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STOCHASTIC DYNAMIC DISCRETE EQUATION

• In Stochastic Approximation , in Markovian Learning models, as well 
as in many Estimation or Identification Algorithms and in many 
Control problems where a Controller is chosen, we are led to study the 
convergence of a Stochastic Difference Equation of the form: 
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In order to study the convergence-stability of this sequence we need to review some
 concepts and results.
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LYAPUNOV’S METHOD
• Stable, Asymptotically Stable, Unstable Equilibria
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For discrete time ,similar results(see LaSalle 's book):
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• To study the Stability of the Stochastic Difference 
Equation we need to use the important relationship of 
last page, for  Random Variables and the Inequality 
will be done in a stochastic setup using the notion of 
Supermartingale.

• We also need to review first the basic notions of 
Stochastic convergence in order to make sense of 
going to an equilibrium.
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CONVERGENCE OF SEQUENCES OF RANDOM 
VARIABLES

Let { } be a sequence of RV's defined on( , , ) .Let   be a RV on ( , , ).
1. ALMOST SURE CONVERGENCE,[a.s.],(or ALMOST EVERYWHERE CONVERGENCE,[a.e.],
or  CONVERGENCE WITH PROBABILITY 1):
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2. CONVERGENCE IN PROBABILITY [prob]
[prob]  iff  0  lim [ ) 0

3.CONVERGENCE IN MEAN OF ORDER r,[mean ], 1,2,3...
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( 1,[mean]   and  2,[mean ]  are most important)
4. CONVERGENCE IN DISTRIBUTION[dist.]
Let    be   the  . .  for    and    be the D.F. for .

[dist.]   iff  lim ( ) ( )
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RELATIONSHIPS
[mean ] [prob] [dist],  [a.s.] [prob], [mean ] [mean]
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SUPERMARTINGALE 
(J.Doob)

0 1 2

0 1 1 1

DEFINITION
A sequence of random variables , , ,....is called  supermartingale if for every 
                                           [ / , ,..., ] ,   a.e.

THEOREM
If { }  is a sequence 
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This is the basic tool for extending  Lyapunov 
Theory to Stochastic Systems.
It was done by R.Bucy in a paper, that we present 
briefly for historical reasons.We also do examples 
1 and 2 from this paper.

We will present material from Chapter 2 from 
B.Polyak’s book “Introduction to 
Optimization”Optimization Software,Inc.1987, 
(concise ,clear and general presentation)
(pp.43-50)
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HOMEWORK 
(from H.Kushner’s book: “Introduction to Stochastic Control”)

1 ( ) be a linear system with control ( ) ,where the
 control  drives  to a point ,and { } is asymptotically stable about that point.
 Let { } be mutually independent with covar
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Define ( )  .Show that there is some ellipse with center  

which is reached w.p.1. for any . [Hint:The { } system has a Lyapunov

 functon of the form ( ) ( - ) (
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 ( ) - ( ) -( - ) ( - ), >0 also.Use the same Lyapunov function 
for the { } process and show that ( ) - ( ) 0 outside a suitable ellipse.]
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