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Further Properties of Nonzero-Sum Differential Games 1 

A. W. STARR 2 AND Y. C. Ho s 

Abs t r ac t .  The general nonzero-sum differential game has N ptayers, each 
controlling a different set of inputs to a single nonlinear dynamic system and 
each trying to minimize a different performance criterion. These general 
games have several interesting features which are absent in the two best- 
known special cases (the optimal control problem and the two-person, 
zero-sum differential game). This paper considers some of the difficulties 
which arise in attempting to generalize ideas which are well known in optimal 
control theory, such as the principle of  optimality and the relation between 
open-loop and closed-loop controls. Two types of solutions are discussed: the 
Nash equilibrium and the noninferior set. Some simple multistage discrete 
games are used to illustrate phenomena which also arise in the continuous 
formulation. 

1. I n t r o d u c t i o n  

In  the general N-player ,  nonzero-sum differential game, the /th player 
chooses u i t rying to minimize 

t /  

Ji = f ~oLi(x, t, u~ ..... uN) dt -f- Ki(x(t:))  (1) 

subject  to the n-dimensionai  state equation, c o m m o n  to all players, 

= f (x ,  t, u I ,..., UN), x(to) = X o (2) 

and possibly subject to various inequali ty or equali ty constraints  on the state 
and/or  control variables; these are omit ted  here for simplicity. 
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This problem, which includes the optimal control problem (N = 1) and 
the two-person, zero-sum differential game (N = 2, J1 = - J 2 )  as special 
cases, is of interest in analyzing a dynamic system with inputs controlled by 
several players with not entirely conflicting goals. 

One naturally expects that methods for computing solutions to these 
problems can be obtained by generalizing well-known methods of optimal 
control theory. While this is true to some extent, several difficulties arise 
which are absent in control problems and two-person, zero-sum differential 
games. In this paper, we consider generalizations of two ideas which are 
very useful in solving optimal control problems: (a) the relation between 
open-loop and closed-loop optimal controls and (b) the principle of optimality. 

Nonzero-sum differential games were discussed by Starr and Ho (Ref. 1), 
who concluded that there is no single satisfactory definition of optimality 
for these problems. Depending upon the application, various types of solutions 
are relevant. 

One interesting type of solution is the Nash equilibrium. It is optimal 
in the sense that no player can achieve a better result by deviating from his 
Nash controls as long as the other players continue to use their Nash controls. 
If the control strategy and the cost for the ith player are denoted by u i and J~, 
respectively, the Nash equilibrium strategy set {ul*,..., uN*} has the property 
that, for i = 1,..., N, 

* :g U~ < :g :¢ :g 
J~(u~ ,..., uN) = min J~(, .... , gi-1 , Ui, Ui+l , ' . ' ,  UN) 

Ug 

Letting u* = {Ul*,..., u~*} and J = {J1 ,..., JN}, we sometimes refer to u* as a 
Nash saddle point of J(u). 

Depending on the formulation of the problem, ui may be one of a finite 
set of controls (static bimatrix game), a function of time (open-loop differential 
game), a function of the state vector and time (closed-loop differential game), 
and so on. 

In the analysis of competitive dynamic systems (for example, several 
rival firms in an imperfectly competitive market), the restriction that no 
binding agreements can be made among the players leads naturally to the 
secure Nash solutions. Then, one would like to know what has been sacrificed 
to obtain this security, i.e., do solutions exist which reduce the costs of all 
players below their Nash costs ? This leads us to a second type of interesting 
solution, the set of noninferior strategies. If ~ is noninferior, then there exists 
no control u such that 

j~(u) <~ J~(~), i = 1,..., N 
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with strict inequality for at least one i. Any negotiated solutions with all 
players cooperating but no transfer payments allowed should be chosen from 
this class. In most differential games, there is a single Nash solution but an 
(N -- 1)-parameter family of noninferior, or undominated, solutions. 

2. Relationship Between Open-Loop and Feedback Nash Solutions 

In optimal control problems, one often distinguishes between open-loop 
solutions, where the optimal control for a trajectory through a specified 
initial state x 0 is given as a function of time, and closed-loop or feedback 
solutions, which give the optimal control as a function of the state x and 
time t everywhere in an appropriate region of the state-time space. It is 
well known that, in deterministic problems, ~ the open-loop solution u°(t), 
t o ~ t ~ t I , can be generated from the feedback solution u°(x, t) simply by 
integrating the state equation forward from the initial point (x0, to). This 
would be a reasonable way to find the open-loop control if an algorithm 
based on a dynamic-programming approach were available for computing the 
closed-loop optimal controls in a region containing the given initial point. 

Alternately, if a successful open-loop algorithm based on a variational 
approach is available for calculating u°(t) for a trajectory through (x0, to) , 
then the closed-loop control law can, at least in principle, be generated by 
successively solving the open-loop problem for each initial point (x 0 , to). 

In what appears to be the most interesting class of differential games, 
all players know the current state vector, so that a closed-loop Nash solution 
is required. 5 There may also be interesting open-loop problems where the 
entire sequence of controls for each player must be chosen prior to the initial 
time. 

Whichever type of Nash solution is required, one could in principle 
solve for the Nash strategies for all the players in advance, since there are 
no unpredictable inputs to the system. Therefore, one is tempted to conclude 
that the same relation exists between the open-loop and closed-loop strategies 
as exists in the optimal control problem, i.e., they are just different ways 
of describing the same outcome. The purpose of this section is to demonstrate 
that such a conclusion is false. Although our real interest is continuous 

T h e s e  are p rob lems  where  all the  parameters  a n d  all the  inpu t s  to the  sys t em over the  t ime  
interval u n d e r  considerat ion are known at the  initial t ime.  

5 M o r e  realistically, t hey  m i g h t  have imperfect ,  noisy  m e a s u r e m e n t s  of  the  state vector;  bu t  
here  we a s s u m e  exact knowledge of the  state vector  as well as all the  sys tem parameters  inc luding  
the  cost func t ions  for the  o ther  players. 
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t-O t-t  t .2  

Fig. t 

differential games, we first illustrate the basic idea by considering a very 
simple discrete, finite-state multistage game. 

In the two-player game in Fig. 1, each player has two possible controls, 
labeled 0 and 1. At each stage t, both players simultaneously choose a control. 
The  resulting control pair determines the transition to the next stage. There 
are four possible transitions, leading to three possible stages x, and associated 
with each transition are costs q ,  c~ (encircled) for the two players. Each 
player wants to minimize his total cost in reaching t = 2, the terminal stage. 

Let  us t ry to find the closed-loop Nash solution by following the dynamic 
programming approach. At stage t = 1 and state x = 2, the situation for the 
two players is represented by the bimatrix game in Fig. 2a. Clearly, the 
controls 0, 0 are the only pair with the Nash property, since Player 1 would 
increase his cost from 2 to 4 by playing 1, while Player 2 would increase 
his cost from 2 to 3 by playing 1. (As far as the Nash equilibrium is concerned, 
it does not matter what would happen should both players play a non-Nash 
control.) The  Nash costs are q ----- % = 2. Similarly, we see from Fig. 2b 
that the Nash controls at x = 1, t ~- 1 are 1, 1 with costs 0, 3; and, from 
Fig. 2c, we see that, at x = 0, t = 1, the Nash control pair 1, 0 gives costs 4, 1. 
Moving back to the initial stage t = 0, we assume that the players play their 
Nash controls at t = 1; thus we add the Nash costs 2, 2 associated with 
state 2 to the costs of the transition leading to state 2, and so on. The  resulting 
situation is given in Fig. 2d. The  Nash control pair is then 0, 1 with costs 4, 4 
for the entire game. The  trajectory is x(1) = 2, x(2) = 2. 
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Fig. 2 

Then, can we conclude that this trajectory with its associated control 
sequences 00, 10 is also the open-loop Nash trajectory ? In Fig. 3, the costs 
are tabulated for each pair of open-loop control sequences. Inspection of 
this bimatrix game shows that only the control sequence pair 1 t, 00 has the 
Nash property, giving costs 3, 2. The closed-loop Nash solution 00, 10 does 
n o t  have the Nash property in the open-loop table. The open-loop Nash 
trajectory is x(1) = 0, x(2) = 0. 

One reason for this difference between the open-loop and closed-loop 
solutions is the fact that several control sequences were eliminated from 
consideration at t ~ 0 by the assumption that the player would choose Nash 

PLAYER t 

PLAYER 2 

tl 
oo 4,4 s,3 3 5%~____NASH CLOSED-LOOP 
ot 4,6 2,5 6,3 2,4 

~o 4,3 t,4 7,z 8 j  

t~ 5,3 

NASH OPEN-LOOP 

Fig. 3 
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controls only at t = 1, based on knowledge of state at t .... 1. This assumption 
that the players always attempt to op t i m i ze  the remaining part of the trajectory 
based on the current state regardless of previous actions is the natural extension 
of the basic principle of optimality found in all dynamic-programming type 
of calculations. Yet, it is not always safe to employ such assumptions in the 
nonzero-sum case. Another interesting point to note is that the Nash open-loop 
costs (3, 2) in Fig. 3 are strictly superior to the closed loop costs (4, 4) 
calculated via d y n a m i c  p rogramming .  This casts further doubt on the 
applicability of the principle of optimality. We have more to say on this in 
Section 3. 

It  should be pointed out that the two-stage game with closed-loop 
control in Fig. 1 can also be represented as a single bimatrix game, but 
not the same game as that obtained in Fig. 3 for open-loop controls. Since 
each player has eight possible feedback strategies, the closed-loop bimatrix 
game is an 8 × 8 table. In this array, only the closed loop strategy pair 

u~(0, 0) = 0, u~(0, 0) = 1 

u~(t,  1) = 1, u~(1, 1) = 1 

u~(2, 1) = O, u~(2, 1) = 0 

has the Nash property. Obviously, this would be a cumbersome way to find 
closed-loop Nash strategies, especially with a larger number of states, stages, 
controls, or players. 

2.1. Con t inuous  Dif ferent ia l  G a m e s .  A general conceptual method 
for finding the closed-loop Nash equilibrium control ul*(x , t) , . . . ,  u* (x ,  t) was 
presented in Ref. 1. One finds the remain ing  cost f unc t ions  V~(x, t), i = 1,... ,  N ,  
by solving a set of coupled partial differential equations 

- - 9V i / 3 t  = min Hi(x,  t, u 1 ,..., uN , ~Vi/~x), 
ut 

i = 1 ..... N (3) 

where the Hamiltonian for the kh player is 

Hi(x ,  t, ul ,..., uN,  aVi/~x)  = Li(x,  t, u 1 .... , uN) + (OVi/Ox)f(x,  t, ul .... , uN) (4) 

On the terminal surface, 

V,(x(t,), t,) = K,(x(tA) (5) 

The Nash controls are the controls u i which achieve the required minima. 
If the functions Li and f are continuously differentiable in u i and if the 



JOTA: VOL. 3, NO. 4, 1969 213 

minimum is in the interior of the set of admissible controls, then u i can be 
found by solving the relation 

~H~/eu~ = 0, i = 1,..., N (6) 

to obtain u~ explicitly as a function of x, t, 9V/~x. Then, one must solve 
the set of partial differential equations for Vi(x, t), from which one finally 
obtains ui*(x, t). 

To find the open-loop Nash solutions, one first uses a variational method 
to derive the necessary conditions. Case (Ref. 2) obtained the following 
conditions, which hold only if the controls are all open-loop: 

where 

= f ( . ,  t, .~ ,..., . ~ )  (7) 

I J  = --eH~/a~ (S) 

A~r(t,) = (~/~x(t,)) K~(x(tf)) (9) 

H~(x, t, u~ .... , ue¢ , A/T) -- min w.r.t, u~ (10) 

H i ( x  , t ,  u I . . . . .  U N ,  Ai T) = L i ( x  , t ,  u I . . . . .  UN) + AJ f (x ,  t, u~ .... , UN) (11) 

Computational algorithms can be obtained from these necessary conditions. 
Necessary conditions for the close&loop Nash controls Wl(x, t),..., ~N(X, t) 
were obtained by Start and Ho (Ref. 1) by replacing (8) with 

N 
Ki T =  --~HilOx-- ~ (aHi/~uj)(~glj(x,t)/~x) (12) 

j=l , j~i  

The presence of the summation term in (12) makes the necessary conditions 
(7), (12), (9), (t0) virtually useless for deriving computational algorithms. 
Note that this troublesome term is absent in the optimal control problem 
(because N = 1), in the two-person zero-sum game (because H 1 ---- - - H  2 , 
so that OH1/Ou 2 = - - ~ H 2 / a u  ~ = 0), and in the open-loop, nonzero-sum 
problem (because 9Wj/~x = 0). One certainly expects the open-loop and 
closed-loop solutions to be different whenever this term is nonzero. 

Using reasoning familiar from optimal control theory, one can interpret 
(12) as follows: ;~i is the influence function for the ith player, i.e., the sensitivity 
of his cost to a perturbation in the state vector. If the other players are using 
feedback strategies, any perturbation ~x of the state vector causes them to 
change their controls by the amount (~W~/Ox)8x. If the ith Hamiltonian 
were already extremized with respect to the control uj,  j ~ i, this would 
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not affect the ith player's cost; but, since generally OHi/Ouj ~ 0 for i ~ j, 
the reactions of the other players to the perturbation influence the ith player's 
cost, and the ith player must account for this effect in considering variations 
of the trajectory. 

In fact, a rather peculiar situation arises when the ith player makes a 
small change 8u t in his control in the vicinity of the Nash trajectory. Since 
OHi/Ou t = O, the effect of ~ui on the ith player's cost is only of the second 
order in ~ui, but the effects on all the other players' costs are of the first 
order because OH/~ui ~ 0 for i =~ j. In making fine adjustments to reach 
his minimum cost, the ith player may cause wild fluctuations, either beneficial 
or harmful, in his rivals' costs. If they are able to react to this change (i.e., 
they have closed-loop control), they in turn cause first-order changes in the 
ith player's cost, so that another second-order term in Su i , due to the reactions 
of the rivals, must be added to the direct second-order effect of ~u i on the 
ith cost. Thus, it is easy to see that the equilibrium conditions (and, 
consequently, the trajectories which satisfy them) are not the same in the 
open-loop and closed-loop problems. Even for the simplest nonzero-sum 
differential game, the linear-quadratic case, entirely different Nash solutions 
have been obtained by the authors for the open-loop and closed-loop 
formulations. 

3. The O p t i m a l i t y  Pr inc ip le  

The welt-known prin@le of optimality has been of great use in providing 
a conceptual framework for solving optimal control problems. The same 
principle, which Isaacs called the tenet of transition, is the basis of a general 
method for finding optimal strategies in zero-sum, two-person differential 
games. Thus, it is naturally interesting to inquire what principle of optimality, 
if any, holds for a more general, N-person, nonzero-sum differential game. 
In this section, we discuss the relation between the noninferior solutions, 
the Nash solution, and the optimality principle. 

In a static, nonzero-sum game, we speak of a prisoners' dilemma situation 6 
whenever the Nash solution does not belong to the noninferior set. For 
example, in Fig. 2, the prisoners' dilemma occurs in bimatrix games a and d, 
but not in b or c. It should also be clear what is meant by the statement 
that the vector Hamiltonian 

H = {H 1 ..... HN} 

See footnote in the introduction of Ref. 1. 
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t=O t - t  t -2  

Fig. 4 

(with H~ defined in (11)) has a prisoners' dilemma for some particular values 
of x, t, a I ,..., A N . 

Now, consider a dynamic game, either a differential game or a multistage 
game, whose closed-loop Nash solution is obtained via the dynamic- 
programming approach used in Section 2. One is tempted to guess that, if 
no prisoners' dilemma occurs at any stage or state during the computation of 
the Nash equilibrium, then the Nash solution is noninferior. But this con- 
jecture is false, as we show below. Again, we start with a discrete multistage 
game. The game in Fig. 4 is almost trivial; it is really a single static, bimatrix 
game played twice. Since there is only one state, there is no difference between 
open-loop and closed-loop. 7 One can see by inspection that the prisoners' 
dilemma does not occur at either stage in the Nash solution. The pair of 
control sequences 00, 11 gives the Nash soIutions. At no stage does the 
prisoners dilemma situation occur; i.e., the Nash solution at each stage is 
noninferior. Can we conclude from this that the Nash solution is noninferior 
globally over two stages ? In other words, is there no cooperative solution 
by which both players can reduce their costs ? To answer this question, we 
tabulate the costs for all possible pairs of control sequences in Fig. 5. 

Inspection of Fig. 5 shows that there are eight noninferior solutions 
(marked with an asterisk), but the Nash solution is not among them. By 

PLAYER 2 

II 
0 0 ~ * * ~y~NASH 0,10 4,9 4,9 

PLAYER t 0 t  9 , '4"5 ,5  t3,t3'91'4 ....... 

109,1413,13"5,5 "9,4 

It '~o,0 

Fig. 5 

A more complicated counterexample where s ta t e  is important can also be constructed, but the 
game in Fig. 4 is adequate for our purposes. 
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playing either 01 against 01 or 10 against 10, we see that the costs are 5, 5, 
compared to the Nash costs 8, 8 obtained by playing 00 against 11. But, 
to obtain the costs 5, 5 by the sequence 01, 01, Player 2 must trust Player 1 
not to try to optimize, by playing control 0, at t = 1. Similarly, if the costs 
5, 5 are to be obtained by the sequences 10, 10, then Player t must trust 
Player 2. 

This very simple game illustrates two basic points about nonzero-sum 
multistage games: (a) the absence of a prisoners'  d i l emma situation at every 
stage in solving for the Nash controls does not guarantee that the Nash 
solution is noninferior over all stages; and (b) noninferior solutions generally 
require trusting the rivals to play nonoptimal controls, not only at the present 
stage but at all future stages as well. 

More basically, the principle of optimality, which is obvious in control 
problems, also applies to zero-sum differential games, because it is reasonable 
to base the choice of action at one time on an assumed mode of behavior 
of the players at later times (they seek a minimum or a saddle point). In 
nonzero-sum games, since the meaning of opt imal i ty  is nonunique, it is 
natural but not necessarily realistic to assume that the rivals continuously 
seek one particular form of solution, in this case the Nash equilibrium. 
Cooperation should thus be considered not only at any given stage, but 
over several stages. 

The noninferior solutions to the general differential game were also 
presented in ReL 1. They could be obtained by solving the (N -- 1)-parameter 
set of scalar optimization problems 

h r N 

rain 2 I~iJi, Z ~, = 1, t~i > 0 (13) 
Ul '  "" " 'UN i = l  i = l  

provided that certain convexity conditions are satisfied, s 
For a given time-invariant weighting vector/~, the associated noninferior 

trajectory can be found by solving the Hamilton--Jacobi equation 

--ef/ '(x, t, .)~at = min ITI(x, t, u,. .... , U~v , ef/'/~x, . )  (14) 

where 
N 

!:1 = Z ~L~(x,  t, ~1 .... , ~N) + ( e ¢ / e x ) I ( x ,  t, ~1 .... , uN) (15) 
i = 1  

s I t  is sufficient that  the set of  cost vectors [J1 ,--., Jn] generated by all the admissible controls 
is convex. Weaker sufficient conditions, involving directional convexity, can be obtained (see 
Ref, 4). In  any case, the solutions to (13) are always noninferior.  
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and 
N 

~7(X(t$), lf) --~ 2 ~iKi(x(tf) , tf) ( 1 6 )  
i=1 

Now, assume that the closed-loop Nash solution has been found by 
solving Eq. (3). Generally, the Nash solution does not belong to the noninferior 
set. But suppose that our game has the special property that the controls 
for the Nash trajectory through any initial point are also the controls for 
the noninferior trajectory for some time-invariant weighting vector/x*. Then, 
the remaining noninferior cost must be related to the remaining Nash costs by 

~(~, t, ~ * )  = 

If (17) is substituted into (15) with/z 
related to the noninferior Hamiltonian 

/~(t~*) = 

N 

2 I~iVi( x, t) ( 1 7 )  
i=1 

= tL*, the Nash Hamiltonians Hi are 
by 

N 

2 *  t~i Hi (18) 
i=1 

Thus, the assumption that the Nash solution is noninferior implies that, 
at each time t on the trajectory, the set of controls which satisfies the Nash 
condition for the static vector function [H 1 ,..., HN] also minimizes some 
time-invariant, positive-weighted linear combination of H~, i ---- 1,..., N. In 
other words, as we solve the infinite sequence of static Nash saddle-point 
problems to obtain the Nash trajectory, we never encounter the static prisoners' 
dilemma situation. 

This is a necessary condition for the Nash solution to be noninferior. 
In effect, it says that it is impossible for all players to gain by playing cooperative 
controls in the time interval [t, t + dt] and then reverting to the local Nash 
controls in the interval [t ~-dt,  tl]. Without the requirement that /x* be 
time invariant, it is not be sufficient that the static prisoners' dilemma situation 
never occurs along the Nash trajectory. 

Suppose that the Nash solution has already been obtained for a given 
game. We wish to determine whether or not this solution is noninferior. 
A simple way to check this is to start at the terminal time and compute the 
controls which minimize at time t I the linear combination 

N 
Z ~ i g i  
i=1 
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for some arbitrary positive weighting /z. By iteration, we then attempt to 
find a ~* satisfying 

N 
~ / ~ [  = 1, ~*i > 0 ,  i =  1,...,N 
/=1 

which gives controls coinciding at time t I with the Nash controls. Three 
results are possible: (a) no such/x* exists, in which case the Nash solution 
is not noninferior; (b) a unique/~* is obtained; or (c)/x* is not uniquely deter- 
mined, in which case more conditions are obtained by repeating this procedure 
at earlier times. 

If a unique /~* is found, one can solve the optimal control problem 
with the scalar cost criterion 

N 

] = E  7J, 

starting at the terminal point of the Nash trajectory. The resulting noninferior 
trajectory, holding ~* constant, coincides with the Nash trajectory if, and 
only if, the latter is noninferior. 

4. Conclusions  

The previous two sections have illustrated some of the interesting 
phenomena which arise when the optimal control problem (alternately, the 
strictly competitive zero-sum differential game) is generalized by allowing 
several controllers with different cost criteria. If one seeks a Nash equilibrium 
trajectory, one must specify whether or not the controllers have instantaneous 
access to the state vector, since the open-loop and closed-loop formulations 
lead to entirely different solutions. If one wonders whether a different solution 
exists which produces a better result for all players than the secure closed-loop 
Nash set of control strategies, it is not sufficient to examine the set of 
Hamiltonians at each point on the Nash trajectory. This vector Hamiltonian 
contains the information necessary for computing the closed-loop Nash 
controls at time t, provided the problem has already been solved for the 
remaining time interval, but it does not contain information about noninferior 
solutions, open-loop Nash solutions, or any other solutions which may be 
of interest. 

Also central to the discussion in Sections 2 and 3 was the fact that, 
on a Nash trajectory, each player's cost is minimized with respect to his 
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own control but not with respect to the other players' controls. Generally, 
there is no set of controls which simultaneously minimizes all the players' 
costs. Should such a set of controls exist, the problem would degenerate 
into N uncoupled optimal control problems, with each player controlling 
all the N controls. Aft players would arrive at the same set of N optimal 
controls, and the Nash solution would thus be noninferior for every positive 
weighting vector/x. 

Because his cost is not minimized with respect to the j th  player's control 
(that is, ~H~/~uj ~ 0) the ith player is very sensitive to changes in his rivals' 
controls. This fact is the cause of considerable difficulty in developing 
algorithms for computing Nash controls for nonlinear problems. 
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