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CHAPTER VI 

Systems with an Integral Invariant 

1. Definition of an Integral Invariant 

We shall consider the motions of a dynamical system given by 
the differential equations 

dx. 
(1.01) d/ = X;(Xi, x2, ... , xn) (i = 1, 2, ... , n). 

The functions X; are defined in some closed domain R of the 
"phase space" (xi, x2, ... , xn); we shall regard them as being 
continuously differentiable with respect to all the arguments. Then 
the initial values xi0l, x~0l, ... , x;?l for t = t0 determine a motion 
of the system (1.01): 

(1 O") _ (t t . (0) (0) (0)) . "' X; - <:p; - o, X1 ' X2 ' ... , Xn (i = 1, 2, ... , n), 

where the <:p; have continuous partial derivatives with respect to 
the initial values (x1°l, x~0l, ... , x;?l). We shall denote the motion 
(1.02) more concisely thus: 

x = f(x0 , t). 

An integral invariant (of the nth order), according to Poincare, 
is an expression of the form 

( 1.03) 

where the integration is extended over any domain D, if this 
expression possesses the property 

(1.04) ff· · · f M(xi, X2, ... , Xn)dx1 dx2 . .. dxn 
D 

[425] 
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Here Dt = f(D, t) is the domain occupied at the instant t by the 
points which for t = 0 occupy the domain D. 

Poincare also gave a simple dynamical interpretation of the 
condition (1.04) characterizing an integral invariant. We shall 
consider the system in three-dimensional space 

dx dy dz 
-d = X(x, y, z), -d = Y(x, y, z), - = Z(x, y, z), 

t t dt 
(1.05) 

and shall interpret it as a system of equations determining the 
velocity of the steady state motion of a fluid filling the space R. 
If e(x, y, z) denotes the density of the fluid at the point (x, y, z), 
then the integral 

(1.06) ff f e(x, y, z) dx dy dz 
D 

represents the mass of the fluid filling the domain D; the ex­
pression (1.06) is an integral invariant since this mass of fluid 
remains unaltered when the particles of the fluid, having undergone 
a displacement along their trajectories for a time interval t, occupy 
the domain Dt· Thus, for the system (1.05) defining a steady state 
motion of the fluid, there exists an integral invariant in which the 
function M of the formula (1.03) is the density of the fluid. If the 
fluid is incompressible, then e(x, y, z) = const. and we have 

(1.07) I I I dx dy dz = I I I dx dy dz. 
D D, 

Thus, in the case of an incompressible fluid, the volume is an integral 
invariant. 

We now introduce a partial differential equation satisfied by 
the function M of the formula (1.03) - the "density of the integral 
invariant". We first take a local point of view. We choose a closed 
domain D lying wholly within R and a time interval (-T, T) so 
small that Dt CR for -T < t < T. Next we take within this 
interval a fixed instant t and a small increment h such that 
t + h E (-T, T). We set 

(1.08) 

Then one can write 
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(1.09) I(t + h) = J J ... f M(x~, x~, .. . , <)dx~dx~ ... dx~, 
Dt+h 

where (x~, x~, ... , <) is a point of the domain Dt+h· By virtue of 
the uniqueness of the solution and the continuous dependence on 
the initial conditions, the formulas which are obtained from (1.02) 
if one sets t __:_ t0 = h and denotes the coordinates for the value 
t by xi and for the instant t + h by x;, i.e. 

(1.10) (i = 1, 2, ... , n), 

determine a one-one correspondence between the points of the 
domains Dt and Dt+1,· Therefore in the expression (1.09) one can 
pass from the variables x; to the variables xi, at the same time 
replacing the domain Dt+h by the domain D 1• From the conditions 
imposed on X; there follows the existence of the continuous partial 
derivatives 

ox; oq;i 
-=-
OX; OX; 

(i, j= 1,2, ... ,n); 

therefore, by the formula for a change of variables, the multiple 
integral (1.09) takes the form 

l(t + h) = f J. .. f M[q;1 (h; x1, X2, .. . , Xn), .. . , <pn(h; Xi,X 2, •• • , Xn)] 
Dt ' I I 

(1.ll) D(x1 , x2 , •• • , xn) 
· dx1 dx2 . .. dxn. 

D(xi, X2, .. . , xn) 

We shall assume that the function M also admits continuous 
partial derivatives with respect to all its arguments. Under this 
assumption we shall compute the integrand in formula (1.ll). 
First of all we note that because of the differentiability with respect 
to h of the functions <pi we have 

M[q;1 (h; Xi, x2, .. . , Xn), .. . , <pn(h; Xi, x2, ••• , xn)] 

(oq;1) (oq; n) + 0 (h) J, = M[x1 + h - + o(h), .. . , Xn + h 
ah h=O oh h=O 

where o (h) denotes in general functions whose quotients when 
divided by h tend to zero uniformly with respect to x1 , x2, .•• , Xn 
in the domain Dt as h-+ 0. Noting that the expressions (1.02) are 
solutions of the system (1.01) and, consequently, 
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(O<pi) = Xi(X1, X2, .•• , Xn} 
oh h=O 

(i = 1, 2, ... , n), 

we have, because of the existence of the complete differential of 
M (and this follows from the existence of the continuous partial 
derivatives), 

(1.12) M(x;, x~, .. . , X:) 

Furthermore, the functions ax;Jox1 (i, j, = 1, 2, ... , n), as already 
mentioned, are continuous functions of h, x1 , x2 , .... , xn; moreover, 
they admit continuous derivatives with respect to h; and for 
h.= 0 the functions are equal to oi:i (i.e. 0 for i =I= j and 1 for i = i). 
Their derivatives satisfy variational equations 1 

!-_ax:= I axi(x~. x~., .. . , X:) a< 
dh OX; k=l oxk OX; 

(i, j = 1, 2, ... , n); 

whence 

Substituting these values into the Jacobian of the transformation 
and selecting in the determinant the term not containing h and the 
terms of the first order with respect to h, we obtain. 

D(x~, x~, .. . , X:) h ~ oXi(Xi,X2, ... ,xn) 
----- = 1 + L.., + o(h). 
D (xi, X2, ... , xn) . oxi 

•=1 

(1.13) 

Substituting the values (1.12} and (1.13} into (1. ll), we find 

[ 
n oM n oX.J 

I(t + h) = J J. .. J {M + h ""Xi:;- +M""-' + o(h)}dx1 dx2 ••• dx,. 
D L_, uX, L_, OX· 

t i=l • i=l • 

1See V. V. Stepanov, Course in Differential Equations, Chap. VII, § 3. 
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We compute the derivative J'(t): 

1. I(t + h) -I(t) 
I'(t) = 1m-----

1,----.o h 

429 

1 JJ J n oM n oX. 
= ~!h · ;,· {h [6 Xi oxi + M 6 oxi• J + o(h)}dx1 ... dxn 

ff J[ n o(MXi)] 
= . . . I . dxl ... dxn. 

D, i=l OX, 

Now let J(t) be an integral invariant; then the equality 

I'(t) = o 

holds for any (sufficiently small) domain D. From this we obtain 
a necessary condition for the density M: 

(1.14) ~o(MXi) = O. 
~ ox. 
i=l • 

It is easily seen that if, conversely, the condition (1.14} is fulfilled 
identically, then the expression (1.03) is an integral invariant. 

The condition (1.14) is the partial differential equation for M. 
From the existence theorem for such an equation one can assert 
that for the system under investigation a local invariant integral 
always exists. However, this fact does not enable us to draw the 
desired conclusions of a qualitative character concerning the 
dynamical system. In fact, we shall consider only positive integral 
invariants (or at least non-negative). For a sufficiently small 
domain D we can satisfy this restriction in the following manner. 
For a unique determination of the solution of the partial differential 
equation (1.14} one must assign the Cauchy data. If the point 
( (0) (0) (0)) . • • 1 f h t ( ) ·t b x1 , x2 , ••• , xn 1s not cnhca or t e sys em 1.01 , 1 e 
assumed that for at least one i, xi =p O in some neighborhood of it. 
Let i = 1. Then we can assign for x1 = xfl the initial condition 
M = q,(x2 , x3 , ••• , xn), where <p > O; hence, because of the continuity 
of M as a solution of (1.14), M will be positive for values of x1 

in a sufficiently small neighborhood of the point x1 = xfl. 
But we are considering a system of the form (1.01) in some 

domain R of the space (x1 , x2 , ••• , xn) (or in some n-dimensional 
manifold) which is an invariant set of the system; i.e., if the initial 
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point lies in R, so does the entire trajectory. We shall call an 
expression of the form (1.03) an integral invariant only in the case 
when M > 0 in the whole domain R; then the equality (1.04) holds 
foranydomainDandforanyvalueoft(-oo < t < +oo). Further­
more, we shall introduce the added restriction 

J f. ~. f M dx1 dx2 ••. dxn < + 00. 

If such an integral invariant exists, then its density M satisfies 
the equation (1.14). But it is impossible to prove its existence for 
any system satisfying only the condition of differentiability. The 
existence of an integral invariant in this sense is an additional 
restriction imposed on the system ( 1.01). 

1.15. Norns: The case when the right-hand sides of the equa­
tions depend on t is reduced to the form ( 1.01) by a preliminary 
replacement oft by xn+1 and the introduction of the supplementary 
equation dxn+ifdt = 1. The condition (1.14), after a return to the 
variable t, takes the form 

(1.16) oM + ~ o(MX;) = 0. 
ot -6_ ox; 

1.17. A function M, satisfying equation (1.14) or (1.16), is called 
a multiplier of Jacobi. 

1.18. The condition that the system (1.01) admit volume as 
an n-dimensional integral invariant, i.e. M = 1, is 

~ oX; = o. 
LOX-
i=l i 

The equations in the Hamiltonian form, 

dpi oH dqi oH 
dt - oq/ di= op; (i = 1, 2, ... , n), 

where 

H = H(P1, P2, • · ., Pn, qi, q2, • • ., qn), 

obviously belong to this class. 
1.19. Any system (1.01) with an integral invariant in which 

M > 0 can be reduced to the case M = 1. For this it is necessary 
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to transform the independent variable (time) by means of the 
formula dr: = dt/M; then the equations take the form 

dxi , 
- = MXi = Xi(Xi, X2, .. . , xn); 
dr: 

and because of (1.14) 

n ax'. °"'-' - 0 Lax. - . 
i=l ' 

The gist of the transformation of the type indicated lies in the fact 
that, while not altering the trajectories of the particles, we multiply 
the velocity at the point (xi, x 2 , ••• , xn) by the value of the function 
M at this point. However, this transformation does not simplify 
the theory significantly. 

1.20. If the right-hand sides of the equations (1.01) are subject 
only to Lipschitz conditions with respect to x1, x 2 , ••• , xn, and if 
an integral invariant exists, then the function M has partial 
derivatives almost everywhere (and has bounded derived numbers 
everywhere); the condition (1.14) is fulfilled almost everywhere 
(V. V. Stepanov, Compositio Math. 3). 

We consider in particular a dynamical system for n = 2: 

dx dy 
- = X(x, y), -d = Y(x, y). 
dt t 

(1.21) 

We shall deduce the necessary and sufficient condition under which 
area will be an integral invariant for the system (1.21). From 
equation (1.14) the condition M = 1 gives 

(1.22) 
ax aY 
-+-= 0. 
ax oy 

Obviously, this is the condition that the express10n 

(1.23) Ydx-Xdy 

be an exact differential. 
In the general case M ¢= 1 equation (1.14) gives 

a (MX) + a(MY) = 0. 
ax ay 

This is the equation for an integrating factor M of the expression 
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(1.23); thus the system {1.21) in the presence of an integral invariant 
must possess an integrating factor which is continuous and positive 
over the entire invariant set under consideration. 

As another example, we consider the system of linear equations 

(1.24) 
dx 
-=ax+by 
dt ' 

dy 
- =ex+ dy, 
dt 

where a, b, e, d are constants, with the critical point (0, 0). The 
condition (1.22) for invariance of area gives 

a+ d = 0. 

Reducing the system (1.24) to normal form 2, we obtain for A. 
the equation 

A.2 - (a + d)A. + ad - be = 0, 

or, 1n our case, 

A.= ±V-ad + be. 

Thus, invariance of area for the system (1.24) holds only in case 
the critical point is a center (imaginary roots) or a saddle, where 
for the latter case there must be A.2 = -A.1. 

From what has been said it follows that the methods of the local 
theory of differential equations do not enable one, in the general 
case, to establish the existence of a non-negative integral invariant; 
and these will have great significance in this chapter for the in­
vestigation of dynamical systems. There exists a series of investiga­
tions giving conditions under which a dynamical system will have 
an integral invariant in the sense mentioned above. These con­
ditions appear as restrictions imposed on the system. 

We shall proceed along a more abstract route. As in the preceding 
chapter, we shall consider here dynamical systems in the metric 
space R. Frequently we shall assume that this space has a countable 
base. In certain cases we shall regard R as compact or locally 
compact. The role of the integral invariant in these abstract 
dynamical systems is played by invariant measure. But before the 
introduction of invariant measure it is necessary to establish a 
theory of measure in general. The following section is devoted to 
an exposition of one such theory. 

2See V. V. Stepanov, Course in Differential Equations, Chap. II, § 2. 
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2.36. Norn. We have carried out the proof of Fubini's theorem 
for the topological product of a metric space with a countable 
base and a one-dimensional Euclidean space because this case 
will be encountered in the sequel. The proof would not be altered 
if we were to have two metric spaces with countable bases, R1 

and R 2, with•Caratheodory measures µ 1 and µ 2, each R being the 
union of not more than a countable number of sets of finite measure. 

1. Recurrence Theorems. 

Let a dynamical system f(P, t) be given in a metric space R. A 
measure µ defined in the space R is called invariant (with respect 
to the system f(P, t)) if for any µ-measurable set A there holds the 
equality 

(3.01) µf(A, t) = µA (-oo < t < +oo). 

From the property {3.01) it follows that images of a measurable 
set are measurable. This invariant measure is the natural generaliza­
tion of the integral invariant considered in section 1 for systems 
of differential equations. 

Systems with an invariant measure possess a series of properties 
distinguishing them from general dynamical systems. In this 
section we shall consider the theorem of Poincare-Caratheodory 
on recurrence. 

Let there exist in a space R of a dynamical system an invariant 
measure µ. Suppose that the measure of the entire space is finite; 
for simplicity we set µR = 1. The recurrence theorem separates 
naturally into two parts. 

3.02. THEOREM {RECURRENCE OF SETS). Let AC R be a meas­
urable set, µA = m > 0. Then there can be found positive and 
negative values of t (ltl > 1) such that µ[A · f(A, t)] > 0. 

For the proof we consider the positions of the set f (A, t) for 
integral values of t(t = 0, ±1, ±2, ... ) and introduce the notation 

An= f(A, n) (n = 0, ±1, ±2, ... ). 

Because of invariance we have 

µAn= µA = m > 0. 

If it be assumed, for example, that the sets A0 , Av ... , Ak intersect 
in pairs only in sets of measure zero, we then obtain 
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µ(A 0 + A 1 + ... + Ak) = km, 

which, when k > 1/m, leads to a contradiction of the assumption 
that R = 1. 

Thus there exist two sets Ai• A; (i i=- j) such that 

{3.03) µ(Ai· A;) > 0. 

Suppose that i < j; then O < i < j < k. On applying to the set 
Ai· A; the transformation f(P, -i), we obtain from (3.03) that 

µ(A 0 • f(A 0 , j-i)) > 0, 

which proves the assertion, since j - i > l; moreover, we can 
choose 

If one applies the transformation f(P, -j), to (3.03), one obtains 

µ(Ao·f(A 0 , i-j)) > 0, i-j<l. 

The theorem is proved. 
3.04. NOTE. By the same method it is easy to prove that the 

values oft for which µ(A · f(A, t)) > 0 can be arbitrarily large in 
absolute value. In fact, let T, T > 0 be any preassigned number; 
we choose an integer N > T and consider the sequence of sets 

The preceding argument leads to the relation 

µ(A 0 • f(A 0, N(j - i)) > 0, N (j - i) > N > T, 

and analogously for values t < -T. 
3.05. THEOREM (RECURRENCE OF POINTS). If in a space R 

with a countable base we have µR = 1 for an invariant measure µ, 
then almost all points p e R (in the sense of the measure µ) are stable 
according to Poisson, i. e. denoting the set of points unstable 
according to Poisson by C, we have µC = 0. 

We first take any measurable set A such that µA = m > 0. 
As in the preceding theorem, we set 

An= f(A, n) (n = 0, ±1, ±2, ... ). 

Next we construct the sets 
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