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Additional Aspects of the Stackelberg Strategy 
in Nonzero-Sum Gamesl 

M. SI,',~N ~ AND I. B. CRuz, IR. 3 

Communicated by Y. C, Ho 

Abstr , ,ct .  The Stacketberg strategy in t~onzero-sum games is a 
reasonable solution concept for games where, either due to lack of 
information on the part of one player about the performance function 
of the other, or due to different speeds in computing the strategies, 
or due to differences in size or strength, one player dominates the 
entire game by imposing a solution which is favorable to himself. 
Thi~ paper discusses some properties of this solution concept when 
the players use controls that are functions of the state variables of 
the game in addition to time. The ditNculties in determining such 
controls are also pointed out. A simple two-stage finite state discrete 
game is used to illustrate these properties. 

1. I n t r o d u c t i o n  

The  Stackelberg solution of a two-player nonzero-sum game 
(Refs. 1-3) assumes that the roles of the players are different. There  
is a leader and there is a folIower. The  follower conforms to the policies 
of the leader by allowing him to determine his strategy first. The  leader 
foresees this and, in effect, controls the entire system. 

Le t  U x and U~ be the sets of admissible controls for Players 1 and 2, 
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respectively, and let Jl(ul ,  u~.) and J2(ul, u 2) be their corresponding 
cost functions. I f  there exists a mapping T: Uz -o. Ut such that 4 

Ji(Tu,, u2) ~ Jl(ul, uz) Vut ~ Ul (1) 

for every u a ~ Us, then the set 

/)1 = {(ul ,  u2) ~ U1 x U~: ul = Tu~ Vu~ ~ Ud (2) 

is called the rational reaction set for Player 1 when Player 2 '~s the leader. 
Furthermore, if there is a (ul~ z , uz~2) ~ D, such that 

LCu,~, u~) ~< LC'q, ". .) voq, ,,,~) ~ D,, (3) 

then (urge, ua, z) is called a Stacketberg strategy pair when Player 2 is 
the Ieader. When Player 1 is the leader, the ratlonal reaction set for 
Player 2 and the Stackelberg solution are denoted by D 2 and (ul, 1 , u~l ), 
respectively. It is clear that, if D1 and D~ intersect, then their common 
element (utu, U~N) is the Nash solution of the game. In this case, it 
follows (Ref. 2) that 

L(",,~, u..,,~) < L(",~, 'q.,') 

when Player 2 is the leader and that 

L(um, u~.,1) < LCuw, u~.,,) 

when Player 1 is the leader. 
The properties of the open-loop Stackelberg solution for a class 

of linear quadratic games were discussed in Ref. 2. In this paper, 
additional properties of this solution are obtained. It is shown that, 
unlike the case of closed-loop Nash controls (Refs. 4-5), dynamic 
programming cannot be used to calculate the closed-loop Stackelberg 
controls. To differentiate closed-loop Stackelberg controls from controls 
obtained via dynamic programming, the latter are caIled Stackelberg feed- 
back strategies. Both closed-loop Stackelberg controls and Stackelberg 
feedback strategies have attractive properties that are discussed via a 
simple two-stage finite state game. The difficulties in deriving the 
necessary conditions for the existence of the closed-Loop Stackelberg 
controls and feedback Stackelberg strategies are pointed out and, 
finally, necessary conditions for the existence of feedback Stackelberg 
strategies for a class of discrete multistage games are derived. 

i It is clear, frem the definition of T, that only problems where, for every uz ~ Us, there 
corresponds only one element Tu, ~ Ut such that (1) is satisfied are considered in this 
paper. 
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2. I l lus t ra t ive  E x a m p l e  

There are several forms according to which controls in dynamic 
games can be selected. There are controls that are functions of the 
time only and known as open-loop controls, and there are controls that 
are functions of the time and the state of the game as well, and these 
are known as closed-loop controls. In order to illustrate how the selection 
of such controls is done, let us consider the following simple two-stage 
finite state game. 5 

E x a m p l e  2.1. Consider the game shown in Fig. 1. At every 
stage and from every state, each player has a choice between two possible 
controls, 0 and 1. After decisions have been made, the transitior~ and 
costs borne by the players are shown in Fig. I, where the first entries 
in the encircled quantities are the costs borne by Player 1 and the 
second entries are those borne by Player 2. The subscripts or superscripts 

t=O t = I  t : 2  

Fig. I. A two-stage discrete game. 

A similar example was considered in Ref. 5 for the Nash solution. 

8o9[I x16-4 
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Table 1 

011 Jl 0i2 1 0;3 014 
~_ 0 O I I 

. . . . .  , , , ,  , , 

o and c will be used to denote open-loop and closed-loop quantities. 
Consider first the open-Ioop controls for this game. 

(i) Open-loop controls. Assume that, before the start of the game, 
the players have to commit themselves to controls ul(t ) an6 u2(t ) that 
are functions of time only; then, each player has four such possible 
functions to choose from. In other words, the sets of admissible open-loop 
controls are Ut ° =  { o l ~ ; j ~  1,...,4~ and U~ ° -= { o 2 s ; j =  l ..... 4}, 
where o O are obtained from Table l for i = 1, 2. 

The game with these admissible controls can be represented as a 
bimatrix game, as shown in Fig. 2. Suppose that Player 2 is the leader; 
then, for every o2j ~ Uo °, Player 1 will choose a control in U1 ° that 
minimizes ./1. Thus, the rational reaction set Dto can be easily deter- 
mined as fo!lows: 

1)1o = {(o1~, o=i), ( o . ,  o.~o), ( o . ,  .=), (o13, o~)}, 

and the Stackelberg strategy is (o11, o~2). The corresponding trajectory 
is x(l) ----- 1 and x(2) = 2, and the costs are J~.< - 11 and J~2 --- 6. 
Similarly, the rational reaction set D~, is 

D,o = {(oi~, o=), (o~ ,  o=), (o13, o~), ( o . ,  o.)},  

Fig. 2. 

Open- Loop Stockel berg 
wi~h 2 Qs Leader 

\ 

! ~ P,oye~ 2 
OZl ~ 022 O:Z3 0~.4 

,4! 011 8,8 ; ~  10,-2 11,0 t. - { - -  ! 
t t t l  

i.~ Olz 6,4 12,$ 7,2 12,4 
L ~ o~ . , la 2o,15 ",11 !~. 

/ 
Open-Loop Stocketberg Open-Loop Noah 
with 1 a~ LeQder 

Open-loop himatrix game for Example 2.1. 
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Table 2 

°,. c,. c,.ic,.ic,.lo, o c,ll c 12 o,1.)o, 0 o,1. 
I 0 0 0 0 0 0 1 ! 1 1 1 1 i i 'I' ..... 

i 
o o l i 1 i o o o o i i 1 ! i  
t i o 0 i 1 o l o  ,l ~ o o I 1 
o 1 o l o 1 o i ~ i o I O  I 
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and the Stackelberg strategy when Player 1 is the leader is (ol~, oal), 
leading to the trajectory x(1) = 0 and x(2) ----- 0 and the costs J'~.~l = 6 
and J~t  = 5. Furthermore, the Nash solution, which is the common 
element in Dlo and D.~,, is (o13,024); its trajectory is x ( 1 ) =  1 and 
x(2) = 2, and the costs are J~N = 8 and J~x -- 9. Consider, next, the 
closed-loop col~trols. 

(ii) Closed-loop controls. Assume that the players are restricted 
to announce, before the start of the game, control laws ua(t,.x) and 
uz(t, x) that are functions of the time and the state of the game. The 
actual values of their controls can then be determined only while the 
game is played, once the actual value of the state at each time is known. 
Such controls are called closed-loop controls. In this game, there are 
16 such choices for each player, and the sets of closed-loop admissible 
controls are U1 c =  { q y ; j =  1 ..... 16} and U2 ~ =  { c ~ ; j =  1,...,16}, 
where c~l are as in Table 2 for i ----- l, 2. 

For every c2/that Player 2 may choose, Player I will have to solve 
an optimization problem, and his corresponding optimal closed-loop 
control can be easily obtained (e.g., via dynamic programming). For 
example, if Player 2 chooses c,3, then the optimization problem for 
Player 1 is shown in Fig. 3, and it is easily seen that cl4 is his optimal 

t=O t--1 *--2 

Fig. 3. Optimization problem for Player 1 when ua(t, x) = ct,. 
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closed-loop control. If  this procedure is repeated for all u2(x , t) e Ua ~, 
the rational reaction set Dlc for Player I is obtained as follows: 

zh~ = {(cu~, c~1), (q~, c=), (q13, c~), (q~, c~), (~n,, c~),(q, ,  qo), 

Following the same procedure, the set D~ is obtained as follows: 

z)~o = {(q~, qH), (q~, q~,), (q~, c,H), (q , ,  ,.. ,), (q~, q~l), (qs, ~,~), 

There are two closed-loop Stackelberg controls with Player 2 as leader, 
(¢xs, c~lt) and (cx6 , c2x2), both leading to the same costs J~,~ = 7 and 
J~,2-~ 2 and to the same trajectory x(l)----2 and x ( 2 ) =  I. Taking 
Dxe r3 D2e , there is only one closed-loop Nash control pair, (el5, c211) , 
giving the same costs J~N = 7 and J~N = 2 and the same 6 trajectory 
x(1) = 2 and x(2) = I. 

Th,:% as in the Nash solution, open-loop and closed-loop 
Stackelberg solutions are generally different. However, since the 
Stackelberg and Nash controls are selected from the same spaces, 
whether Ui ° × U 2 or U :  × U2 o, it is always true that the leader is 
better off in the Stackelberg solution tha,~ in the Nash solution. 

(iii) Feedback strategies. The procedure described above for 
calculating the closed-loop Stackelberg controls is quite lengthy, 
especially in games with a large number of states, stages and controls, 
as is usually the case. One approach for simplifying this computation 
is to use t h e  following dynamic prc~,ramming technique, which is 
similar to the one described in Ref. 5 for the Nash solution. At time 
t = 1, there are three possible states. From ever)" state, the transition 
to the next stage t = 2 is a 2 × 2 matrix game whose Nash and 
Stackelberg controls (with 2 as leader) are calculated and marked by N 
and S 2 in Fig. 1. Eliminating all other trajectories except for those 
marked by S~, we see that, at stage t = 0, there are two choices of 
controls for each player, resulting in the 2 × 2 matrix game shown 

t The  coincidence of one closed-loop Staekelberg solution with Player 2 as leader and the 
closed-loop Nash solution in this example is only accidental, In fact, it can be easily 
checked that, when Player 1 is the leadeL the closed-loop Stackelberg solution is different 
from the closed-loop Nash solution. 
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,"~ P|oyer 2 

g O 11,6 ( ~  

Ptoyer 2 

0 ( ~  11,0 

(0} Stackelberg (b} Nash 

Fig. 4. Stackelberg and Nacb feedback strategies via dynamic progremming. 

in Fig. 4a. The  Stackelberg strategy computed from this bimatrix game 
is encircled on Fig. 4a and is identi~ed as (q4,  c2~). Similarly (.Ref. 5), 
eliminating all trajectories except for those marked by N, we see that 
the Nash controls calculated from the resulting bimatrix game at t == 0 
and shown in Fig. 4b are identified as (qs ,  cm)- Therefore, we readily 
note that this dynamic programming technique, when used for calculating 
the Stackelberg strategies, did not lead to the closed-loop Stackelberg 
controls obtained in (ii), while when used for tke Nash controls it did 
indeed lead to the closed-loop Nash controls. It is therefore necessary 
to differentiate between these two types of controls. For this reason, 
we shall call the controls obtained via dynamic programming approach 
feedback strategies; and the subscr;pts or superscript f will be used to 
denote related quantities. Thus,  the Stackelberg feedback strategies for 
this example are (ct4, c26) with trajectory x(1) = 1, x(2) = 0 and costs 
J[~ = 6 and J~2 := 4, and the Nash feedback strategies are (q s ,  cm) 
with trajectory x(1) = 2 and x(2) = 1 and costs J1tN = 7 and J~N = 2 
which are identical to the closed-loop Nash controls. Another conclusion 
which can be drawn from the above computations is that the property 
that the leader is better off in the Stackelberg solution than in the 
Nash solution is no longer true when feedback strategies are considered 
(note that, in this example, J~2 > J~N). Naturally, this is due to the 
fact that the trajectories eliminated at t -~ 1 are different in both cases. 

Although this example is quite simple, it illustrates the difficulties 
encountered in determining the closed-loop Stackelberg controls in 
nonzero-sum dynamic games. The  principle of optimality (Ref. 6), 
which in effect is the tool that simplifies the computational procedures, 
does not generalize to the Stackelberg solution as it does to the Nash 
solution. In fact, it can be easily checked that neither the open-loop 
nor the closed-loop Stackelberg solutions in the previous example have 
the Stackelberg property for the game resulting from the transition 
from t ----- 1 to t = 2 (i.e., starting at t = 1). At x(1) ----- 2, which is 
on the trajectory of the closed-loop Stackelberg solution for the game 
starting at t ---- 0, the remaining Stackelberg solution is (I, 0), leading 
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to J1 = 2 and )'z = 5, while the closed-loop Stackelberg control for 
the game starting at t = 1 gives the controls (0, 1), leading to Jt  =: 6 
and J2 = 3. These results will now be generalized, and the equivalence 
between the closed-loop Nash controls and the Nash feedback strategies 
will be proven. 

3. S tacke lberg  Solut ions  in Different ia l  G a m e s  

The differences among the open-loop, clos,-d-Ioop, and feedback 
controls are due to the fact that they are selected from different sets 
of admissible controls. A definition of these sets in differential games 
is therefore necessary. -Let [ to ,  t[] be the interval of time ever which 
the game is defined. Let ~- ~ [to, t t) and let U~. and U~, denote the sets 
of all admissible open-loop (for example, measurable functions) controls 
on [~, tj] for Players 1 and 2, respectively. Now, define the set 

• °~t X ~ ,  = {x( t ) :  ~ = f ( x ,  t, u ,  , u.,.), t e [~', tA,  x(~') = ~, u ,  e U[ ,  , u~ e U.,., ,  

and consider the following performance indices defined on [z, t/I: 

I l 
],(¢,  z,  u i , ;;2) = K, (x ( t l ) )  + [ Li(x,  t, ul , u2) dr, i = 1, 2, 

, t  , 
(4) 

with u i ~ U~, , u z ~ U~, and x( t )  satisfying 

t ~ [~, tA. (5) 

Clearly, the open-loop admissible control sets for the game startling 
at t o are USto and U~to, and the necessary conditions for th'e existence of 
Stackelberg strategies in these sets are easily obtained as follows. The 
rational reaction set D,~, when Player 2 is the leader, is composed of 
(u1(t), u2(t)) ~ U~to x U~to satisfying thefollowing necessary conditions: 

:~ = f %  t, u~(t), u,_(t)), :,(to) = xo ,  (6) 

f f  = --OHx/Ox, p ' ( t t )  = ~K,(x( t , ) ) /~x( t t ) ,  (7) 

0 = ~H1/~ul,  (8) 
where 

Hi(x ,  t, u I , u s , p)  ta Lt(x ' t, ul , us) + p ' f ( x ,  t, u I , us), (9) 

and the pair (ul~2(t), uz~2(t))~Dto that minimizes A(xo, to, ux, u2) 
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subject to (6)-(9) as constraints can be shown, simply by using variational 
techniques, to satisfy ffte following necessary conditionsT: 

where 

a, ' ( t , )  = eK,(x(t,))/e, K t , ) -  ~'(t,)[e~-x,(x(t,))/ex(t,)~], 0o )  

~ '  = --OHd8p, A~(to) = O, (I I) 

0 = on.fi~ux = OHz/Su.~, (12) 

H~(x ,  t, t,~ , u .  , u~ , a ,  , ,~ , ~,~) £ t 4 x ,  t, ,,,, .~) + ,~,7(x, t, . , ,  .~) 

+ a;(-et6,:ex)" + x;(eHdeu,) ' .  (13) 

When K1(x(t/)  ) = 0 and K2(x(Z/)) = 0, these conditions become similar 
to tho~e obtained in Rcf. 3 

The  closed-loop acTmissible control sets U~t, aad U~to at to, from 
which the players select their closed-loop controls before the start of 
the game are defined as follows: 

U,~ o = {u,(t, x(t)): [to, tl] × Xe.,, --~ U,%}, i = 1, 2. 

These are the sets of all functions of t and x(t) defined on [t o , tl] such 
that the corresponding solution x(t) of (5) with ~- replaced by to ,  when 
substituted back in u~(t, x(t)), produces a functior~ of time which belongs 
to tbe space U°to. The  necessary conditions for the existence of a 
closed-loop Stackelberg solution are not easily obtained by using 
variational techniques as in the case of the open-loop solution. The  
closed-loop rational reaction set Dx,. when Player 2 is the leader is 
composed of the pairs (ul(t, x(t)), u2(t, x(t))) ~ U~11, × U~t, satisfying the 
following necessary conditions: 

= f ( x ,  t, . , ( t ,  xCt)), ,,~(t, xCO)), 
f f  = --  OH,/Ox --  OHz/Ou2[Ouz(t, x(t))/bx(t)], 

0 = OHx/~ul, 

x(to) ----- x o , (14) 

p'(tl) = eK1CxCtl))/exCt3, (l 5) 

(16) 

where H 1 is as defined in (9). Because of the term including 
Oua(t, x(t))/Ox(t) in (15), it can be easily shown that variational tech- 
niques fail to produce a candidate in U~to × U~t, which minimizes 
J e ( x o , t o , u l , u ~ )  whefi subject to (14)-(16) as constraints. Other 

7 Note  tha t  ~H~lSx = (V~I,)" is a row vector. T h e  same nota t ion is used  for all partial 
derivatives o f  a scalar func t ion  with respect  to a vector. 
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possible approaches for performing this minimizatlor: are not investigated 
in this paper and remain unexplored for future research. 

We now consider the case of feedback strategies. Let the interval 
[to, t A be divided into N equal subintervals of time. Consider an 
arbitrary interval [r~, ~'~+d, and assume that the Stacketberg feedback 
strategies (in the sense that is being defined) ut~.(t, x(t)) and u~(t ,  x(t)) 
for the game defined over the interval [ri+x, tl] have been obtained. 
Let J~(x(rj+l) , ri+~, u ~ ,  u~.,,~), i = 1, 2, be the costs corresponding to 
these strategies. Furthermore, let Ux t, and U~ denote the subsets of 

e e . . . .  i ~ f  U~. and U2,~ obtained by ehmmatmg all controls that do not coincide 
wit~ u~o.(t, x(t)) and u~(t ,  x(t)), respectively, over [r~.x, t/]. Now, 
consider the game defined over ~-j. tl], where the state equation is as 
in (5) and the performance indices (4) are reduced to 

+ Lz(x, t, u,,  u.,) dt, i = 1, 2, (17) 

where ul and Let  x(t)), x(t))) × 
" !  8 ~ - be the Stackelberg strateg,.~ for the game defined by (17) and (5) 

with 1- replaced by D" Now, if there exist such strategies for all 
~'s e [to, tl) when this procedure is repeated backward in time until 
U1/l and U/2to are obtained, and if their limit as ] rj_, 1 -- r~ [ --~ 0 for all j 
(or *as N ~ ~ )  exist, then the resulting strategies in W~r, × U~ o are 
called Stackelberg feedback strategies. 

In a similar way (simply by replacing the word Stackelberg by 
the word Nash) as above, the Nash feedback strategies u{,v(t, x(t)) and 
u~u(t, x(t)) are defined. We now prove the equivalence between the 
closed-loop Nash controls and the Nash feedback strategies. ° 

P ropos i t ion  3.1. The closed-loop Nash control pair (u~,(t, x(t)), 
U~u(t, x(t))) are equal to the Nash feedback strategies (~u(t,  x(t)), 

=(0))- 

Proof .  The proof Of this proposition is straightforward. Let (¢, ~-) 

* It  should be clear that  these strategies defined over [~-j, tt] and those obtained originally 
for [vj+ 1 , tl] coincide over [~s+a, tt]; hence,  in order  to avoid proliferation of  notation, 
they are denoted  by the same expressions u~,~(t, x(t)). 

* In this proposi t ion,  we assume that  the  Nash  ciosed-loop and feedback strategies exist 
and are unique. 
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be at,:./point in the state space. Every 13air (z~l(t, x(,)), az(t, x(t))) e Dz, 
has the property that, if az(t, x(t)) is restricted to the time interval 
[~-, tl], then al(t, x(t)), which is obtained by solving an ordinary optimiza- 
tion (rather than a game) problem where i* is known that dynamic 
programming or any other method Iead to the same optimal control, 
when restricted to [~-, tj], is also optimal for the optimization problem 
resulting from (4)-(5) when uz = f~z(t, x(t)). Similarly, every pair 
(az(t, x(t)), a~(t, x(t)) e Dz~ has the same property tor a2(t, x(t)) when 
~t(t ,x(t))  is restricted to [r, tt]. Therefore, since (u~,v(t,x(t)), 
u~u(t, x( t)))e DI~ c~ D ~ ,  it follows that these properties hold simulta- 
neously for both controls and, hence, it is also a Nash feedback strategy. 

This proposition justifies the simultaneous use in Ref. 5 of the 
closed-loop Nash controls and the Nash feedback strategies as being 
identical solutions. However, because the closed-loop Stacketberg 
control pair lies on the rational reaction set Die of the follower and not 
generally in the intersection of Dr. and D ~ ,  it cannot be concluded 
that it coincides with the Stackelberg feedback strategies. In o ther  
words, Proposition 3.1 simply says that, at any time during the course 
of play and from any allowable state at that instant, if the players 
recaIculate their closed-Ioop Nash controIs, th,~se coatrols will be the 
same as the remaining part of the controls calculated initially. This, 
however, is not true in the case of the closed-loop Stackelberg eo~,trols. 
In fact, when dynamic programming is used, several controls ~n dosed- 
loop form are eliminated from consideration at t o because they do not 
possess this optimality (Nash or Stackelberg) property from all other 
possible starting points (~, r). Thus, because of Proposition 3. I, in the 
case of the Nash solution, the closed-loop Nash controls will not be 
among those controls that are eliminated at to; while, in the case of 
the Stackelberg solution, the closed-loop Staekelberg controls most 
likely will. Furthermore, the closed-loop controls elim,_'nated at t o in 
the Nash solution are not the same as those eliminated at t o in the 
Stackelberg solution (i.e., Uxtto :s not the same in both cases; for example, 
see Fig. 4) and, hence, it is no longer possible to conclude that the 
Stackelberg feedback solution is more beneficial to the leader than the 
Nash feedback solution. 

In order to illustrate the dynamic programming technique described 
earlier, the necessary conditions for the existence of Staekelberg 
feedback strategies for a class of discrete games, where dynamic 
programming is more easily applied, are obtained in the following 
section. 
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4. S t a c k e l b e r g  F e e d b a c k  S t r a t e g i e s  in D i s c r e t e  G a m e s  

Consider the multistage discrete game defined by 

x(l + I) =f(x( l ) ,  1, ul(l), u~(l)), x(0) ----- xo, 1 = 0,..., N -- 1, (18) 

where the state x(/) and the decision (control) variables ul(/) and uz(/) 
are n-dimensional,  mr-dimensional , and m2-dimensional vectors of real 
numbers  for all I = O, 1,..., N --  I. Let the cost functionats defined over 
stages k,..., N be of the form 

N--I 

J~(x(k), k, ux , us) = K,(x(N)) + ~ L,(x(/), l, ux(/), u.2(l)), (19) 

where u~ = (ui(k) .... , u~(N -- I)), i = I, 2. Suppose that Player 2 is the 
leader, and assume that the transition from the kth to the (k + l) th 
stage is under  consideration. Let  ut~2 and u[~z be the Stackelberg feedback 
strategies for the game starting at stage k + 1 and ending at stage N, 
and let V~(x(k + 1), k + 1) = J~(x(k + 1), k + 1, u [ o ,  ut2), i = 1, 2, 
be the costs corresponding to these strategies and obtained from 

N - I  

V~(x(k + 1), k + 1) = K~(x(N)) + ~. L~(x(l), t, ~.,,(l, .,:(/)), ~ ( l ,  x(/))), 
l~Jt+l 

i = l ,  2, (20) 

where x(/) is obtained from 

xCl + l) = / (x ( l ) ,  l, ~,~(/, x(t)), ~'~.,,(l, x(1))), l = k + 1,..., N -- 1. (21) 

T h e  cost functionals for the game defined over stages k .... , N can 
therefore be written as 

J~Cx(k), k, ,hCi, X u # ) )  = V, CxCk + 1), k + 1) + t,(xCk), k, u # ) ,  u# ) ) .  (22) 

Assuming that no constraints exist on the controls, we see that, for a 
fixed u~(k), the follower (Player 1) determines his optimal u1(k ) (assuming 
that it exists) as a function of us(k ) and x(k) from 

oJl(x(k), k, ul(k), , , # ) ) / e . # )  

= [0Vl(x(k + 1), k + 1)/Ox(k + 1)][Of]eux(k)] + OLt/&1(k ) = 0. (23) 

T h e  leader, therefore, must  minimize J2(x(k), k, ul(k), u2(k)) subject to 
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(23) as constraint. The necessary conditions for this minimization a r e  

 Ldeu,(k) + [ V2(x(k + 1), k + + 
x + + I), k + l)/ex(k + I)] '] = O, 

i = 1, 2, (24) 

where .~(k) is an mx-dimensional Lagrange multiplier. When (23)-(24) 
are solved, u~(k, x(k)) and Vi(x(k), k) for the game from k to N are 
obtained. This procedure is then repeated ~:ntil the starting stage is 
reached. 1° The boundary conditions for (23)-(24) are given at the 
term:.nal stage by Vi(x(N), N) ---- Ki(x(N)); i = 1, 2. Note that, when 
stage k = 0 is reached, all feedback strategies defined over the stages 1 
to N ~ 1 will have been eliminated except for those that are feedback 
Stackelberg strategies for the game defined ,on stages I to N - -  1. 

5. Conclus ions  

Several properties of the closed-loop StackeIberg controls have 
been investigated and the difficulties (conc~_ptual and computational) 
encountered in their determination have been pointed out. Unlike the 
closed-loop Nash controls, it has been shown that the closed-loop 
Stackelberg controls cannot be obtained by applying dynamic pro- 
gramming techniques. The solution obtained via dynamic programming, 
called Stackelberg feedback sha.*~.gies, has the property that, at any 
instant of time during the course of play and from any allowable state 
at that instant of time, it provides the leader with the best choice of 
control (in the sense of Stackelberg), regard!ess of.previous decisions 
and with the assumption that Stackelberg feedback strategies will be 
used for the remainder of the interval of play. On the other hand, if the 
starting time is fixed, the leader's closed-loop Stackelberg control is the 
best control law (among all other admissible closed-loop controls) that 
he can announce prior to the start af the game, but it does not have 
this same desirable property from any other starting time. Since the 
leader is virtually the only decision maker in the Stackelberg solution, 
the decision of choosing between a closed-loop or a feedback strategy 
depends generally on whether t o is known or not and whether the system 
parameters are completely certain or not. 

lg In discrete games, the Stackelberg feedback strategies also have the property that the 
players may announce their controls (the leader first) stage by stage, once the current 
value of the state vector at each stage is known. Such developmgc, t of information is 
called suece:~.~ive (Ref. 7). 
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