semidefinite. As a result, the minimizing control vector is given by

By differentiating with respect to UN-1 and by setting the derivative equal
to zero, we obtain .'

IN-1(XN-I) = X~_lQN-1XN-1 + min [UN _1RN-17.lN-1
UN-l

+ u~_lBN_1QN13N-1UN-1 + 2X~_lAN_lQN13N-1UN-1]

+ xN_IAN_1QNAN-1XN-1 + E{WN _1QN7.1JN-d·

IN-I(XN-I) = min E{:l;~_IQN-IXN-I+ u~_IRN-IUN-1
UN-l

+ (AN-1:l:N-1 + 13N-1'lJ,N-1 + WN-IYQN

. (AN-1XN-1 + 13N-1UN--1 +'WN-1)},

J(N-1 = A N - I (QN - QNBN-l(BN_1QNBN - I + RN-d-1BN_1QN )AN - 1

+ QN-I.

and we expand the last quadratic form in the right-hand side. We then use
the fact E{WN-d = 0 to eliminate the term E{'WN_1QN(AN-1XN-1 +
EN-1UN-I)}, and we obtain

It turns out that the cost-to-go functions Jk are quadratic and as a result
the optimal control law is a linear function of the state. These facts can be
verified by straightforward induction. We write Eq. (4.1) for k = N - 1,

matrices, rather than being known. This case is considered at the end of
this section.

Applying now the DP algorithm, we have

E;ec. 4.1Chap. 4

k = 0,1, ... ,N - 1,

Problems with Perfect State Information

which expresses a desire to keep the state of the system close to a given
trajectory (xo, xI, ... , XN) rather than close to the origin. Another gener
alized version of the problem arises when Ak' 13k are independent random

In these expressions, a;k and Uk are vectors of dimension nand m, respec
tively, and the matrices Ak , 13k, Qk, Rk are given and have appropriate
dimension. We assume that the matrices Qk are positive semidefinite sym
metric, and the matrices R k are positive definite symmetric. The controls
Uk are unconstrained. The disturbances Wk are independent random vec
tors with given probability distributions that do not depend on Xk and Uk.

Furthermore, each Wk has zero mean and finite second moment.
The problem described above is a popular formulation of a regulation

problem whereby we want to keep the state of the system close to the origin.
Such problems are common in the theory of automatic control of a motion
or a process. The quadratic cost function is often reasonable because it
induces a high penalty for large deviations of the state from the origin but
a relatively small penalty for small deviations. Also, the quadratic cost is
frequently used, even when it is not entirely justified, because it leads to a
nice analytical solution. A number of variations and generalizations have
similar solutions. For example, the disturbances Wk could have nonzero
means and the quadratic cost could have the form

and the quadratic cost

In this section we consider the special case of a linear system

In this chapter we consider a number of applications of discrete-time stochas
tic optimal control with perfect state information. These applications are
special cases of the basic problem of Section 1.2 and can be addressed via
the DP algorithm. In all these applications the stochastic nature of the
disturbances is significant. For this reason, in contrast with the determin
istic problems of the preceding two chapters, the use of closed-loop control
is essential to achieve optimal performance.
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(4.6)

(4.5)

15JL

k = 0,1, ... ,N 1,

Jl*(X) = Lx,

L = -(B'KB + R)-IB'KA,

K = A'(K - KB(B'KB + R)-IB'K)A +

Linear Systems and Quadratic Cost

Wk
~

Xl

)(k+ 1 =A!<)(k+ Bkuk+Wk
Uk

I I d

I I

Figure 4.1.1 Linear feedback structure of the optimal controller for the linear
quadratic problem.

and ]( solves the algebraic Riccati equation (4.5). This control law is
stationary; that is, it does not change over time.

We now turn to proving convergence of the sequence of matrices {Kk}
generated by the Riccati equation (4.4). We first introduce the notions
of controllability and observability, which are very important in control
theory.

and a large number of stages N, one can reasonably a,pproximate the control
law (4.2) by the control law {j1,*, Jl*, ... ,Jl*}, where

This property, to be proved shortly, indicates that for the system

Equation (4.4) is called the d,tscrete-t'tme R'iccati equat'ton. It plays an
important role in control theory. Its properties have been studied exten
sively and exhaustively. One interesting property of the Riccati equation
is that if the matrices A k, B k, Qk, Rk are constant and equal to A, B, Q,
R, respectively, then the solution K k converges as k -> -00 (under mild
assumptions) to a steady-state solution K satisfying the algebra'lc R,tccat'i
equation

The Riccati Equation and Its Asymptotic Behavior

Sec. i1.1

(4.3)

(4.2)

Chap. 4Problems with Perfect State Information

:e'K N- 1 x = min[x'QN-IX + V/RN-IU
u

+ (AN-IX + BN-IU)'QN(AN-IX + BN-IU)].

where the gain matrices Lk are given by the equation

and where the symmetric positive semidefinite matrices Kk are given re
cursively by the algorithm

The control law (4.2) is simple and attractive for implementation in
engineering applications: ·the current state Xk is being fed back as input
through the linear feedback gain matrix Lk as shown in Fig. 4.1.1. This
accounts in part for the popularity of the linear-quadratic formulation. As
we will see in Chapter 5, the linearity of the control law is still maintained
even for problems where the state Xk is not completely observable (imper
fect state information).

N-l

Jo(xo) = :x;SKoxo + L E{W~Kk+lWk}.
k=O

Just like DP, this algorithm starts at the terminal time N and proceeds
backwards. The optimal cost is given by

Since QN-l, R N- 1 , and QN are positive semidefinite, the expression within
brackets is nonnegative. Minimization over U preserves nonnegativity, so
it follows that :r'K N-1 X 2': 0 for all X E 3(n. Hence](N-1 is positive
semidefinite.

Since IN-l is a positive semidefinite quadratic function (plus an in
consequential constant term), we may proceed similarly and obtain from
the DP equation (4.1) the optimal control law for stage N - 2. As earlier,
we show that JN-2 is a positive semidefinite quadratic function, and by
proceeding sequentially, we obtain the optimal control law for every k. It
has the form

The matrix KN-l is clearly symmetric. It is also positive semidefinite. To
see this, note that from the preceding calculation we have for x E 3(n
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k = 0,1, ... ,

Linear Systems and Quadratic Cost

(a) There exists a positive definite symmetric matrix P such that for
every positive semidefinite symmetric initial matrix Po we have

k = 0,1, ... ,
(4.8)

where the initial matrix Po is an arbitrary positive semidefinite sym
metric matrix. Assume that the pair (A, B) is controllable. Assume
also that Q may be written as C'G, where the pair (A, G) is observable.
Then:

Proposition 4.4.1: Let A be an n x n niatrix, B be an n x Tn matrix,
Q be an n x n positive semidefinite symmetric matrix, and R be an
m x m positive definite symmetric matrix. Consider the discrete-time
Riccati equation

lim Pk = P.
k->oo

tends to zero as k --t 00. Since Xk = (A + BL)k xo , it follows that the
closed-loop system is stable if and only if (A + BL)k --t 0, or equivalently
(see Appendix A), if and only if the eigenvalues of the matrix (A + BL)
are strictly within the unit circle.

The following proposition shows that for a stationary controllable
system and constant matrices Q and R, the solution of the Riccati equation
(4.4) converges to a positive definite symmetric matrix K for an arbitrary
positive semidefinite symmetric initial matrix. In addition, the proposition
shows that the corresponding closed-loop system is stable. The proposition
a1so requires an observability assumption, namely, that Q can be written
as C'G, where the pair (A, G) is observable. Note that if T is the rank of Q,
there exists an r x n matrix G of rank r such that Q = G'G (see Appendix
A). The implication of the observability assumption is that in the absence
of control, if the state cost per stage x~Q~r;k tends to zero or equivalently
CXk --t 0, then also Xk --t O.

To simplify notation, we reverse the time indexing of the Riccati
equation. Thus, Pk in the following proposition corresponds to J(N -k in
Eq. (4.4). A graphical proof of the proposition for the case of a scalar
system is given in Fig. 4.1.2.

,sec. 4.1

The notion of stability is of paramount importance in control theory.
In the context of our problem it is important. tha,t the stationary control
law (4.6) results in a stable closed-loop system; that is, in the absence of
input disturbance, the state of the system

Chap. 4Problems with Perfect State Information

[B,AB,A2B, ... ,An-IB]

(

Un_I)
Un -2

xn-Anxo=(B,AB, ... ,An-1B) ';0' (4.7)

If (A, B) is controllable, the matrix (B, AB, ... , An-IB) has full rank
and as a result the right-hand side of Eq. (4.7) can be made equal to any
vector in 3(n by appropriate selection of (uo, Ul, ... , Un-I). In particular,
one can choose (uo, Ul, ... , un-I) so that the right-hand side of Eq. (4.7) is
equal to - Anxo, which implies X n = O. This property explains the name
"controllable pair" and in fact is often used to define controllability.

The notion of observability has an analogous interpretation in the
context of estimation problems; that is, given measurements Zo, ZI,.··, Zn-l

of the form Zk = Gx k, it is possible to infer the initial state Xo of the system
:rk+l = AXk' in view of the relation

has full rank (Le., has linearly independent rows). A pair (A, 0), where
A is an n x n matrix and 0 an m x n matrix, is said to be observable if
the pair (AI, 0 /) is controllable, where A' and G' denote the transposes
of A and G, respectively.

Definition 4.1.1: A pair (A, B), where A is an n x n matrix and B
is an n x m matrix, is said to be controllable if the n x nm matrix

Alternatively, it can be seen that observability is equivalent to the property
that, in the absence of control, if OXk --t 0 then Xk --t O.

or equivalently

to be equal to zero at time n. Indeed, by successively applying the above
equation for k = n - 1, n 2, ... ,0, we obtain

X n = Anxo + BUn-1 + ABun-2 + ... + An-iBuo

One may show that if the pair (A, B) is controllable, then for any
initial state ::Vo, there exists a sequence of control vectors Un, UI,· .. , Un-I
that force the state X n of the system
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A 2 RP
PcP) = --+-R + Q.

where the function P is given by

which can be equivalently written as

Figure 4.1.2 Graphical proof of Prop. 4.4.1 for the case of a scalar stationary
system (one-dimensional state and control), assuming that A i= 0, B i= 0, Q> 0,
and R > O. The Riccati equation (4.8) is given by

Because P is concave and monotonically increasing in the interval (-R/B2 , 00),

as shown in the figure, the equation P = F(P) has one positive solutionP* and
one negative solution P. The Riccati iteration Pk +1 F(Pk ) converges to P*
starting anywhere in the interval (P,oo) as shown in the figure.

Sec. 4.1

where both minimizations are subject to the system equation constraint
:r:i-t-l = A1';i + BUi. Furthermore, for a fixed :r:o and for every k, ;E~Pk(O)1';O

is bounded from above by the cost corresponding to a control sequence fhat
forces Xo to the origin in n steps and applies zero control after that. Such
a sequence exists by the controllability assumption. Thus the sequence
{X~Pk (O)xo} is nonc1ecreasing with respect to k and bounded from above,
and therefore converges to some real number for every 1':0 E ~~n. It follows
that the sequence {Ph (O)} converges to some matrixP in the sense that
each of the sequences of the elements of Pk(O) converges to the corresponcl-

Chap. 4

(4.11)

(4.10)

Problems with Perfect State Information

D A+BL,

D= -(B'PB + R)-lB'PA,

are strictly within the unit circle.

where

P = A'(P - PB(B'PB + R)-lBIP)A + Q (4.9)

within the class of positive semidefinite symmetric matrices.

(b) The corresponding closed-loop system is stable; that is, the eigen
values of the matrix

k-1
X~Pk(O)1':O = 11?;in L(X~Qxi + U~RUi)

t

i=O, .. "k-l i=O

Furthermore, P is the unique solution of the algebraic matrix
equation

k

:S ~~n L(X~QXi + 1l~RUi)
i=O, ... ,k i=O

;[;i+1 = AXi + BU'i, i = 0,1, ... , k 1,

where ;[;0 is given. The optimal value of this problem, according to the
theory of this section, is X~)Pk(O)XO,

where Pk(O) is given by the Riccati equation (4.8) with Po = O. For
any control sequence (UO, 71,1, ... , Uk) we have

k-1 k
2~);I:~Q;Ei + l<R1li) :S L)X~Qxi + 1l~R1li)
i=O i=O

and hence

Proof: The proof proceeds in several steps. First we show convergence of
the sequence generated by Eq. (4.8) when the initial matrix Po is equal to
zero. Next we show that the corresponding matrix D of Eq. (4.10) satisfies
Dk ---7 O. Then we show the convergence of the sequence generated by Eq.
(4.8) when Po is any positive semidefinite symmetric matrix, and finally
we show uniqueness of the solution of Eq. (4.9).

Initial MatTix Po = O. Consider the optimal control problem of find-
ing 'uo, '11.1, ... ,Uk-1 that minimize

k-1
L(1';~QX'i + U~Rlld
i=O

subject to
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(4.1G)

k = 0,1, ...

k=O,l, ...

lim LXk = lim {l*(Xk) = 0.
k--+oo k--+oo

X~(Q+ L'RL)Xk = 0,

lim OXk = 0,
k--+oo

Linear Systems and Quadratic Cost

Since the matrix multiplying XQ above has full rank by the observability
assumption, we obtain XQ =: 0, which contradicts the hypothesis XQ -I 0
and proves that P is positive definite.

(
CA~_l )

0= xo.
OA
C

lim x~(Q + L'RL)Xk = 0.
k--+oo

Thus all the controls p* (Xk) = LXk of the closed-loop system are zero while
we have CXk = °for a11 k. Based on the observability assumption, we will
show that this implies XQ = 0, thereby reaching a contradiction. Indeed,
consider Eq. (4.17) for k = 0. By the preceding equalities, the left-ha,ncl
side is zero and hence

Positive Definiteness of P. Assume the contrary, i.e., there exists
some XQ -f. °such that x~PxQ = O. Since P is positive semidefinite, from
Eq. (4.15) we obtain

Since Xk --+ 0, we obtain X~QXk = X~O'OXk °and :.J:~L'RLxk = 0, or

C(Xk+l - BLxk)
OXk

Since LXk --+ °by Eq. (4.16), the left-hand side tends to zero and hence
the right-hand side tends to zero also. By the observability assumption,
however, the matrix multiplying Xk on the right side of (4.17) has full rank.
It follows that x k --+ 0.

The preceding relations imply that as the control asymptotically be
comes negligible, we have limk--+oo OXk = 0, and in view of the observability
assumption, this implies that Xk --+ 0. To express this argument more pre
cisely, let us use the relation Xk+l = (A + BL):£k [d. Eq. (4.14)], to write

C (:r:k+n- 1 - ~~::ll Ai-l BLXk+n-i-l)

C ( Xk+n-2 ~~::r2 Ai-l BLXk+n-i-2)

rrhe left-hand side of this equation is bounded below by zero, so it follows

that

Since R is positive definite and Q may be written as C'C, we obtain

Dec. L1.1

(4.15)

(4.14)

(4.12)

Chap. 4

X~(Q + L'RL)Xi'
k

i=Q

P D'PD + Q + L'RL,

Problems wit,h Perfect State Information

lim Pk(O) = P,
k--+oo

where Pk(O) are generated by Eq. (4.8) with PQ= 0. Furthermore, since
Pk(O) is positive semidefinite and symmetric, so is the limit matrix P. Now
by taking the limit in Eq. (4.8) it follows that P satisfies

Hence

where D and L are given by Eqs. (4.10) and (4.11). An alternative way to
derive this equality is to observe that from the DP algorithm corresponding
to a finite horizon N we have for all states x N-k

Equation (4.12) then follows by taking the limit as k --+ 00 in Eq. (4.13).

Stability of the Closed-Loop System. Consider the system

P = A'(P - PB(B'PB + R)-lB'P)A + Q.

:r~_kPk-H(O):r;N-k = 2:~_kQXN-k + flN_k(XN-k)'R{lN_k(XN-k)

+ x~-k+lPk(O)XN-k+l.

By using the optimal controller expression PN_k(XN-k) = LN-kXN-k and
the closed-loop systeIYl equation XN-k+l = (A + BLN-k)XN-k, we thus
obtain

In addition, by direct calculation we can verify the following useful equality

for an arbitrary initial state XQ. We will show that Xk --+ °as k --+ 00. We
have for all k, by using Eq. (4.12),

2:~+lPXk+l - X~PXk = x~(D'PD - P)Xk = -x~(Q + L'RL)Xk'

ing elements of P. To see this, take XQ = (1,0, ... ,0). Then X~Pk(O)XQ is
equal to the first diagonal element of Pk(O), so it follows that the sequence
offlrst diagonal elements of Pk(O) converges; the limit of this sequence is the
first diagonal element of P. Similarly, by taking XQ = (0, ... ,0,1,0, ... ,0)
with the 1 in the ith coordinate, for i = 2, ... ,n, it follows that all the di
agonal elements of Pk (0) converge to the corresponding diagonal elements
of P. Next take XQ = (1, 1, 0, ... , 0) to show that the second elements of
the first row converge. Continuing similarly, we obtain
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The assumptions of the preceding proposition can be relaxed some
what. Suppose that, instead of controllability of the pair B), we assume
that the system is stabilizable in the sense that there exists an m x n feed
back gain matrix G such that the closed-loop system ;Dk:+l (A + BG);X;k
is stable. Then the proof of convergence of Pk(O) to some positive semidef
inite P given previously carries through. [We use the stationary control
law fL(X) = Gx for which the closed-loop system is stable to ensure that
;X;~Pk(O)XO is bounded.] Suppose that, instead of observability of the pair
(A, 0), the system is assumed detectable in the sense that A is such that if
Uk -7 0 and OXk -7 0 then it follows that Xk -7 O. (This essentially means
that instability of the system can be detected by looking at the measure
ment sequence {zd with Zk = O;X;k.) Then Eq. (4.16) implies that Xk -70
and that the system ;X;k+l = (A + BL)Xk is stable. The other parts of
the proof of the proposition follow similarly, with the exception of positive
definiteness of P, which cannot be guaranteed anymore. (As an example,
take A = 0, B 0, 0 = 0, R > O. Then both the stabilizability and the
detectability assumptions are satisfied, but P = 0.)

To summarize, if the controllability and observability assumptions of
the proposition are replaced by the preceding stabilizability and detectabil
ity assumptions, the conclusions of the proposition hold with the exception
of positive definiteness of the limit matrix P, which can now only be guar
anteed to be positive semidefinite.

lim Pk(P) = P,
k:-->=

We consider now the case where {Ao, Bo}, ... , {AN-I, BN-d are not known
but rather are independent random matrices that are also independent of
'WO, 'WI, ... , 'WN -1. Their probability distributions are given, and they are
assumed to have finite second moments. This problem falls again within
the framework of the basic problem by considering as disturbance at each
time k the triplet (Ak , B k , 'Wk). The DP algorithm is written as

Random System Matrices

implying that P P. Q.E.D.

Sec. 4.1

for an arbitrary positive semidefinite symmetric initial matrix Po.

Uniqueness of Solution. If P is another positive semidefinite symmet
ric solution of the algebraic Riccati equation (4.9), we have Pk:(p) =P for
all k = 0,1, ... From the convergence result.just proved, we then obtain

(4.18)

(4.19)

Chap. 4Problems with Perfect State Information158

.ATbitmTy Indial Jl1atTix Po. Next we show that the sequence of
rna~nces {Pk~~O)}, de~ned by Eq. (4.8) when the starting matrix is an
c:rlntrary posItIve sermdefinite symmetric matrix Po, converges to P
Illnk:-->= Pk (0). Indeed, the optimal cost of the problem of minimizing

k-I

X~POXk + l::)x~Qxi + 1l~R7Li)
i=:O

subject to the system equation Xi+I = AX'i + BUi is equal to XbPk(PO)XO.
Hence we ha,ve for every Xo E 3'{n

XbPk(O)XO ~ XbPk(PO)XO.

Consider now the cost (4.18) corresponding to the controller P,(Xk) = Uk =
L:Dk' where L is defined by Eq. (4.11). This cost is

x'Pk(O)x <:: x'Pk (PO)1; <:: x' (Dk'PODk +~ Di'(Q + L'RL)Di) ;t.

We have proved that

lim Pk(Po) = P
k-->= '

and is greater or equal to XbPk(PO)XO, which is the optimal value of the
cost (4.18). Hence we have for all k and x E iJ(n

and we also have, using the fact limk-->= Dk f PoDk = 0, and the relation
Q + L'RL P - D'P D fcf. Eq. (4.12)),

k~~ {Dk'PODk + :EDi'(Q +L'RL)Di}
2=0

= kl~~ {:E Di'(Q + L'RL)Di}
2=0

= kl~~ {:E De(P -- D' PD)Di}
7=0

p.

Combining the preceding three equations, we obtain
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