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Additional Aspects of the Stackelberg Strategy
in Nonzero-Sum Games?

M. Simaan? avp J. B. Cruz, Ir2

Communicated by Y. C. Ho

Abstract. The Stackelberg strategy in nonzero-sum games is 2
reasonable solution concept for games where, either due to lack of
information on the part of one player about the performance function
of the other, or due to different speeds in computing the strategies,
or due to differences in size or strength, one player dominates the
entire game by imposing a solution which is favorable to himself.
This paper discusses some properties of this solution concept when
the players use controls that are functions of the state variables of
the game in addition to time, The difficulties in determining such
controls are also pointed out. A simple two-stage finite state discrete
game is used to illustrate these properties.

1. Introduction

The Stackelberg solution of a two-player nonzero-sum game
(Refs. 1-3) assumes that the roles of the players are different. There
is a leader and there is a follower. The follower conforms to the policies
of the leader by allowing him to determine his strategy first. The leader
foresets this and, in effect, controls the entire system.

Let U, and U, be the sets of admissible controls for Players [ and 2,
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respectively, and let Ji(u,, 4,) and Jy(u, , u,) be their corresponding
cost functions. If there exists a mapping T: U, — U, such that?

Ji(Tuy , 1) < ity , 5) Vu,e Uy n
for every u, € U, , then the set
Dl == {(ﬂl y ”2) (=2 Ul X Uz: u1 = Tll2 Vuz [=3 Un} (2)

is called the rational reaction set for Player 1 when Player 2 is the leader.
Furthermore, if there is a (u;,,, #,,5) € D, such that

Jeltree s 52) < Jo(uy 2 1) V(uy,us)e Dy, (3

then (uy,, , uy,) is called a Stackelberg strategy pair when Player 2 is
the leader. When Player 1 is the leader, the rational reaction set for
Player 2 and the Stackelberg solution are denoted by D, and (u,, , #5,,),
respectively, It is clear that, if D, and D, intersect, then their common
element (u,y, u,~) is the Nash solution of the game. In this case, it
follows (Ref. 2) that

Jeltyee s a0 < Joltyn , 22)
when Player 2 is the leader and that
Jiltra s tan) < Ji(2aw s #2n)

when Player 1 is the leader.

The properties of the open-loop Stackelberg solution for a class
of linear quadratic games were discussed in Ref. 2. In this paper,
additional properties of this solution are obtained. It is shown that,
unlike the case of closed-loop Nash controls (Refs. 4-5), dynamic
programming cannot be used to calculate the closed-loop Stackelberg
controls. To differentiate closed-loop Stackelberg controls from controls
obtained via dynamic programining, the latter are called Stackelberg feed-
back strategies. Both closed-loop Stackelberg controls and Stackelberg
feedback strategies have attractive properties that are discussed via a
simple two-stage finite state game. The difficulties in deriving the
necessary conditions for the existence of the closed-loop Stackelberg
controls and feedback Stackelberg strategies are pointed out and,
finally, necessary conditions for the existence of feedback Stackelberg
strategies for a class of discrete multistage games are derived.

4 It is clear, frem the definition of T, that only problems where, for every u, € U, , there
corresponds only one element Tu, € U, such that (1) is satisfied are considered in this

paper.
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2. Nlustrative Example

There are several forms according to which controls in dynamic
games can be selected. There are controls that are functions of the
time only and known as open-loop controls, and there are controls that
are functions of the time and the state of the game as well, and these
are known as closed-loop controls. In order to illustrate how the selection
of such controls is done, let us consider the following simple two-stage
finite state game.?

Example 2.1. Ccnsider the game shown in Fig. 1. At every
stage and from every state, each player has a choice between two possible
controls, 0 and 1. After decisions have been made, the transition and
costs borne by the players are shown in Fig. 1, where the first entries
in the encircled quantities are the costs borne by Player | and the
second entries are those borne by Player 2. The subscripts or superscripts

=0 t=1 $=2

Fig. 1. A two-stage discrete game,

* A similar example was considered in Ref. § for the Nash solution,

8o9f11/6-4
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Table 1

O %2 L Oia
w0 o ¢] 1 1
wui} o 1 o 1

o and ¢ will be used to denote open-loop and closed-loop quantities.
Consider first the open-loop controls for this game.

(1) Open-loop controls. Assume that, before the start of the game,
the players have to commit themselves to controls u,(f) and u,{¢) that
are functions of tirae only; then, each player has four such possible
functions to choose from. In other words, the sets of admnissible open-loop
controls are Uy = {0537 = 1,..,4] and Uy = {o,;;7 = 1,..., 4},
where o,; are obtained from Table [ for i = [, 2.

The game with these admissible controls can be represented as a
bimatrix game, as shown in Fig. 2. Suppose that Player 2 is the leader;
then, for every o,; € Uy, Player 1 will choose a control in Uy that
minimizes [, . Thus, the rational reaction set D), can be easily deter-
mined as folluws:

Dyy = {(0135 921), (0115 002), (011, "3) (013, 024)},

and the Stackelberg strategy is (o, , 0,). The corresponding trajectory
is (1) = 1 and x(2) = 2, and the costs are J§,, = 11 and J3, = 6.
Similarly, the rational reaction set Dy, is

Dy, = {(011, 023), (0125 02a), (013, 0a), (044, 021)},

Open-Loop Stackelberg
with 2 as Leader

\ Player 2
021 Y 022 Oz Ozq

on | 8.8 10,-2| 11,0
%z!6,4 {12,372 12,4
o3 | 5,12 [20,15| 5,11
94 16,7 | 3,7 [ 9,6

/

Open-~Loop Stackelberg Open-loop Nash
with 1 o~ Leader

Player 1

Fig. 2. Open-loop bimatrix game for Example 2.1.



JOTA: VOL. 11, NO. 6, 1973 617

Table 2
Ci1 ] Ci2 1Cia [Cia | Cis | Cig | Ci7 | Cia|Cis lcuo €1 1Ca2 a3 Ci1a|Cas|Cas
w{oojolo 0j0j{010C}10]0;1 171 1 1 1i1 1
wir,2olojolo 1 1 1 1{0§010:0 1 11 1
u; (1,1)1 0 1 O 1 110 o] 1 1101011 1 (o2 B e 2 NS § 1
u; {(1,0})] O 1 o140 110 1107711 G 1{0 110 1

and the Stackelberg strategy when Player 1 is the leader is (o4, 04),
leading to the tcajectory x(1) = 0 and x(2) = 0 and the costs Ji,; = 6
and J3, = 5. Furthermore, the Nash solution, which is the common
element in Dy, and D, is (0,5, 0y); its trajectory is x(1) = 1 and
#(2) = 2, and the costs are Jiy = 8 and J3y = 9. Consider, next, the
closed-loop cortrols.

(ii) Closed-loop controls. Assume that the players are restricted
to announce, before the start of the game, control laws #,(¢, x) and
uy(t, x) that are functions of the time and the state of the game. The
actual values of their controls can then be determined only while the
game is played, once the actual value of the state at each time is known.
Such controls are called closed-loop controls. In this game, there are
16 such choices for each player, and the sets of closed-loop admissible
controls are Uy = {¢y;;j = 1,..., 16} and Uyf = {¢5;; f = 1,..., 16},
where ¢;; are as in Table 2 for i = 1, 2.

For every ¢,; that Player 2 may choose, Player [ will have to solve
an optimization prcblem, and his corresponding optimal closed-loop
control can be easily obtained (e.g., via dynamic programming). For
example, if Player 2 chooses ¢,;;, then the optimization problem for
Player 1 is shown in Fig. 3, and it is easily seen that ¢;, is his optimal

O S

120 t=1 1=2

Fig. 3. Optimization problem for Player 1 when w,(z, x) = €44 .



618 JOTA: VOL. 11, NO. 6, 1973

closed-loop control. If this procedure is repeated for all u,(x, ) € U7,
the rational reaction set D,, for Player | is obtained as follows:

Dye = {(c1251 €21)s (€18 5 €20)s (€313 €a), (€16 » €a1)s (1115 Cos s (€145 €a6)s
(€195 €22)s (€12 5 €20)s (€115 + €29)s (€116 5 €210} (€155 Caa1)s (16 » a12)
(1115 €213} (€112 » €214}y (€115 €215): (€12 1 €216)}-

Following the same procedure, the set D,, is obtained as follows:

D, = {{e115 €an1)s (€125 C211)s (€135 Cana)s (€ag 5 €200)s (€35 5 €a11)s (€26 » Conn)s
(171 €a12)s (18 5 €211)s (€19 Cona)s (‘—'x_m » €y (€121 €a11)s
(e11z €23)s (1 s Carads (€100 €)s (€105 > Coma)s (ane s €20}

There are two closed-loop Stackelberg controls with Player 2 as lcader,
(€15 » €211) and (€45, €215), both leading to the same costs J§, = 7 and
Jie = 2 and to the same trajectory x(1) = 2 and x(2) = 1. Taking
Dy, N D,,, there is only one closed-loop Nash control pair, (¢;5, ¢,;),
giving the same costs Jiy = 7 and J{y = 2 and the same® trajectory
(1) =2 and x(2) = 1.

Thrs, as in the Nash solution, open-loop and closed-loop
Stackelberg solutions are generally different. However, since the
Stackelberg and Nash controls are selected from the same spaces,
whether Uy® x Uy or Uy x Uy, it is always true that the leader is
better off in the Stackelberg solution than in the Nash solution.

(i) Feedback strategies. The procedure described above for
calculating the closed-loop Stackelberg controls is quite lengthy,
especially in games with a large number of states, stages and controls,
as is usually the case. One approach for simplifying this computation
is to use the following dynamic prcgramming technique, which is
similar to the one described in Ref. 5 for the Nash solution. At time
¢t = 1, there are three possible states. From every state, the transition
to the next stage £ =2 is a 2 X 2 matrix game whose Nash and
Stackelberg controls (with 2 as leader) are calculated and marked by N
and S, in Fig. 1. Eliminating all other trajectories except for those
marked by S,, we see that, at stage ¢ = 0, there are two choices of
controls for each player, resulting in the 2 x 2 matrix game shown

¢ The coincidence of one closed-loop Stackelberg solution with Player 2 as leader and the
closed-loop Nash solution in this example is only accidental. In fact, it can be easily
checked that, when Player 1 is the leader, the closed-loop Stackelberg solution is different
from the closed-ioop Nash solution,
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Player 2 Piayer 2
o 0 | 1 B 0 1
sl o noi {8l o lus (G2
B o
al 1 ezt 37 | 1B 1 {50289
{a) Stackelberg (b) Nash

Fig. 4. Stackelberg and Nach feedback strategies via dynamic progremming.

in Fig. 4a. The Stackelberg strategy computed from this bimatrix game
is encircled on Fig. 4a and is identified as (cyy, €5). Similarly (Ref. 5),
eliminating all trajectories except for those marked by N, we see that
the Nash controls calculated from the reculting bimatrix game at £ = 0
and shown in Fig. 4b zre identified as (¢, €4;,)- Therefore, we readily
note that this dynamic programming technique, when used for calculating
the Stackelberg strategies, did not lead to the closed-loop Stackelberg
controls obtained in (ii), while when used for the Nash controls it did
indeed lead to the closed-loop Nash controls. It is therefore necessary
to differentiate between these two types of controls. For this reason,
we shall call the controls obtained via dynamic programaming approach
feedback strategies; and the subscripts or superscript f will be used to
denote related quantities. Thus, the Stackelberg feedback strategies for
this example are (c;, , ) With trajectory x(1) = 1, x(2) = 0 and costs
Jiz = 6 and Ji, == 4, and the Nash feedback strategxes are (c15 y Cotn)
with trajectory x(1) = 2 and %(2) = 1 and costs J{y = 7 and Jiy =2
which are identical to the closed-loop Nash conirols. Another conclusion
which can be drawn from the above computations is that the property
that the leader is better off in the Stackelberg solution than in the
Nash solution is no longer true when feedback strategies are considered
(note that, in this example, Ji, > Jiy). Naturally, this is due to the
fact that the trajectories eliminated at ¢ = | are different in both cases.

Although this example is quite simple, it illustrates the difficulties
encountered in determining the closed-loop Stackelberg controls in
nonzero-sum dynamic games. The principle of optimality (Ref. 6),
which in effect is the tool that simplifies the computational procedures,
does pot generalize to the Stackelbeig solution as it does to the Nash
solution. In fact, it can be easily checked that neither the open-loop
nor the closed-loop Stackelberg solutions in the provious example have
the Stackelberg property for the game resulting from the transition
from t =1 to t = 2 (i.e., starting at ¢ = 1). At x(1) = 2, which is
on the trajectory of the closed-loop Stackelberg solution for the game
starting at ¢ = 0, the remaining Stackelberg solution is (1, 0), leading
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to J; =2 and J, = 5, while the closcd-loop Stackelberg control for
the game starting at ¢ = | gives the controls (0, 1), leading to J, =: 6
and J, = 3. These results will now be generalized, and the equivalence
between the closed-loop Nash controls and the Nash feedback strategies
will be proven.

3. Stackelberg Solutions in Differential Games

The differences among the open-loop, closed-loop, and feedback
controls are due to the fact that they are selected from different sets
of admissible controls. A definition of these sets in differential games
is therefore necessary. Let [4y,1,] be the interval of time cver which
the game is defined. Let r € [t,, ¢,) and let U§, and U, denote the sets
of all admissible open-loop (for example, measurable functions) controls
on [, ;] for Players 1 and 2, respectively. Now, define the set

X, ={lty: 2 =flx, tuy,u), telr, b)), x(r) = & u, e UL, ,u, e UZY,

and consider the following performance indices defined on [r, ¢]:
4
.Ii(f: T Uy, 5’2) == Ki(x(if)) + f Li(x) t U, 112} dt: i = i: 2: (4)

with u; € U}, , u, € U3, and x(2) satisfying
& = f(x, t,u; , uy) x(r) = £, tefrn t]. %)

Clearly, the open-loop admissible control sets for the game starting
at ¢, are Uy, and U3, , and the necessary conditions for the existence of
Stackelberg strategies in these sets are easily obtained as follows. The
rational reaction sct D,,, when Player 2 is the leader, is composed of
(u,(2), u(t)) € U3, x U3, satisfying the following necessary conditions:

& = f(x, t, u,(2), uy(2)), x(to) = %, (6)
P = —oH [ox,  p'(t;) = OK;(x(t,))/Ox(t,), M
0 = oH,jéu, , {8)
where
Hl(x! t, #y 4 Uy ’P) _—é_ Ll(x: t, ty ”z) "f‘P'f(x, t» iy, u2), (9)

and the pair (u;,(t), %(t)) € Dy, that minimizes [y(xy, 2o, %, , %)
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subject to (6)—(9) as constraints can be shown, simply by using variational

techniques, to satisfy the following necessary conditions’:

A = —8H,fox,  M/(t)) = oK, (x(t,))[ex(ty) — A (¢ ) Ky(x(t))fex(t, Y], (10)
A = —eHjop,  Mfte) =0, (1
0 = 9H,'u, = oH,[u,, (12)

where

Hz(x» t’ Pl s Uy, Uy, )‘1 ’ Az 4 ’\3) —9: L?.(xs t: Uy, ”2) ’i" Al,f(x’ t’ Uy, “2)
+ A/ (—8H\[ex) + A/ (eH, [eu;)'. (13)

When Ki(x(t,)) = 0 and K,(~{¢;)) = 0, these conditions become similar
to those obtained in Ref. 3.

The closed-loop admissikle control sets Us,, and U3y, at £y, from
which the players select their closed-loop controls before the start of
the game are defined as follows:

:fﬂ == {ﬂi(f, x(t}): {tﬂ ¥ f[} X lYg'g” - U:’:o}, 3. == I, 2;

These are the sets of all functions of 7 and x(t) defined on [t,, ¢;] such
that the corresponding solution x(#) of (5) with = replaced by #,, when
substituted back in u{¢, x(2)), produces a function of time which belongs
to the space U, . The necessary conditions for the existence of a
closed-loop Stackelberg solution are not easily obtained by using
variational techniques as in the case of the open-loop solution. The
closed-loop rational reaction set D,. when Player 2 is the leader is
composed of the pairs (u,(2, x(2)), uy(2, x(1))) € U3, x Ui, satisfying the
following necessary conditions:

® = f(x: t, ut, x(1)), ust. %(2))), x(t) = x,, (14)
P = —0H,[ox — OH,[euy[0uy(t, x(t))ox(t)],  p'(t;) = EK (x(tp))/ex(ty), (15
0 = 8H,/ou, , (16)

where H, is as defined in (9). Because of the term including
duy(t, x(t))/ex(t) in (15), it can be easily shown that variational tech-
niques fail to produce a candidate in Uj, x U3, which minimizes
Joxo > 8 5 1y, ;) when subject to (14)-(16) as constraints. Other

7 Note that 8H,/0x = (V. H,)' is a row vector. The same notation is used for all partial
derivatives of a scalar function with respect to 2 vector.
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possible approaches for performing this minimizatior: are not investigated
in this paper and remain unexplored for future research.

We now consider the case of feedback strategies. Let the interval
[%,¢t] be divided into N equal subintervals of time. Consider an
arbitrary intervai [r;, 7;,,], and assume that the Stackeiberg feedback
strategies (in the sense that is being defined) uf.s(t, x(t)) and ul(t, x(2))
for the game defined over the interval [7;,,, ¢] have been obtamed
Let J(x(rj1)s 7js1 > #hea» tho), £ = 1,2, be the costs corresponding to
these strategies. Furthermore, let U, and U{ denote the subsets of

. . . i
U, and Uj, obtained by eliminating all controls that do not coincide
with ulo(2, x(1)) and ul,(t, x(t)) respectively, over [r; 4, ,} Now,
consider the game defined over [7;. ¢/}, where the state equation is as
in (5) and the performance indices (4} are reduced to

Jdx(w3), 75 uy 1) = Jdx(z500) 741 AN u::si)

Tsed
+] Lix, tyuy,u)dt, i=12 (17
*;

where u; € U{, and u, € {.o, . Let (udo(t, x(2)), ubo{t, x(1))) € Ui, x U,
be the Stackeiberg strategws for the game defined by (17) and (5)
with = replaced by ;. Now, if there exist such strategies for all
r,e{to, t;) when this procedure is repeated backward in time until
U 11, and Ug[ are obtained, and if their limit as | r;,, — 7; ; — O forall j
(or as N — oo) exist, then the resulting strategaes in Ul, x U}, are
called Stacke]berg feedback strategies.

In a similar way (simply by replacing the word Stackelberg by
the word Nash) as above, the Nash feedback strategies u(t, x(t)) and
uln(t, x()) are defined. We now prove the equivalence between the
closed-loop Nash controls and the Nash feedback strategies.®

Proposition 3.1. The closed-loop Nash control pair (15x(2, x(£)),
uzN(t x(t))) are equal to the Nash feedback strategies (u{n{t, x(2)),

win(t, 2(2))-
Proof. The proof of this proposition is straightforward. Let (£, )

* It should be clear that these strategies defined over [, , ¢,] and those obtained originally
for {7,,1 , /] coincide over [7;.,, &]; hence, in order to avoid proliferation of notation,
they are denoted by the same expressions u/,,(¢, x(t)).

* In this proposition, we assume that the Nash ciosed-loop and feedback strategies exist
and are unique.
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be any point in the state space. Every pair (d,(f, x(s)), #,(¢, x())) € D,,
has the property that, if 122(1‘ x(t)) is restricted to the time interval
[+, t;], then #,(t, x(t)), which is obtained by solvmg an ordinary optimiza-
tion (rather than a game) problem where it is known that dynamic
programming or any other method lead to the same optimal centrol,
when restricted to [r, t], is also optimal for the optimization problem
resulting from (4)~(5) when u, = d,(¢, x(t)). Similarly, every pair
(4,(t, x(2)), (2, x(£)) € Dy, has the same property tor #,(2, x(t)) when
i/t x(t)) is restricted to [r,£]. Therefore, since (ufu(t, #(2)},
uSx(t, x(1))) € Dy N D, , it follows that these properties hold simulta-
neously for both controls and, hence, it is also a Nash feedback strategy.

This proposition justifies the simultaneous use in Ref. 5 of the
closed-loop Nash controls and the Nash feedback strategies as being
identical solutions. However, beccause che closed-loop Stackelberg
control pair lies on the rational reaction set D, of the follower and not
general!y in the intersection of D;. and D, , it cannot be concluded
that it coincides with the Stackelberg feedback strategies. In other
words, Proposition 3.1 simply says that, at any time during the course
of play and from any allowable state at that instant, if the players
recalculate their closed-loop Nash controls, thrse centrols will be the
same as the remaining part of the controls calculated initially. This,
however, is not true in the case of the closed-loop Stackelberg controls.
In fact, when dynamic programming is used, several controls in closed-
loop form are eliminated from consideration at #, because they do not
possess this optimality (Nash or Stackelberg) property from all other
possible starting points (¢, 7). Thus, because of Proposition 3.1, in the
case of the Nash solution, the closed-loop Nash contrels will not be
among those controls that are climinated at ¢, ; while, in the case of
the Stackelberg solution, the closed-loop Stackelberg controls most
likely will. Furthermore, the closed-loop controls eliminated at ¢, in
the Nash solution are not the same as those eliminated at ¢, in the
Stackelberg solution (i.e., Ul i, :s not the same in both cases; for example,
see Fig. 4) and, hence, it is no longer possible to conclude that the
Stackelberg feedback solution is more beneficial to the leader than the
Nash feedback solution.

In order to illustrate the dynamic programming technique described
earlier, the necessary condiiions for the existence of Stackelberg
feedback strategies for a class of discrete games, where dynamic
programming is more easily applied, are obtained in the following
section.
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4. Stackelberg Feedback Strategies in Discrete Games
Consider the multistage discrete game defined by
(I 1) = f(x(D), L, wy (D), us(1)), 2(0) = x,, {=0..,N~—1, (18

where the state x(I) and the decision (control} variables u,(I) and uy(l)
are n-dimensional, m;-dimensional, and m,-dimensional vectors of real
numbers for all / = 0, 1,..., N — 1. Let the cost functionals defined over
stages X,..., N be of the form

JAaE), by g ) = K(x(N)) + z LG L@, (19)

where u; = (uk),..., u;(N — 1)), { = 1, 2. Suppose that Player 2 is the
leader, and assume that the transition from the kth to the (k + 1)th
stage is under consideration. Let u],, and u}, be the Stackelberg feedback
strategies for the game starting at stage & + 1 and ending at stage N,
and let Vx(k + 1),k + 1) = Jx(k + 1),k + Luf,,uln), i = 1,2,
be the costs corresponding to these strategies and obtained from

N-1
Vixtk + 1), 2 + 1) = K(x(N)) + ‘ ;lf‘s(x(f), L o, (D), o1, x(D))),
- i=1,2, (20)

wiere «(l) is obtained from
a4 1) = ), b aloll, 5(), ool 5, I =R+ Loy N— 1. (21)

The cost functionals for the game defined over stages k,..., N can
therefore be written as

Jix(R), k, wy(BY, uy(R)) = Vi(w(k + 1), k + 1) + L(x(k), k, uy(k), u,(k)). (22)
Assuming that no constraints exist on the controls, we see that, for a

fixed uy(k), the follower (Player 1) determines his optimal u,(%) (assuming
that it exists) as a function of w,(k) and x(k) from

2T (x(R), by (R), () (R)
= [Vy(x(k + 1), & + Dfex(k + DI[af10u®)] + oLyfeu(t) = 0. (23)

The leader, therefore, must minimize Jy(x(%), &, u,(k), u,(k)) subject to
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(23) as constraint. The necessary conditions for this minimization are

BLafou k) + [PV x(k + 1), k + Dfax(k = D](effeu(b)] + (@feulk)
X [N(R)ELy ey + X(R)(Ef euy(RV TV (xR + 1), & + fes(k + 1)]] =0,
i=12 (24

where A(k) is an m;-dimensional Lagrange multiplier. When (23)-(24)
are solved, uga(k, x(k)) and V(x(k), k) for the game from k to N are
obtained. This procedure is then repeated until the starting stage is
reached.’ The boundary conditions for (23)-(24) are given at the
terminal stage by Vi(x(N), N) = K(x(NV)); i = 1, 2. Note that, when
stage kK = 0 is reached, all feedback strategies defined over the stages 1
to N — | will have been eliminated except for those that are feedback
Stackelberg strategies for the game defined .on stages 1 to N — 1.

5. Conclusions

Several properties of the closed-loop Stackelberg controls have
been investigated and the difficulties (conceptual and computational)
encountered in their determination have been pointed out. Unlike the
closed-loop Nash controls, it has been shown that the closed-loop
Stackelberg controls cannot be obtained by applying dynamic pro-
gramming techniques. The solution obtained via dynamic programming,
called Stackelberg feedback stratgies. has the property that, at any
instant of time during the course of piay and from any allowable state
at that instant of time, it provides the leader with the best choice of
control (in the sense of Stackelberg), regardless of.previous decisions
and with the assumption that Stackelberg feedback strategies will be
used for the remainder of the interval of play. On the other hand, if the
starting time is fixed, the leader’s closed-loop Stackelberg control is the
best control law (among all other admissible closed-loop controls) that
he can announce prior to the start nf the game, but it does not have
this same desirable property from any other starting time. Since the
leader is virtually the only decision maker in the Stackelberg solution,
the decision of choosing between a closed-loop or a feedback strategy
depends generally on whether ¢, is known or not and whether the system
parameters are completely certain or not.

10 Inn discrete games, the Stackelberg feedback strategies also have the property that the
plavers may announce their controls (the leader first) stage by stage, once the current
value of the state vector at each stage is known, Such developmeat of information is
called successive (Ref. 7).
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