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PREFACE

This monograph contains a discussion of some aspects of cooperative
and non-cooperative many person differential games, that is, of dynamical systems
under the control of a number of agents who cooperate or compete, respectively.
The treatment is restricted in several ways. Only two moods of play are considered,
Pareto-optimality for cooperation and Nash equilibrium for non-cooperation ; hence,
only games with numerical payoffs are included. Furthermore, only necessary condi-
tions and sufficient conditions for “optimal” play are derived ; no existence theo-
rems are provided. Thus, the results presented here are at best but a brick in the edi-
fice of modern game theory whose cornerstone is surely the contribution of von
Neumann and Morgenstern.

I am grateful to the Office of Naval Research and to the National
Science Foundation for supporting the research on which much of the discussion is
based. I also wish to thank Professor William Schmitendorf and Dr. Wolfram Stadler
for their critical reading of the manuscript, and Professors Luigi Sobrero and Angelo
Marzollo for inviting me to the CISM and thereby providing the impetus for the
writing of this monograph.

Berkeley, August 1973 George Leitmann



NOTATION

Standard notation is used throughout this book. All vectors, except for
the gradient of a scalar-valued function of a vector. or unless noted otherwise, are
column vectors. The superscript T denotes transpose of a matrix.



1. INTRODUCTION

1.1. Problem Statement

We shall be concerned with games involving a number of players. The
rules of the game assign to each player a cost function of all the players’decisions as
well as the sets from which these decisions may be selected.

Suppose there are N players. The rules of the game prescribe mappings

N
J():.7 DR i=1,2,...,N (1.1)
i =

where J. () and D, is the cost function and decision set, respectively, for player i.
Loosely speaking, eaﬁh player desires to attain the smallest possible cost
to himself. If there exists a d"ei ™D such that forallie {1,2,..,N}

N
3@) S3 (@  WemD, (1.2)

then d* is surely a desirable decision N-tuple, for it simultaneously minimizes each

player’s cost. In general, no such utopia or absolutely cooperative solution exists (see

Refs. 1.1 — 1.3) and the players are faced with a dilemma: What mood of play should
they adopt ? In other words, how should an optimal decision be defined ?

We shall consider two moods of play, one cooperative and the other
competitive. Both of these are due to economists, the former to Pareto (Ref. 1.4) and

the latter to Nash (Ref. 1.5), (actually an engineer and a mathematician, respectively).

1.2. Cooperative Play

According to Pareto, a decision N-tuple or joint decision is considered
optimal if and only if one of two situations occurs: Adopting another joint decision
either results in no change in any of the costs (and hence there is no reason for adop-
ting another decision or it results in a cost increase to at least one player (which is
undesirable in view of the cooperative mood of play (*). More precisely, we have the
following

(*) The philosophy is embodied in “I am willing to forego a gain if it is to be at your expense.”
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Definition 1.1. A decision N-tuple d* € . 51 D, is Pareto-optimal if and only if for
every de€ ;W D; either

J (@) =73 @) ¥ie {1,2,..,N)
or there is at least one i€ {1, 2,..., N} such that
3@ >3 @),
Starr (Ref. 1.6) has suggested the following example to illustrate Pareto-
optimality : Consider a two player game with D, € R' , and plot constant cost

contoursin D; x D, , see Fig. 1.1.

d,

+—Jy(d) = const,

¥~ J,(d) = const,

d,

Fig. 1.1 PARETO -- OPTIMALITY

(Arrows indicate direction of decreasing cost)

Then it is readily seen that the points of tangency between equal cost contours of
players 1 and 2, respectively, constitute the locus of Pareto-optimal decision couples .

One can readily establish two lemmas which embody sufficiency condi-
tions for Pareto-optimality.

_z

i=IN!
with . >0 ,i=1,2,...,N, and Ela =1, such that

Lemma 1.1. Decision N-tuple d* € [D; is Pareto-optimal if there exists an a € RN
i=1 i
. N
(1.3) J(d ) SJ(d) ¥de 7D
N

where J(d) = Elai Ji ).
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Proof. Let de ig?l D, . Then (1.3)implies either J(d*) = J(d) or J(d*) < J(d).
Suppose J(d*) = J(d) . Then, either J,(d*) = J. (d) forallie {1, 2,.
..,N}or there exist 1, j e {1, 2,...,N} sach that Ji(d*) <J(d) and Jj(d*) > ]j(d).
If J(d*)< J(d) , then there existsie{1,2,...,N} such that J,(d*) < Ji(d).
Thus, the conditions of Pareto-optimality, as given in Definition 1.1,
are met.
A slight variation of Lemma 1.1 is
Lemma 1.2. Decision N-tuple d*Ne iigl D, is Pareto-optimal if there exists an o € RN

with ai = O,i. = 1,2, son ,N,andi2=1ai = 1’ such that
. N -
J@ ) <J(@) ¥de 7 D, , d #d (1.4)

N
where J(d) = =21ai J, (d).

Proof. Let d € izl D, . Then (1.4) implies that there exists i€ {1,2,...,N}such that
J, @) < J, (d) , so that the second condition of Definition 1.1 is met.

Note that these lemmas differ in that the components of « must be
strictly positive but the minimum of J(d) need not be unique in Lemma 1.1, where-
asin Lemma 1.2 some components of & may be zero but the minimum of J(d) must
be unique. Note that a decision N-tuple that yields the unique minimum of any one
player’s cost is Pareto-optimal ; it corresponds to the satisfaction of Lemma 1.2.

For the relation between Pareto-optimal and other moods of cooperative
play see Ref. 1.3.

1.3. Non-Cooperative Play

If the players do not cooperate in some sense, that is if they are in strict
competition with each player striving to attain the minimum of his own cost regard-
less of the consequences to the other players, then each player is faced with a prob-
lem : In selecting his “best” decision, what should he assume about his opponents’
decisions, for they also affect his cost ?

Here we shall treat the situation in which each player assumes that his
opponents are “rational” and hence choose their decisions so as to minimize their
own costs ; that is, each player plays with a view towards minimizing his own cost
and not towards “hurting” the other players. Thus we are led to the notion of the

Nash equilibrium.



10 1. Introduction

Definition 1.2. A decision N-tuple d* € ii D, is an equilibrium if and only if for all

ie {1,2,...,N}

1

* *

Ji (d )gJi (dl,ono,di_l’ d. ') di"'l’...’ dN)

1

for all d, e D;.
To illustrate this notion we turn again to the example suggested by Starr
(Ref. 1.6), namely a two player game with D, € R! ; see Fig. 1.2.

d,

48 /
‘ Q" “& «——J,(d) = const.

I \11(d) = const.

dy dq

Fig. 1.2 NASH EQUILIBRIUM
(arrows indicate direction of decreasing cost)

For each d; € D; we determine the d, € D, that corresponds to the smallest value
of Ja(d) and conversely, for each d, € D, we determine the d, € D, that
yields the smallest value of J; (d) . The loci of these points are shown in Fig. 1.2 ;
their intersection in an equilibrium.

An important class of Nash equilibrium games is that of two-person
zero-sum games. These are games in which the cost of one player is the negative of
the other player’s ; that is, one player loses what the other player gains. Thus, we
have

(1.5) Ji(d) = - J(d) = J(@)

Hence, in terms of J(d) |, player 1 is the minimizing player and player 2 is the max-
imizing one. For such a game we have
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Definition 1.3. Decision couple d* € Dy x D, is a saddle-point if and only if
» » * -
J(dy,d2) € J(dy,d2) < J(d;,dz)

foralld, eD, ,d, €D, .

It is readily seen that a saddle-point is an equilibrium ; that is, Defini-
tion 1.3 is merely one way of stating Definition 1.2 for two-person zero-sum games.
Such games have special properties not generally enjoyed by N-person non zero-sum
games. Among these are the following :

Lemma 1.3.1fboth (d} ,d; )e D, xD, and (:i, ,32) € D, x D, aresaddle-
points, then

. - - o~
J(dy,dz) = J(dy,d2)

Thus, the saddle-point value of J(d) is independent of the saddle —
point decision couple ; it is called the Value of the game | and we shall denote it by J*.
Lemma 1.4. If both_ d; , d;) € D, x D, and (d, ,dz) € D, x D, are saddle-
points, then (d, , dz) and (d, , d2 ) are also saddle-points.

Thus, if the saddle-points are not unique, a decision couple composed of
component decisions from different saddle-points is still a saddle-point.

The proofs of Lemmas 1.3 and 1.4 follow directly from Definition 1.3.

Another important property is the following :

t (dl* , d; ) be a saddle-point. The use of di* by player i assures him a cost that
is at least as favorable as the “best” (smallest or largest, respectively) one he can
guarantee to hlmself Thls is embodied in
Lemma 1.5. Let (d1 , dz )eD; x Dy be asaddle-point. Then

J(;,d2) < Min Sup J(di,d2) ¥d2€D;
dleDl dgGDg

J(d,,d;) >Max Inf J(di,d2) ¥dy€D;
dzeDz dleD]

Proof. Let
J(.) : D1xD, >R}
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be the cost function for the two-person zero-sum game. Consider the function
J(.) : D, R

such that for all d; € D,

(1.6) J(d2) = Inf J(d1,dz)
d; €Dy
Let
(1.7) J= Sup J(d;) = Sup ITnf J(di,d2)
d2€D; d,€D, d1€Dy
Thus,
(1.8) J 2 J(d;) ¥dy€D;

Consider also the function

3(.) H Dl—’ Rl

such that for all d, € D,

(1.9) J(dy) = Sup J(d;,dz)
d, €D,
Let
(1.10) J= Inf J(d;) = Inf Sup J(d;,d;)
d, €D, d,€D; d;€D,
Thus,
(1.11) J<J(dy) ¥d €Dy

Now suppose (d,* , d: )e D, x D, isasaddle-point ; that is,
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»* * * * *
J(@d; ,d2) $J(d,d2) = J<JI(d;,d,) ¥d;1€Dy,d2€D, . (1.12)
By (1.12)
T = Inf J(@;,d;) = Min J(dj,d;) (1.13)
d; €D, d; €Dy
and
* * »
J = Sup J(dl ,dz) = Max J(dl ,dz) (1.14)
d, €D, d, €D,

By (1.8) with (1.13)

1= (1.15)
and by (1.11) with (1.14)
3<Jd (1.16)
Now if there is a ciz € D, such that
3=i(d2) = Max \_I_(d2) (1.17)
d, €D,
then, by (1.6) with (1.17)
J = _J_(dz) = Inf J(dl ,d2)<J(d1 ,dz) ¥d;€D; . (1.18)

dleDl
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Similarly, if thereisa d e D, such that

(1.19) 7 =3(dy) = Min J(d1)
d; €Dy

then, by (1.9) with (1.19),

(1020) 3 = E(dl) = Sup J(dl ,d2)> J(d; ,dz) dee.Dz
d, €D,

By (1.18) and (1.20)

J €3, ,d2)

and

31>33,,d)
so that
(1.21) 1<

Then, by (1.15) and (1.16) with (1.21),

*

(1.22) J = J =3

But, by (1.22) with (1.12),

» ~ ~ » *
J(d] ,dz)gJ =J=J< J(dl ,dz)leeDl ’ d, €D,

That is,

»
J(d; ,d2)<Min Sup J(d;,d;) ¥d, €D,
d, €Dy d;€D;
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*
J(d, ,d; )= Max Inf J(d;,d;) ¥d; €Dy
d,€D; dy€Dy

which is what we set out to prove. It remains to be shown that the hypotheses
leading to (1.17) and (1.19) are met.
By (1.6)

* »
J(dz) = Inf J(dy,d2)
d; €Dy

By (1.12)

* * *
Inf J(d;,d;) = J(d;,d2)

d1€D;
and

I(d; ,d5)> J(dy ,d;)  ¥ds€D,
However, by (1.6),

I(dy ,dy)> J(dy) ¥d, €D,
Thus,

3(dz) > J(d) ¥d; €D,

This establishes the validity of the hypothesis leading to (1.17).
Similarly, using (1.9) with (1.12), we show that

Jdy) < 3@ ¥d, €D,

validating the hypothesis leading to (1.19). This concludes the proof.

In the subsequent chapters we shall apply the concepts discussed in Chap-
ter 1 to a particular class of games, namely differential games.However before doing
so it must be stressed that we are restricting the discussion to two moods of play :
Pareto-optimality for cooperative games and Nash equilibria for non-cooperative
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games. Other moods of play are known ; for example, see Refs. 1.3 and 1.7.
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2. DYNAMICAL SYSTEMS

2.1. State Equations

We shall be concerned with a dynamical system that is a subset of the
universe defined by its state, a set of n real numbers, x eR", which change in a
prescribed manner with the passing of time t € (~o°, ®)(*). The evolution of the
state is influenced, or as we say controlled, by N agents whom we shall call players.
In particular, we shall deal with a dynamical system whose behavior is governed by

ordinary differential equations, the state equations.

Given an initial state x° at time t, » we shall be interested in the motion
of the state under the control of the players. It is convenient to let time t be one of
the state components, say x =t , and to introduce relative time, 7= t-t, , hence-
forth simply called time.

Consider functions

]

d
&) s 10,70~ %, kK =1,2,...,N

and C! function

£¢) : Bx R x ®2x...x ‘ISR

The state equation is
£() = £x@), W @), B @),..., ) (2.1)

where dot denotes differentiation with respect to 7. For given functions u*(.) and
given initial state x°, a solution of (2.1) is an absolutely continuous function

x(.) : [o0,7] >R, x(0) = x° .

(*) Of course, any “time like” variable can serve as independent variable.

(**) Of course, f | (x(7) , u 1o, ul@), v, uN('l')) =1



18 2. Dynamical Systems

2.2. Controls and Strategies

The players influence the evolutions of the state through their choices of
the values uk(r) for almost all 7€ [0, 1 that is, at time 7 player k
selects u¥(r) . Here we shall consider two ways of making these choices : The
players utilize either time 7 or state x(r) as the information on which to base
their choices. In the former case, each player selects a function of time on a
bounded interval ;player k chooses

NORICEAES o
his open-loop control, henceforth simply called control. In the latter case, each player
selects a function of the state; player k chooses
P (L) . B> K
his closed-loop or feedback strategy, henceforth simply called strategy. Then
2.2) &) = p M)

We shall place certain restrictions on the sets of admissible controls and
strategies. These restrictions arise in part from the problem statement and in part
from requirements inherent in the subsequent mathematical development. The
former restrictions are in the form of constraints on the values of the controls and

strategies, respectively.

For ke 1,2,...,.N let U¥ (.) : R®> set of all nonempty subsets of R (2.3)

be prescribed set-valued functions. Then, given x € R”, set Uk (x) is the set of all
control or strategy values available to player k at state x.

Definition 2.1. Set K is a set of admissible control N-tuples u(.) ={u'(.), 0 (.), ...
.., uN(.)}if and only if for all u(.) e K

(1) u (-» k =1,2,...,Nis Lebesgue measurable and bounded on interval [0,7,], and

(ii) @) e (x) for all x € R\

Now, given a strategy N-tuple p(.) = {(P1(), P2()s v v PN(-) } o, let
. (x°) denote the set of the uk ()  corresponding to all solutions x(.) , with
x(0) = x° , generated by p(.) ;recall that uk (1) = p*(x(7)) -
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That is, we are allowing here for the possibility of a given strategy N-tuple resulting
in non-unique solutions of the state equation for given initial state.
Definition 2.2. Set P is a set of admissible strategy N-tuples p(.) if and only if for all

p(.)eP

(i) () € R(x%), k=1,2,...,N,

is Lebesgue measurable and bounded for all x% R",

(ii) (x) € U'(x) for all xe€ R,
and
(iii) *) P (), p (.)€ P, x € (-, %) and

p (.) such that

P (x) = p(x) for x <x,

p (x) = p(x) for xn> X
implies that

p (.) eP

2.3. Playability.

Among other motivations, we shall suppose that all players desire to steer
the state from a given initial state x® to a state belonging to a prescribed target
set, ) CR" .

(*) This technical restriction states that admissible strategy N-tuples can be *“joined” along the time axis.
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Definition 2.3. A control N-tuple u(.): [0, 7, > R% x R%2x...x RINisplayable at
x° if and only if it is admissible and generates a solution(*) x(.) such that x(0) = x°
and x(7,) €0 . §uch a solution is called terminating and 7, is the corresponding
terminal time. Let K(x°) denote the set of all control N-tuples which are playable at

xO

Definition 2.4. A strategy N-tuple p(.) : R® = R%! x R® x...x R%Wisplayable at
x° if and only if it is admissible and generates at least one solution x(.) such that
x(0) =x°,x(7) ¢60 for e[ 0,7),andx( 7,) €f.

Such a solution is called terminating and 7, is the corresponding terminal time(**)
A triple &°, p(.), x(.)}, where x(.) is a solution generated by p(.) € P and x(0) =x°,
is termed a play. A play is terminating if and only if x(.) is terminating,

2.4. Performance Index
Associated with each player there is a performance index or cost function.
For a game in which the players utilize controls, given u(.)e K and
x° €R" , there is a unique solution of (2.1), x(.)€ C, , where C_ is the class of
absolutely continuous functions on bounded intervals. The performance index for

player i is

(2.4) V.(.) : Rx KR

For a game in which the players utilize strategies, given p(.) ¢ P and
x® € R, there may be more than one solution of (2.1), x(.) €C, . The performance
index for player i is

(2.5) V() s R'x P x c,~ R

In both cases we shall take the performance index to be such that its
value, the cost for player i, is

1

v (x*5u(.)) . .
(2.6) =j £ (x(T),ul (1) 5w u (1))d7
Vo (x®,p(4),x ()

(*) Note that given u{.) € Kand x°. solution x(.) is unique.

(**) Note that hcre we requirc termination the first time the state belongs to 6.



References for Chapter 2 21

: d

respectively, where the f;(.): R™ x R% x...x RN —>Rlare of class C'. Of course,
x(.) : [0, 7,]=> R" is a solution of (2.1) generated by u(.) or p(.), respectively, with
x(0) = x°.

A more general form of cost is
71

g (x(r1)) + ffl(x(r), u! (1) 4 o pu (1))

0
where the g;(.) : R" >R' are C' functions. However, such a cost can always be
converted into one of type (2.6), and conversely ; see Appendix A.

While each player desires termination(*), he also wishes to minimize his

own cost. He can do so by cooperating with the other players or by competing with
them.

Reference for Chapter 2.

[2.1] Isaacs, R., Differential games, Wiley, N.Y., 1965.

[2.2] Blaqui¢re, A., Gérard, F., and Leitmann, G., Quantitative and Qualitative
Games, Academic Press, N.Y. 1969.

(*) There are games, such as pursuit evasion games, in which one player desires termination while the other one

does not. These are so-called “‘games of kind” or ““qualitative games’’ ; for instance, see Refs. 2.1 and 2.2.



3. COOPERATIVE DIFFERENTIAL GAMES

3.1. Pareto-optimality

Here we shall consider cooperative play in the sense of Pareto. In
particular, we shall restate the definitions and results of Chapter 1 as they apply to
the situation discussed in Chapter 2. The definition of Pareto-optimality, Definition
1.1, becomes
Definition 3.1. A control N-tuple u () € R (x°) is Pareto-optimal if and only if
for every u(.) € R(x°) either

Y, (x%u()) =V, (%0 (D) We {1,2,..,8)

or thereisatleast one i€ (1, 2,..., N } such that
v, (x°,u(.)) > Vi (x°,u'(.)).

One question that arises is : Why do the players utilize open-loop controls
rather than feedback strategies ? The answer is twofold. First, since the players
cooperate by making a joint decision, there appears to be no reason for not
announcing their individual decisions. Secondly, as we shall see, the problem
eventually reduces to the usual optimal control problem with a single performance
index for which, in general, optimal control yields the same result as optimal
strategy ; see Ref. 3.1.

It is possible to state conditions that must be fulfilled, necessary
conditions, if a control N-tuple is Pareto-optimal ; for instance, see Refs. 3.2 - 3.6.
Here we shall proceed differently. We shall give conditions which assure that a
control N-tuple is Pareto-optimal, that is sufficient conditions, and then invoke
earlier results from optimal control theory to deduce candidates for Pareto
-optimality. This appears to be a reasonable approach. For, no matter how we obtain
candidates for Pareto-optimality, in the end we are obliged to verify that they are
indced Pareto-optimal ; namely, we must employ sufficient conditions. Then why
not proceed from sufficient conditions at the outset ?

And so we recall Lemmas 1.1. and 1.2. For differential games they
become
Lemma 3.1. Control N-tuple u*(.) GNf((xo ) is Pareto-optimal if there exists an aeRN
with >0, i =1,2,...,N, and izlai = 1, such that
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V(x®u () < V(x%u(.)) ¥u(.)eR(x®)

here
hd N

VEu() = F @V, (x°,u(.).

Lemma 3.2. Control N-tuple u*(.) e f('(x°) is_Pareto-optimal if there exists an
ae RN with =0 ,i=1,2,...,N,and £,%= 1, such that

Vx®,u (1)) <V&®,ul)) ¥ul)eRx®), u()#u ()

where
N
V(x°,u(.)) = i§1 e Vi (x°,u(.)).

In view of the above lemmas, to deduce control N-tuples which qualify as
candidates for Pareto-optimality we need only consider the associated optimal

control problem with state equation (2.1), as described in Section 2.1, and with cost

V(x°,u(.) ). That is, to find the control N-tuples which satisfy necessary conditions
for Lemmas 3.1 or 3.2, we can invoke results from optimal control theory such as
the Maximum Principle; for instance, see Refs. 3.7 - 3.9. In so doing one must bear
in mind that such a procedure need not yield all candidates for Pareto-optimality,
but only those which are candidates for the sufficient conditions embodied in
Lemma 3.1 or 3.2. However, if a control N-tuple satisfies sufficient conditions for
the associated optimal control problem, then it meets the conditions of Lemma 3.1
or 3.2, and hence is Pareto-optimal. Based on this observation, we shall now give

some sufficient conditions for Pareto-optimality.

3.2. Sufficiency for Pareto-optimality : Prescribed Terminal Time.

In this section we shall present some sufficient conditions for Pareto
-optimality in differential games with specified terminal time, 7, . In principle, this
entails no loss of generality since a system with free terminal time can be
transformed into one with fixed terminal time ; see Appendix B.

Consider the following associated optimal control problem. The state

equation is

x(1) = £(x(1), u(r)) (3.1)

(*) Thatis u(7) # u*(7) on a subset of [0, T, ] having positive measure.
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withr e [0 , 7,] , a specified interval, and

(3.2) x(0) = x°, x(11)€ B

where (x°} and g are given sets in Rn. We seek u*(.) e R(x°) such that
(3.3) Vx®,u () <V(x®,u(l) %) € R(x®)

By adapting sufficient conditions for the problem above (for instance, see
Refs. 3.10 - 3.12) we arrive at the following results.
Theorem 3.1. Control N-tuple u*(.) € R(x®) , with corresponding solution x*(.), is
Pareto-optimal if there exist

N ) N
(a)anaeR wlthai>0,1=1,2,...,N,and pX ai=1,and

i=1

(b) an absolutely continuous A (.) : [0,7 ] - Rn such that

N H * * * *
(i) Tt ), (M) - N MEE (D,u (M)

N i T
- Z af (x,u) + A (1)f(x,u)
i=l i o

AT lx @ -x)l <o

forallx e R" and ue 7 U'(x) , and almost all 7€ [0,7,] ,and
i=1

(ii) N aEnlx (1) - x] €0
for all x € 8.

Proof. Let u(.) ¢ K(x°), with corresponding solution x(.). By (i) of the theorem with
(3.1)

N ; * * N .
T f (x (T),u () ~ L &f (x(7),u(r)

-LhT o @ - xm1i<o
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for almost all 7€ [0, 7, ]. Upon integratioh with x*(0)=x(0)=x°, and invoking (ii) of
the theorem, we obtain

V(x%,u () €V(x°,u(.) (3.4)

where
n

V®,u(.)) = élaiff: (x(7) ,u(r))dr

)
and u(.) e R(x®) is arbitrary. Thus, in view of (3.4) with (a) of the theorem, the
conditions of Lemma 3.1. are met, and so u*(.) is Pareto-optimal.

Appendix A deals with the conversion of a problem with integral cost into
an equivalent problem with terminal cost. Let us suppose that this conversion has
been accomplished and that we are concerned with costs

Vi (x°,u(.)) = gi (X(Tl)) i=1,2,..,N

Futhermore, let us restrict the target set, 8, to be a smooth manifold in
n . . . . .
R ; that is, 8 is the intersection of p < n smooth surfaces whose equations are

0i (x) =0 i=1,2,..,p

where

6. () : R >R

l .
is of class C , and the matrix

0 (x) _ | 96 (x) i
o [ 0% } j

has maximum rank for all x € 0.

wsD

For the problem as restricted above, we have
Theorem 3.2. Let functions g,(.), i=1, 2, ..., N, be convex. Then u*(.) € R(x®),
with corresponding solution x*(.), is Pareto-optimal if there exist
N

N
(a) anaeR withe>0,i=1,2,...,N, and i§

_lai= 1’
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(b)ave Rp, and

(c) an absolutely continuous A(.): [0, 7,] > R" with

>‘T(Tl) = grad g (X.(Tl)) + a0 (x )(("1))

where
N
gx) = Z &g (x),

such that

W) AT AT Ex ),u (1) +A (1) &k - x (1] >0

forall xe R" and ue T U (x) ,andalmostall 7e[0, 7, ],and

i=1
(ii) ,,Ta_o_(’ia;(}l_ﬁ[x_x'(,-l)] <o

forall x € 8.

Proof. Let u(.) e K(x°), with corresponding solution x(.). According to (i) of the
theorem

-:—T- AT (1) [x() -x (M1{=0
Upon integration with x*(0) = x(0) = x°, we obtain

N r)lx() -x ()] 30
so that, in view of (c) with (ii) of the theorem,

(3.5) grad g x (T )x() -x (t)] =0

Now let N
V(x®,u()) = g(x(ry)) = Z &g (x(11))
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In view of (a) of theorem , the convexity of the g, (.) implies the convexity of g(.):
Hence

V(x®,u()) =V(x®,u () =gx(11)) ~g(x (1))
> grad g(x (1)[x(ry) -x (11)]

And so it follows by (3.5) that

V(x®,u(+)) - V(x°u (+)) >0 (3.6)

But (3.6) holds for all u(.) e K(x°). Thus, the conditions of Lemma 3.1. are met,
and so u*(.) is Pareto-optimal.

If the problem is restricted further, additional results can be obtained.
They are contained in the following corollary to Theorem 2.

Let
of (x,u) _ of; (x,u) i=1,2,..,0n
ox i axj ) j = 1,2,.,0
of (x,u) ~E)fi (x,u) | i=1,2,..,n
| du” | j=1,2,.,K
where K = d;+ d2+ ..+ dN'
Corollary 3.1. Let functions g, (.), i =1,'~2, N f(),1=1,2,...,n,and 6.(-),
i=1,2,...,p, be convex. Then u*(.) € K(x°),with corresponding solution x*(.)., is
Pareto-optimal if there exist
N N
(a) anaeR withai>0,i=l,2,...,N,and Zoo=1,
i=1
(b) a VeRp with zi>0,i=1,2,...,p,and
n . .
(c) an absolutely continuous A (.) : [0,7,]1= R satisfying
af(x (7),u (1))

Ny = - AT 5
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with
Ri (tr) 20 for all 7€ [0,7y), i=1,2,..,n
and
AT(r,) = grad g(x (1)) + v .ao(x'(;’l))
where
N
80 = Iy g, (),
such that
() A'(r) af(x’“%;"’(r)) [u-u (1] >0

N i n
for all ue ‘;rl U (x) and x€R  and almostall 7€[0,7,].
Proof. By (cl), the convexity of the f.(.) and (i), we have

A ()£ x,0) ~AT(MEE (1) ,0 (1) +X (O [x-x ()]

ATy, AT EE ), (1))

-AT )y 2 @au D) 1y " ()]

>Ny & @0 @) " (1)) >0

Thus, condition (i) of Theorem 3.2 is met.
By the convexity of the 6, (), for xe@,

0= 6, (-0, (x (1)) >grad 6, (x (1,)x-x (r1)]

so that for any veR’ withp; = 0,i=1,2,...,p,
VT ae(x (:{l)) [X—X‘(Tl)] <o

and hence condition (ii) of Theorem 3.2 is met.
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Condition (a) of the corollary is that of Theorem 3.2, as is the supposition
that the g_(.) are convex. Consequently, all conditions of Theorem 3.2 are satisfied,
and so u*(.) is Pareto-optimal.

Theorems 3.1 and 3.2, and Corollary 3.1, are based on Lemma 3.1. To
allow for zero components of a , we utilize Lemma 3.2. By a proof similar to that
of Theorem 3.2, one can deduce
Theorem 3.3. Let functions g.(.,i=1,2,...,N, be convex. Then u*(.) € I'i(xo )s
with corresponding solution x*(.), is Pareto-optimal if there exist

N
(@ an @€ R witha >0, i=1,2,..,N ad Za =1,

(b) a veE R’ , and

(c) an absolutely continuous A(.) : [0,71] = R with

7\T(71) = grad g(x* (1)) +VT 96 (x (}’:1))

where

N
g0 = T ag (0,

such that, forall u(.) € 12(x°), u(.) # u*(.), with corresponding solution x(.),

(1) A ()£ () um) - N MEE (@) ,u (1)
+ N (@) x(r) -x"(M] 20

for almost all 7 € [0,7,] , with strict inequality holding on a subset of
[0, 71] having positive measure, and

(i) P Oe)) () ot 0] <o
Theorem 3.3. has a corollary that is analogous to Corollary 3.1.
3.3. Sufficiency for Pareto-optimality : Unspecified Terminal Time.

In section 3.2. we considered the associated optimal control problem with
prescribed terminal time. Here we shall give a different kind of sufficiency theorem
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that is applicable whether or not 7, is specified. If 7y is not fixed , x, (0)and
X, (71) are not given, however, if 71 is fixed, x, (0) and x, (71) are prescribed. The
first theorem is based on one given in Ref. 3.13.

Theorem 3.4. Let X be an open subset of R" . Control N-tuple u*(.) € ﬁ(x°), with
corresponding solution x*(.) : | 0,711~ R" , is Pareto-optimal with respect to any
u(.) € K(x®) -with corresponding solution x(.) : [0,71]>R" such that x(r)€ X
forall T € [0,73] | if there exist

(a) an Q€ R" with Oli> 0o, i=1,2,..,N, and ‘21 a = 1, and

(b) a C' function V(.) : X # R' such that

(1) ™ v(x) =0 for all xedNX,

4
(ii) “*gl“i £ (r), w'tr) +grad VG ()EG <f>’“."”}d’ -0

[+]

and
N i
(iii) a}i]ai £ (x,u) +grad V(x)f(x,u) =0

forall x € X anduei[;j;lUi (x).
Proof. Consider u(.) € K(x®) with corresponding solution x(.) : [0,7,] -R" such
that x(7) € X forall 7 € [0,7,] .

By (i) and state equation (3.1)

7|
1 =j grad V(x(7))f(x(7),u(r))dr= - V(x°)

Then by (ii)
71

N .
ji§1°‘a £ o (1), v (1))dr = V(x®)

[

(*) This can be replaced by the weaker condition thnrlﬂ“-r Vix())=0, x(r1)eb-
1
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Now consider

n 4\

N . N : - -
A =fi§10‘i £ (x(1),u(r))dr -fiﬁlai £ (x (T),u (7))dr

(] 2]

Now add the null term [ + V(x°) to 4, so that

73

N .
A =f[i§1°fi f:, (x(1), u(r)) +grad V(x (r))f(x(r), u('r)):| dr

o

Finally, by (iii), A > 0. This, together with condition (a), meets the
requirements of Lemma 3.1. This concludes the proof.

Because of the smoothness required of function V(.), Theorem 3.4 is
applicable to a restricted class of problems. Below we state a sufficiency theorem
that is applicable to a wider class of problems. The theorem is stated without proof ;
the proof may be found in Ref. 3.14. Before giving the theorem we need some
definitions.

Definition 3.1. A denumerable decomposition D of a set X C R™ is a denumerable

collection of pairwise disjoint subsets whose union is X. We shall write D = { Xj
j € J}where J is a denumerable index set of the pairwise disjoint subsets.

Definition 3.2. Let X be a subset of R" and D a denumerable decomposition of X. A
continuous V(.) : X > R' is continuously differentiable with respect to D if and
only if there exists a collection {(Wj Vi) tje] }such that Wj is an open set
containing X; , V; (.): Wj - R! is continuously differentiable, and

Vj (x) = V(x) for x € x’

Now we are ready to state
Theorem 3.5. Let X be a subset of R".Control N-tuple u*(.) € K (x°), with
corresponding solution x*(.) : [ 0, 7,*] = R", is Pareto-optimal with respect to any
u(.) € ﬁ(‘x°), with corresponding solution x(.) : [ 0,741 =R’ such that x(7) € X
forall T€ [0, 1), if there exist

N
(a) an o € R" with ai >0,1=1,2,..,N, and iélai = 1, and
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(b) a denumerable decomposition D of X, a continuous function V(.) : X 2 R!
which is continuously differentiable with respect to D, and a collection {(W;, V; ) :
j €J ), such that

(i) V(x) = 0 for all xef NX,

N i » * * 'y »
(1) Z i f G (M, (1) +grad V (x (N)E(x (1),u (1) = 0

almost everywhere in T* for all j € J, where T; ={re[0,71]:x (M) € X },and

N .
(iii) 3 a f:) (x,u) +grad V. (x)f(x,u) >0

forall x €X;, u€i7N=f] U'(x) , and j € J.

Note that Theorems 3.4 and 3.5 are “local” sufficiency theorems since
they establish Pareto-optimality in a subset of playable control N-tuples, namely
those which generate solutions which belong to a subset of R". Finally, note that, in
addition to the constrainsts on u(7), state constraints of the form x(7) € B for all
7€[0,71], given B C R", can be considered by letting X = B in Theorem 3.5.

3.4. Example : Collective Bargaining(*)

We consider a process of negotiation between management and union
during a strike. In this process, the state at time 7 is defined by two variables(**) :
the offer by management, x(7), and the demand by the union, y(7). If x° and y°
denote initial offer and demand, respectively, theny ° > x°.

We adopt the following model :

1) The two sides make offer and demand by a process described by

(1) = u@y@) - x(n)]

(*) Based on Ref. 3.15
(**) As can be readily verified, time, t, enters all conditions trivially ; hence, it need not be considered as a state
component.
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y() = - vl y() -x(1)]

u(t)e [0,a], v(r) €e[0,b]

where u (7)and v(7) are chosen by management and union, res-
pectively, and positive constants a, b are given. That is, the rates of
change of offer and demand depend linearly on “how far apart” the
negotiators are, with the slopes under the respective control of
management and union.

2) Agreement is reached at time 71, the smallest value of 7 for

which
y(*) - x(7) =mn

where m is a given positive number ; that is, the union agrees to end the
strike when the offer is sufficiently close to the demand.

3) Both sides desire on early end of the strike. However, management
desires to minimize the terminal offer, x(7.1), whereas the union wishes
to maximize its terminal demand, y( 7). So we postulate the following
costs

k1T + x(7;) for management

k73 - y(r1) for union

where k1, k2 are given, positive constants.
In terms of z(7) = y(T)—x(7), we have

z (1) = = [u(r) + v(r)]z(r) (3.7

with initial condition

and target set

0 ={z:2-mn-=0} (3.8)
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The control constraints are

(3.9 0Su(t) € a, 0<v(@#) <b
and the costs are(*)

Vi (z°,u(.),v(.)) =j [ki+ u(r)z(r)]ar
(3.10)

V2 (z°,u(.),v(.)) =£ [k + v(r)z(r)]ldr

We seek Pareto-optimal control couples { u*(.), v¥(.) } with corresponding
solutions z*(.) : [ 0, 7;*] ®R'. And so we consider the associated optimal control
problem with cost

z
(3.11) V(z®,u(.),v(.)) = Z &V (z°u(.),v(.))
N
where & € R? with o = 0 and i§ % =1 that is we seek to satisfy Lemma 3.2,
Cost (3.11) can be rewritten as
9]
(3.12) V(z°,u(.),v(.)) =/[k + B u(r)z(r)ldr

o
where constant terms have again been dropped,and k =  ky+ ok, , B = ¢y~ .
Upon utilizing the necessary conditions of the Maximum Principle (the
details may be found in Ref. 3.14) we obtain a unique candidate for Pareto-
optimality for every choice of . We have three cases :

I. o > a,

1) ?kr>m

* k
. 0 for z (1)=2 .
o () = B> =
a for z (1) < »— Y

(*) Here we have disregarded terms depending only on x°, y°
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2) _ﬁk? <m

@) =0 , v@)=h
II. Q = 0

* #*

v () =a , v() =D
III. a, < o,

1) -Bl—:; Zm

0 for z*(‘r)>- k

Ba

k
Pa

v@)=a,v (@) = .
b for z (1)<-

2) —Bl-cg<m
u*(T) Ea,v*(1')50

To establish the Pareto-optimality of these candidates, we invoke
Theorem 3.5. To illustrate its utilization, let us consider case I. Here

X=1{z:z€[m,>)}

For subcase 1) we require a decomposition with

e[ )

o oe o)

and where

(*) In fact, V() is ¢! so that Theorem 3.4 can be used.
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k 4 Ba
a+anE+a+b

Vi(z) = (z -m)

V; (2) -%—Q/nz+c

with ¢ chosen to insure continuity at

_k.
“"Pb

For subcase 2) we do not require a decomposition ; we choose
_k z
V(z) = 5 W o

Now it is readily seen that the conditions of Theorem 3.5. are met, and so
the candidates are indeed Pareto-optimal.

Finally, note that the Pareto-optimal controls are given in feedback form,
that is, knowledge of the state, z*(7), determines the values of u*(7) and v*(7) ; see
Appendix C.

3.5. Example : Advertising.

Here we consider a problem based on one suggested by Starr (Ref. 3.16).
The divisions of a conglomerate company are in competition and wish to use their
advertising revenue in the “best” way, that is to maximize their individual profits.
Yet, being divisions of a parent company, they are not out to “hurt” each other ;
thus, a cooperative game solution appears reasonable.
Let x. (1) = rate of demand of i-th division’s product = gross revenue per day of i-th

division
c, = fraction of revenue left after marginal costs.
u, () = rate of expenditure for advertising.

To be specific, we consider two divisions and suppose that changes in the

rates of demand are given by

() =12 0y (7) -2u} (7) =%, (7) -, (1)

12wy (T) = 2u3 () =%, (7) —uy (7)

}22 ()



Sufficiency for Pareto-Optimality: Unspecified Terminal Time 37

with X, (0) = xi° and
u, () 20

The costs (here profits) are
m

v, (x%u(.)) =f [% x, (1) —u, (T)]dr i=1,2

(]
and these are to be maximized for 7 € [0, 1].(*)
On applying necessary conditions for the associated optimal control
problem, one finds the following candidates for Pareto-optimality :
3 =1 \~1 G:’
Z—(e—l) +3-—4'6:—f0r76[0,1'i]
0

1
forrT e('ri ,1]

u (1) =

Q o -1 *
if o <3 (ell) +12, and y (1) =0 for 7€ [0,1]

o - \-! O‘j -1
if -a—J-—>3 (e—l) + 12, where 7, 1+ W 1+3(&~—12)

i 1

for i=1,2 (j =2,1), and al’a2>o ,CK1+(12=1
Using

A (1) = ai(:—l1) i=1,2

W]

obtained from the necessary conditions, one can use Theorem 3.1. to establish that
the candidates are indeed Pareto-optimal (see Ref. 3.12).

(*) Since the time interval is fixed, we must consider t=x3 ; that is, x3(r)=1, x3(0) =0, x3(7))=1.
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4. NON—COOPERATIVE DIFFERENTIAL GAMES

4.1. Nash Equilibrium

Here we shall consider non-cooperative play in the sense of Nash.
Again, we shall restate the definitions and results of Chapter 1 as they apply to
the situation discussed in Chapter 2.

The definition of Nash equilibrium, Definition 1.2, becomes
Definition 4.1. A strategy N-tuple p*(.) is a Nash equilibrium on a set X C R
if and only if
(i) it is playable at all x°€ X,
and for allie {1, 2, ..., N}and all x° X,

(ii) v. (X°.P.(-), X () <V (x",i p(.),xi (.))for all terminating
plays {x",p* (.),x"(.)} and {x, ip(.),xi (.)} where
() = (0 () es B8 (058D B (D),

and

(i) V. (x%,p ()% (D) = ¥, &°,p ()% ()
for any two terminating plays {x°,p*(.), x*(.)} and {x°, p*(.), x**(.)}.

Some remarks are in order concerning the definition above. First, the
reason for the players utilizing feedback strategies is the absence of knowledge
about their opponents’decisions : One way a player can gain information about
his opponents’ decisions: is by observing the state, for its evolution is governed
by all the players® decisions. Thus, we shall suppose that the players base their
decisions on the current state(*). Secondly, condition (iii) of Definition 4.1. is
a technical requirement to assure a Value of the game to each player. We also
note by (2.6) that

V.x%'p(),x (D) =0 ¥xe
and, in particular, that
(4.1) V.x%p (D,x () =0  ¥xeb

(*) Other schemes are possible; for instance, a player might have to use earlier state information because of delays
(see Ref. 4.1 and 4.2).
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since, in view of Definition 2.4, termination takes place the first time the state
belongs to the target set. Consequently, the conditions of Definition 4.1. are
met trivially for x°® € 0 ; that is, a Nash equilibrium on X is also one on
X* = XUO(*). Thus, for a given equilibrium strategy N-tuple, p*(.), there are
functions

V()Xo i=1,2,.,N (4.2)
such that
V() =V (x°,p ()X () 4.3)

for all terminating plays {x°,p" (.),x" (.)} and all x°€X".

Lastly, we require condition (ii) to be met for all x°¢ X. That is,
p*(.) is to be an equilibrium no matter at what state play is initiated.

In the following sections we shall derive necessary conditions for a
Nash equilibrium for certain classes of such equilibria. For earlier discussions
see Refs. 4.3 - 4.6.

4.2. Trajectories, Game and Isovalue Surfaces

In this section we shall introduce some additional concepts and derive
some preliminary results.

For each player i€{1,2,...,N} let

y = (,x) € RrR"

denote an augmented state. Given a play

{(x°,p(.),x(.)} with x(.) :[o,7,] >R",
not necessarily terminating, consider the absolutely continuous variable
% (.):[0,11 PR
such that

% (1) = £ (x(r),u(n) (4.4)

(*) While it is possible to consider @ € X, termination requires 6NX+¢.
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with
% (0) = %

so that

. . n .
(4.5 x (71) —x;°=/ £ (x(1),u(m))dr =V, (x°,p(.),x(.))

s
Next introduce C! functions

g (.):R™x R x..x RN > r™ i=1,2,..,N
such that
.6 g (7w = £ (xu)

gji (y ,u) = fj (x,u) j =1,2,.,n

Then, state equation (2,1) can be combined with (4.4) to give the augmented state e-
quation for each playerie {1,2,...,N}

(4.7) F () =g & @,ueE)

with

"
<
[
~~
x—-
(-}
L]
N/

y (0)
The target set in augmented state space is
@ =RrR'x0

Hereafter we shall restrict the target set, 6, to be a closed set in R" with smooth boun-
dary 98 ; that is

(4.8) x€00=xe{x :0(x) = 0}

where 8(.) : R" > R! is of class C! and grad 6(x) # 0 for all x in an open set contain-
ing 6. Thus,

Y@ =yely ; ®G) =0}

where @(.) : R™*' > R'is of class C ' such that@(yi)=0 (x) and grad @ (yi)=
=(0,grad 6 (x).
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Definition 4.2. Let {x°, p(.), x(.) } be a play with x(.) : [ 0,7;] = R" not
necessarily terminating, A trajectory in R' generated by play {x°, p(.), x(.) }is

={x : x =x(),tel0,7,]} (4.9)

Here we note that condition (iii) of Definition 2.2 assures that
trajectories ~can be “joined”. Namely, consider plays {x° Pp(.), x(.)} and
{X°,p(), X(.) Ywith x(.) : [0,7;] and 32( :[0,71] and trajectories T and T,

respectively, such that X(71) =X(0) . Then there exists a play {<, p(.),

] ><ll

x(.) } generating a tra_]ectory T=7
Definition 4.3. Let {x°, 1 p(.), x l()
consider the solution of (4.7), y'(.) :

Tl

x, () +jf; « @®), & )k = ¢ (4.10)

U
be a play with ¥ () : [0,71] = R", and
[o,7:] > R™ | with

T
where C is a given constant. A trajectory in R™! generated by play

{x° ip(), x1() }is
T =1y :y=yM,rel0n]) (4.11)
Thus, given a play {x°, 1p(.), xi(.) }, there 1s one trajectory in R,

7, and a one-parameter family of trajectories in R ! , {m, (O)} ; see Fig,
4.1.

(e oy i
A —y [ RO o
| i

x}, | y(‘t)|l
I
¢ [ *y(0)
| [ |
1 | i

Rn '| l '
x‘(ﬁ) X;(?) 0

Fig. 4.1 Trajectories

If ip(.) = p*(.), we denote a corresponding solution of (4.7) by
yi*(.) : {0, 7¢] > R™'  and trajectory by 7¥(C). If such a solution is
terminating, namely
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v (.):[0,71] >R™! with vy 0e® ,

we term it and a corresponding trajectory optimal (in the sense of the Nash
equilibrium).

Let P*(.) be an equilibrium on X, generating a terminating solution
x*() : [0,71] = R'. Then the projections on R’ of the members of
{ m7(C)} for alli€ {1, 2, ..., N1 are the same optimal trajectory in R"
m={x:x=x (), 7el[0,1]}

Since function V,*(.) is defined on X* for each player i €{ 1, 2, ..
., N} we can state
Definition 4.4. A game surface for player i is

(4.12) T =iy x+ v (x) = C, x€X }

where C is a constant parameter. The intersection of % (C) with R" is an
isovalue surface

5. (0) = {y: xi)= 0, v: (x) =C, x €X}

Note that S;(C) is the locus of all initial states for which the i-th
player’s game Value is the same. Again, for each player there is a one-
parameter family of game surfaces, { Z;(C)}, and a corresponding one-
parameter family of isovalue surfaces, {S; (C)}.

Given C, (4.12) defines a set of points which are in one-to-one
correspondence with the points of X*. The members of {Ei (C) } are deduced
from one another by translation along the x| -axis and are ordered by
parameter C. Thus, one and only member of {Zi (C) } passes through a given
point of R! x X*.

A given game surface, Ei (C), separates R' x X* into two disjoint sets

i

{y :

A/Z (C) xL>C-V: (x), x € X}

(4.13)

B/Ei(C) {yi: xL<C—V: (x), x € X*}

denoting points “above” and “below” Z (C), respectively.
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A game surface, Z,(C), that- contains a point yi® = (x:)O . x°),
according to Definition 4.4, is defined by

i io. _*
®(y) =C=x +V (x7)
where function
<I>i (.):R'x X - R
is such that
@ (y) = x:)+ V: (x) (4.14)

We are now ready to state a fundamental property of game surfaces .
Theorem 4.1. Consider a strategy N-tuple p*(.) that is a Nash equilibrium on X
and an admissible strategy N-tuple

Nl‘

() = {0V s )LD (0D ) s (D)

Let Z;(C) be a game surface for player i, :(C*) a trajectory in  R™!
generated by p*(.) and emanating fromyi® (0) € (C), and 7, (C') a trajectory

in R™! generated by 'p(.) and emanating from y' (0) € Z; (C). Then

(i = «cHn B/Z (C) = ¢, and

.. * #* * *
(ii) T (C YN R'x X CEi(c) with C =¢C .

Proof. Let us flrst prove proposition (i) of the theorem. Let 7 denote the
projection on R" of T (C l) and let y' -(xi' x' ) be a point on T, (Ci)
Let T denote the portlon of 7 that ends at x’ and corresponds to solutlon x(.)
:10,7;]1 = R". Note that y' & B/Z;(C") if x’ & X*, since Z;(C) is defined
on R! x X*. So suppose that x’ € X*. Since we suppose that there exists an
equilibrium strategy N-tuple on X, namely p*(.), we may consider a terminating
solution X(.) : [ 0,71] = R", X(0) =x’, with trajectory T, generated by p*(.).
In view of condition (iii) of Definition 2.2, there exists an admissible

strategy N-tuple

50 = 1pY (L) es B (LB ()2 () ey ()
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with
!

i

<
p (.) for xS x
1

i* >
p () for x > x

8 ()

)

that generates a solution %! (.) : [ 0,7;] = R", §‘i(0)

tory # =@ UT ; see Fig. 4.2. Let V;(x° 'p(.),
responding cost for player i

x(0) = x°, with trajec-

~i

(.)) denote the cor-

Fig. 4.2 Trajectories in proof of theorem 4.1

By (i) of Definition 4.1, we have
415 V() =V, (0,0 ()% (D) SV G, PR ()

where x*(.) : [0, 7]] = R, x*(0) = x°, is a terminating solution generated by
p*(.). But

4.16) ¥ GoIB0.E () =V, &0, )LE (D) 4T, e (),E()

where ;) ¥ = * '
(4.17) V. (xp (L),x()) =V, (x)
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Then, by (4.15) and (4.16),
v (x) -V () <V (%, p(),E()) (4.18)

where, according to (4.5),

V. (x%'p(2),X(.)) = & -x, (0) (4.19)

But, since yi (0) € Z;(C),
2 (0 + v (x%) = C (4.20)

Then, on setting y' = ¥ in (4.13), relations (4.18) - (4.20) lead to
y € A/ZIOVE (©).

Since yi’ is any point of ; (C'), that concludes the proof of proposition (i).
The second proposition follows at once from the definitions of
7, (C*) and Z; (C). Suppose p*(.) generates a solution

F7 = G () 2 [0,m] o,

y (0)€Z.(C) and x (0) = x°,

with trajectory 1l’: (C*). From the definition of 1r: (C*) it follows that

X(r) + V. (x (1) = C (4.21)
But y"(0) € Z,(C) implies
X (0) + V. (x%) = C (4.22)

From (4.21) and (4.22) we have at once that C* =C. Then, on letting
x = x*(7) in (4.12), we have xi,= xi:(‘r) . This concludes the proof.

Theorem 4.1 expresses a fundamental property of game surfaces. In
order to permit us to utilize this property for the deduction of necessary
conditions, we shall make assumptions which restrict the class of equilibrium
strategy N-tuples.

4.3. Regular Optimal Trajectories : Necessary Conditions for an Equilibrium.
Before proceeding to a derivation of necessary conditions, we need

Definition 4.5. Let p*(.) be an equilibrium strategy N-tuple on X, which

generates an optimal solution yi* () :[O,TT] - R™  with corresponding
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trajectory #; (C) whose projection on R" is 7*. Trajectory m*(C) is regular if
and only if
(i) all points of #*, with the possible exception of terminal point x*(77 ),
belong to the interior of X*,
(i) every point of #*, with the possible exception of terminal .point x*(73 ),
possesses a neighborhood in R™ on which V#(.) is of class C?,
(iii) every point of 7 * possesses a neighborhood in R™ on which p*(.) is of
class C?, and
(iv)(*) for all x € 7* and u' € U'4x) there exists a  strategy pi(.) that is of class C' on a
neighborhood i in R“ of x and such that pi(x ) = u' and strategy N-tu ple p(.)=
(™ (L) 5 e sP -, ),p )L, e 0V (.)}is admissible.
Now conslder a pointy = (x LX)E T (C),y-'- wi(r), T <13
By (i) of Definition 4.5, y' is an interior point of R! x X*. Next consider a strategy
N-tuple

() = 1) s DL ()L ) S P (DR

with p (x) =ui€ Ul (x) ,which generates a solution yi (.):[0 , 712K, y‘(O) =y,
with correspondmg trajectory (¢ 1) Such asolution exists in view of (iv) of Defini-
tion 4.5. Since y’ € ﬂ’(C)ls an mterlor point of R'x X* it follows at once from The
orem 4.1. that

(4.23) m ¢ty C A/Z. (C) VZ (0)

for sufficiently small 7, and

(4.24) m (©)C Z (C)

We now recall the function & () defined by (4.14). As a consequence of (ii)
of Definition 4.5, function ®.(.)is of class C* on R! x X*. Consequently, relations
(4.23) and (4.24) result in

025) grad & (¥)g' (v , px)>0 W' eV ()

grad ‘1" (yi )gi (}'i ,P. (x)) =0

VIf Ut (x) =constant ¥ x € X*, this condition is satisfied.
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for all yi€ ﬂ; © , ¥ ¢@®, where
i W (x) W, (x)
grad Ql (y ) = (1, ax1 9 see g axn ) .

According to (i) of Definition 4.5, point yi = y*(™) ,7 < 7},isan
interior point of R!'x X*, and hence possesses a neighborhood all of whose points
belong to optimal trajectories. Consequently, the second of relations (4.25) is valid
at every point of such a neighborhood. so that it is an identity in y'; thus, it can be
differentiated with respect to yi. This is allowed because of (ii) and (iii) of
Definition 4.5.

Omitting the arguments for the sake of brevity, let

0 0 ... 0
e a’v: a’v:
=10
dyi2 5Xl axlaxn
a’v: azv:
[ aff) ot
0 5%, Lr
o8 _ :
i
oy of of
0 n .. n
T o
aft  af! of
[¢] ] o
aul aU2 B-Elz
a i
% -
of of of
n n . n
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i ap g ]
0 5.51_ 5}_{:

ap;( ap_;(

°© & T &

all evaluated at yi = yi*(7), ui = pi* (x" (7)).
Differentiation of the second relation of (4.25) results in

e i i, *qT
: . . » ) 0 T s
5 &8 (7 .p <x>)+[ £+ 8 d"i] grad % (y) =0
dy oy du dy
(4.26).

Now introduce function
A(:[o,r,] >rR™
such that
(4.27) N (1) = grad’ @ (y (1))
for all 7 € [0,77). Thus, in view of (4.26) and
A A

i i *
= aty (), 7< 14,
axj axk axkaxJ 1

function A'(.)is a solution of

.. i i * .
(4.28) 7\‘(1') = - [ag‘ + dg dp. :|)\1 )
dy' du dy

Since the solution of (4.28) is defined and continuous on [0,71],

. T i* i,
(4.29)  Lim, , grad & (v (1)) =X (1y)
7T < *

Note also that the right-hand side of (4.28) is independent of ¥ so that,
as expected, 7\:)(1’). = constant; in view of (4.27)
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N@)y=1 (4.30)
Next we introduce function
#(): 7% rix x x - R
such that
FA Ly 0 =N ¢ L (4.31)
In terms of the H' -function. conditions (4.25) can be rewritten as
Min B Q' (),y (1), b (1)) =
u' eU! (x)
=E QA (M,y (M,p & @) =0 (4.32)
forall Te[0,71), where
ip (X) = {Pl*(x) 3 eee P i"l'"(x) ’ui P iﬂ*(x) 9 oo sPN*(X) } .
Now consider the function
#i¢.y:0,711> R
such that
Ky =8 A ),y (1), b (N

(4.33)

Since g'(.) and p*(,) are of class C', and\i(,) and yi* (.) are continuous, (.) is
continuous on [0,7y] if ip(.)=p*(); hence, the second of (4.32) holds
on[0,77]. To show that the first of (4.32) is also valid on the closed interval,

consider condition (iv) of Definition (4.5). Namely, consider a strategy p()= p;(.),

x = x*(7), of class c'ona neighborhood of x*( 7), such that

pi (x) = uie Ui(x) for x = x (1)
X
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Then there exists an €>0such that

'@ =Nme ), bx 1)) =0

fort € [7}-€,77) and . () is continuous on [7y-€,7y]. Thus, the first of
(4.32) holds also at 7 = 1.

Next we turn to a condition that must be satisfied at the terminal point,
yi*(71), of a regular optimal trajectory, 7 (C). Since grad @, (y') is defined on a
neighborhood of y" (), 7 €[0,7]), the tangent plane of Z.(C), Ty (yi" (7)), is
defined at yi*(7), 7 €[ 0,71); its normal is in the direction of grad <I>i(yi*('r)). Since
a unique trajectory ﬂ; (C) passes through yi*(‘r H X(*)and as a consequence of (4.29),
that normal and hence the tangent plane are defined at y .

Fig. 4.3 Transversality conditions

The set (**)
Ei(C)n@= {yi: xl =C, xef}

is deduced from @ by translation parallel to the )E;) -axis. Since d0possesses a tangent

(*) Recall that p*(.) is clin neigborhood of x*(#]).

(**) Recall (4.1)
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plane, Tyq(x), for all x €36, so does Z,(C) N3 @; let it be denoted by
Trna@) vi ). This latter tangent plane is deduced from T, 4 (x) by translation parallel
to the % -axis. Since

Tna@ ) CT,()

and since Nl (r1)is normal to Ty (¥(r1), it follows thatNi(r})is normal
to Ty a@(y *@). This is the termmal transversallty condition. It can be expressed
as follows. Let € B be a vector in Ty na®(y *(rD). Then

)\ (1’1) n=20 (4.34)
for all suchn; namely, (4.34) must hold for all nsuch that

n =0
o
. » (4.35)
3 0x () o
i=1 X, i

=0

Relation (4.34), together with (4.35), yields n-1 conditions at 7 =71, in addition to
terminal condition

0(x (11)) =0 (4.36)

Thus, the problem of integrating the state equation and eq. (4.28), not including the
zeroth component of the latter. is well posed.
The results of this section can be summarized in

Theorem 4.2. If p*( ) is a Nash equilibrium on XCR", which generates a regular
optimal trajectoryﬂ (C),ie{1,2, N},correspondmg to solunon y‘ ()= (x "),
x*(-)) : [0,71] —’R“‘*l then there exists a solution N (+): [0,73 >R™! of (4 28)
such that
(a) . Min ,

det' (x (1))

@),y M, (x (1)) =

g Ql@),y @, b ™)) =

(b) )\l (r) =

forall T€[0,71], and
(c) transversality condition is satisfied.
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Note that (4.28) may be written in component form as

‘i ar ALy w)
)\j (r) = - __a_}_{;L__

a Alyiw) dpk(x)
Buk x.
)

(4.37)

:
T k=1
j =0,1,..,n

where ! =2} ), y =yi'(7), u = p’(x'(‘r)).

Of course

N (1) =0

4.4. Piecewise Regular Optimal Trajectories: Necessary Conditions for an
Equilibrium.

The conditions of Theorem 4.2 can be somewhat generalized by relaxing
the conditions imposed in Definition 4.5. To do so we need
Definition 4.6. Let X be a domain (open connected set) of R" { Xl » X, X }isa
finite decomposition of X if and only if
(i) X;,i=1, 2, .., L, is a domain of R",
(i)X,NX = ¢ for i#j,
(iii) X, cX, i=1,2,..,L, and
v xco % .

1—1{5 a consequence of the conditions of Definition 4.6,

- L -
X =UX
i=1"1i

(o}

Definition 4.7. Given a game surface Z; (C) and a finite decomposition of domain
X, {Z{ (C), Z}C), ..., Z;(C) } is a finite decomposition of Z (C) if and only if

z"i(c) = {y: ® () =¢C, xe¢ X ) for j € {1,2,..,L} .

Now we introduce the following
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Assumptions.
(i) (*) Set X is a domain of R" with a finite decomposition { X;, X, o X} such
that p*(,) agrees on each X; with a functlon, say Py, (), of class C' on a domain
R‘ O X;, and on each non-empty M, X nX;, 19&], with a function, say
_(.), of class C' on a domain R; > M
(i1) Each discontinuity_manifold M; is a smooth (n- 1)-dimensional surface; that is

xeM=’m (x) =

where my; (.): Ry =R' is of class C' and grad m;; j (x)#0 for xe Ry,
(iii) EachV}(.) is contlnuous on X and agrees on each X; witha functlon say V" (.)s
of class C? on a domain R, DX..

By methods similar to those employed in the derivation of Theorem 4.2,
one arrives at
Theorem 4.3. If p*(.) is a Nash equilibrium on a domain XC R", which generates a
solution yi*(.) =(x *(.), x*(.)):[0,7}] >R™!, ie {1, 2, ..., N}, and if Assumptions (i) -
(iii) are met, then on every interval [ 7, , ﬁ] c [0 71} such that y*(r)e R! x X
je{1, 2, .., L}, for 7 e(r,, B) there exists a solution Al(.): [1' T]*K‘”of (4. 28)
such that

@  win  HO @50 pE M) -
of vl (" ()

=HE Q)Y D). x (1)) =
(b) kl(r) =

forall 7 e [ra,'rB] , and if there is an € > 0 such that x* (7 )e X,je(1, 2.,
L}, forre[7i-€ ,7}),

(c) (**) transversality condition is satisfied.

One can derive other necessary conditions. For instance, one can give a

{*) Note that X* need not be a domain; for example, see Sec. 5.5

(**) That is, if the trajectory approaches the target from the interior of a member of the decomposition.
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‘“jump condition” for trajectories which cross discontinuity manifolds; this
condition relates the left and right limits of AN (T)at a point of an MU. where a
trajectory crosses from X.into X;. One can also classify some types of discontinuity
manifolds (singular surfaces). For these and related matters, see Ref. 4.7 - 4.11.

So far we have discussed necessary conditions for a Nash equilibrium.
Next we shall take up sufficient conditions.

4.5 Sufficient Conditions for an Equilibrium

Since Ref. 4.12 devotes an entire chapter to various sufficiency theorems
for Nash equilibria in differential games, we shall deal only briefly with sufficient
conditions. It is possible to give sufficiency theorems analogous to theorems 3.1, 3.4
.and 3.5. Here we shall state, again without proof (see Ref. 4.12), a theorem
analogous to Theorem 3.5.

Theorem 4.4. A strategy N - tuple p*(.) that is playable for all x% X is an
equilibrium on X with respect to every strategy N - tuple p(.) that is playable at
x°eX and whose terminating solutions x(.) : [0,7,]°R" are such that x (7)€ X for all
7 €[0,71], if there exists a denumerable decomposition D of X and for each
ie{1, 2, ..., N} there exists a continuous function Vi(.) : X~ R that is continuously
differentiable with respect to D such that for all x°€X

n*. . . .
(1) [ £ & @),p x@ENaT =V &),
for all terminating solutions x*(.) generated by p*(.),
CED I T % BTN Sy S WP C IR S €3)

+ grad Vj ) E,p (1), erp ()0 2 ), P () >0
for all xe€ X, u'e U'(x), j €], where{ (Wj, Vj) :jeJ }is a collection associated
with Vi(.) and D ={X;: je ] }for each i€e{l, 2, ..., N}, and

(iii) V' (x) = 0 for all xe0.

Other sufficiency theorems can be found in Refs. 4.3, 4.12 and 4.13.
4.6 Example: Collective Bargaining

Here we consider again the problem of negotiation between man-

agement and union during a strike as posed in Section 3.4. There we sought and
obtained Pareto-optimal control N - tulpes, treating the problem as a cooperative
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game. Here we shall treat the same problem as a non-cooperative game and seek a
Nash equilibrium; the only change in the problem will be in the absence of con-
straints on the values of the strategies. Thus, we have state equation(*)

z(1) = - [u(r) +v(r)]z(7) (4.38)

where

p' (z(m)) € R

p’ (z(1)) € R

u (1)
v (7T)

The initial state

[

z(0) = 2° €[m,»)

and the target set
0 ={z :2 -m-= 0} (4.39)
The costs are

!
Vi 2°,p(.),2(.)) =[[ki+ u(r)z(r)]ar

n (4.40)
V2 (2°,p(.),2()) =[lke+ v(r)z(n)]dr
o
We seek a strateg pair p*(.)={p'*(. (.)} that is a Nash equilibrium
on [m,®).
Now it is readily verified that p*(.) given by
i@ = e =8 (4.41)

is a candidate in that it satisfies the necessary conditions embodied in Theorem
4.2,
First of all, we find that for p*(.) given by (4.41)

ANy =o0 i=1,2

. .. . . i
and that condition (c), the transversality condition, is met for arbitrary A(7*).

(*) Again, there is no need to consider time, t, as a state component.
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Condition (a) can be satisfied by
Ny =1 i=1,2

upon use of condition (b). Thus, the conditions of Theorem 4.2 are fulfilled. It
remains to demonstrate that p*(.) is indeed an equilibrium. To do so we invoke

Theorem 4.4.
No decomposition is needed. It is easily shown, on integration of
(4.40), that

Vi (ZO,P'(-), Z.(-)) = (kg + kz)T: i=1,2

and, on integration of (4.38), that

Thus, we shall choose

V() =2z-m i=1,2

With this choice of the V'(.), the conditions of Theorem 4.4 are trivially met.
And so p*(.) is indeed a Nash equilibrium.

A cautionary note is in order. While we have deduced a Nash equi-
librium, we have not shown that it is unique. Nonetheless. the particular Nash
equilibrium obtained here is of special interest because it results in bargaining
(offer and demand rates, x(7) and y(7)) that does not depend on the current state

of the negotiation.
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5. Two-Person Zero-Sum Games

5.1 Saddle-Point

As discussed in Section 1.3, two-person zero-sum games constitute an
important class of Nash equilibrium games. Differential games of this class have
been extensively treated, for instance in Refs. 5.1 5.4; here we shall only give
those results which arise directly from specializing the N-person nonzero-sum case.
Before doing so let us note that (1.5) becomes

Vi() =-Va(.) = V() (5.1)
that is,
£0) == £2() = £ ()
(5.2)
x () ==-x() =x ()

Then Definition 1.3 becomes
Definition 5.1. A strategy pair p*(.) = {p™*(.), p**(.)}is a saddle-point on a set
X € RMif and only if
(i) it is playable at allx’€ X,and
(1) V(xS () ,x2 (NS VESP (L)% (IS VES (), (L)

for all terminating {x$ 'p (.),%' ()}, i=1,2,{:%p (.),x (.)},andallx’eX.

This definition corresponds to Definition 4.1 for nonzero-sum games.

Note that condition (iii) of the latter definition is not imposed here, it is already
implied by condition (ii). In other words, if there are two terminating plays,
{x9 p*(.), x*(-)} and { x°, p*(.), x**(.)}, condition (ii) implies the equality of the
corresponding costs. Again, we note that the conditions of Definition 5.1 hold
trivially for x®e 8. Thus, for given saddle-point, p*(.), we can define

V() : X=xXU6~-R
such that
V' (x°) = V(xS p (), x ()

for all terminating plays {x$ p*(.), x*(.)} and all X’ X*.
Before turning to a derivation of necessary conditions, a few words con-
cerning the special properties of two-person zero-sum games are in order. These
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are embodied in Lemmas 1.3 - 1.5.

Lemmas 1.3 and 1.4 have ready counterparts for differential games.
Lemma 1.3 becomes
Lemma 5.1. If both{pl ), p*(.)}and{ p () P(.)}are saddle -points on X and if,
given x% X, {(p'*(.), p**(.), x*(.)}Yand {x° P'(.), P*(-), X(.)}are terminating plays,
then

V(ESP™(.) P () L% () = V(x$P' (L), (.),R(.)).

Lemma 1.4 becomes
Lemma 5.2. If both{p'*(.), p2*(.)}and{ p!(.), PX.)}are saddle-points on X, and if
both{p ), pA(-)}and { p¥.), 2'( )}are playable at all x’¢ X, then {pt*(.), p2(.)}and
(') p (.)}are also saddle-points on X.

On the other hand, Lemma 1.5 has no direct analog for differential
games. However, if there exist sets of strategies, P! and P?such that
(i) P'x P’<P, and
(i) given x°€X, p(l) ePl, p(2) 6P2, there is a unique terminating solution, x(.),
then one can identify d with pi(.) and D,with P! so that Lemma 1.5 applies
directly. An example of such behavior may (*) be found in so-called “linear-quad-
ratic” games; for example, see Ref, 5.5.

5.2 Necessary Conditions for a Saddle-Point
The necessary conditions embodied in Theorems 4.2 and 4.3 can be
recast easily to fit the two-person zero-sum situation. To do so, we note that

(5.3) d (y) = - &G = 2y

where y =(x, x). Consequently,

(5.4) A1) = - N (1) = N(T)
and

- B2 (\?,y? ,u)
HQ\,y,u’ ,u?)
Ng(y,u',u?)

Hl (xl )yl yu)

(5.5)

(*) For instance by further restricting admissible strategies to the class of linear functions of the x;,
i=1,2,..,n-1,
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where g(.) = (f,(.), £ (.))-
Then, eqs. (4.37) become

3 - - OHQ\,y,u! ,u?)
7\). (r) = Tixj
d; OHQ\,y,u’ ,u?) ap;.(x)
>
i=1 du; axj (5.6)
dy aH()‘:y’ul ,uZ) ap?(x)
- i‘z-=l ou? ﬁdx]

where A = A(T), y = y‘ (t), u'= Pi* (X. ).
Again, of course

Ao(7) = 0

Now we are ready to state the counterpart to Theorem 4.2.
Theorem 5.1. If {p'*(.), p**(.)}is a saddle-point on X CR" which generates a
regular optimal trajectory m*(C), corresponding to solution y*(.) = (x*(.),
x*(.)) : [ 0,71*] >R™", then there exists a solution A(.) :[ 0,7 —R™bf (5.6)
such that

(a) Min  HQ(@),y (M),ulp’ (1)) =
ulet? (x* (1))

= Max  HQA(@),y (1), (¥ (1)),u?) =0,
uw?et? (x" (7))

(b) A (1) =1

for all7 €[0,7,*], and
(c) the transversality condition is satisfied.
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On the other hand, Theorem 4.3 becomes

Theorem 5.2. If{p'*(.), p**(.)}is a saddle-point on a domain X CR", which
generates a solution y(.) = (xX(.), x*(.)) : [O7F]~> R":l, and if Assumptions (i)-(iii)
are met, then on every interval [Ta,Tﬂ]_C_[O,‘rl_] such that y*(7)e R!x Xj ,
jed1,2,..,LY for (7, Tg), there exists a solution \' (.):[Ta,Tﬁ]—’lfmof (5.6) such
that
(a) Min  HQ(),y (M),ulp”(x (1)) =

uleu! (x* (7))

= Max  HQ®@),y (1),p"(x (1),u?) =0,
wel? (x* (1))

() A(m) =1
for all 7€l7,,7,], and if there is an €>0 such that x*(7)e X,

: j
j€Q1, 2, ..., L}, for Te[rf€,1)),
(c) transversality condition is satisfied.

5.3 Constraints
A further simplification, unique to two-person zero-sum games, can be
effected if the constraint function U'(.) satisfy certain conditions.
Suppose that U'(x) and U%(x) are defined by
v, (x,u') <0 i=1,2,...,k
(5.7
llli(x,u2)<0 i=1,2,...,8
respectively, where

0. () : x &Y > R
v R"x R2 - R

are of class C!
Suppose further that

n
o
[

]
n
o

v, (x,0"(x)) 1,2,...,k

(5.8) (¥) .
v, (6,07 ()

[]
o
-

L]

1,2,...,8' <2

at x = x*(7).

(*) If necessary by relabelling,
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We shall assume that, if k>d, or 2>d, at most d;of the ¢, (x,u') or
dof the dli(x, u2) vanish at any point of R" x RI1 or R" x R%2 , respectively, and
furthermore that the matrices

3y, (x,u') i=1,2,...,K

3! i=1,2,...,d
all/i (x,u?) i=1,2,...,°%
Touz j=1,2,...,d,

)

have maximum rank at x = x*(7), ul = pi*(x*(7)).
Now, by the multiplier rule, condition (a) of Theorem 5.1 and 5.2
implies that there exist

’

1,2,...,k
K+1,k+2,...,k

U € Rk,wit:hui 20, 1

g, =0, i

1,2,...,%
+1,2 +2,...,¢%

Q . .
v€R,w1thv'i<O,1

Vi=0,1

such that

T BT B - o
(5.9)

g%lz*‘ o g%=)\T(‘r) %4- o g%z = 0

where row vectors

and matrices
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op '3&pi (x,u') ] i=1,2,...,k
L2 N T j=1,2,...,4

W [0y (x,u?) ] i=1,2,...,%
LN T j=1,2,...,d,

at x = x*(71), ul = pi*(x*(‘r ).
If x*(7 ) is an interior point of X*, then (5.7) and (5.8) imply that

1,2,...,K

‘pi (X,P"(X)) ’ i

Y ) 5 = 12,008

have stationary maxima at x =x*(7).

Hence
. a‘pi 2 dzl: a‘pi ap:. . [}
B tum wrag T 0 BT Bk
(5.10)
n 0V, n d; Y api' . )
Brm it gt 0 Pt bt
or, in vector form,
T| 3 , 3 dp'"| _
(5.11) p[55+331dy =0
[y, wap]
v I:a;'*m dy = 0
where a0,
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(o .. |
B | O,
oy )
3y -
O
° o,
at x = x° (), ul=pi" (x"(1)).
By (5.9) and (5.11)
T . dg dp _ T dp
A (1) ;ﬁ,dy = 5 |
(5.12)
2%
or
dg  dp\' dp T
<FU%_ Z{;L))‘(T) =(Ty)” (5.13)
3 d 2#\T Yy T
(=% 3y JEYO =(a;) v
so that egs. (5.6) can be written
: ag \! a0 \T ()T
A(@T) = - (5%) A(T) - (5;) 2 (5—};) v (5.14)

for all 7 such that x*( 7) belongs to the interior of X*. Thus, if constraints (5.7)
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are state-independent, (5.14) reduces to

A@r) = - (%)Tx(r) (5.15)
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5.4 Sufficient Conditions for a Saddle-Point.

Here we shall give a sufficiency theorem that is the counterpart to
Theorem 4.4; for a proof see Ref. 5.6. Other theorems can be found in Refs. 5.1,
5.3, 5.7 and 5.8.

Theorem 5.3. A strategy pair {p'*(.), p>*(.)} that is playable for all x°¢ X is a
saddle-point on X with respect to every strategy pair {p'(.), p>(.)}that is
playable at x€¢ X and whose terminating solutions x(.): [ 0,7;] ®R" are such
that x(7)eX for all 7 €[0,7,], if there exists a denumerable decomposition
D of X and a continuous function V(.) : X R’ that is continuously differenti-
able with respect to D such that

(i) £, (x, p1*(x), u?) + grad V; (x)f(x, p* *(x), u2) <O for all x € X, , u?e U (x),

j €J, and

£, (x,u',p? (%)) +grad V. () E(x,ul,p?"(x)) >0

for all x € X, u'e Ul(x), je J, where{ W, Vi)ije] }is a collection associated
with V(.) and D = {X; :jeJ} and
(i) V(x) = O for all x e 8 .

5.5 Example: Collective Bargaining(*)

Whereas the collective bargaining example discussed in Sections 3.4 and
4.6 dealt with a process of negotiation during a strike, now we shall consider
negotiations which allow for a strike but also for no strike. A second difference
between the earlier problem and the present one lies in the fact that now we shall
make no a priori assumptions concerning the dynamics of the process.

Let[0,7,] denote the unspecified interval during which negotiations
take place. At 7 €[0,7,]
x(7) = offer by management of total wages per unit time
y(7) = demand by labor for total wages per unit time
k = gross profit of company per unit time (**)

Let u(.), v(.), w(.) be bounded and measurable functions from
[0,7, ] > R' such that

u(r)el0,1], v(r)el0,1], w(r)e{0,1} (5.16)

(*) Based on Ref. 5.9

(**) That is, profit rate before payment of wages.
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The rates of change of offer and demand are controlled by management
and labor, respectively. Thus,(*)

x(r) = u(r)
(5.17)

y(r) =-v(r)
withx (0)=x%nd y(0) = y?©, the initial offer and demand, respectively.
Settlement is reached (termination) the first time offer equals demand,
that is at time 7, such that

(5.18) y(T1) - x(11) =0

If w(7) =0 implies no strike at time 7, and w(7) = 1 implies a strike
at time 7 , then
w (7)[ k- y(7)] =potential profit loss rate (due to management not acceding to
labor’s demand) during a strike
w (7) x (1) =potential wage loss rate (due to labor not accepting
management’s offer) during a strike.
Now we propose the following motivations:
Management choose u(7),7 € [ 0,71 ], so as to minimize
the final offer = x(7, ), and the potential profit loss during a strike
1
= [wmlk-ymlar ,

o

the potential wage loss during a strike
71

= [ w(r)x(r)dr

and to maximize.

Labor, on the other hand, choose v(7) and w(7 ), 7 €[ 0,7;], so as to accomplish
the converse.

The costs to management and labor, respectively, are then(**)

7
[{oqu(r) +opw(r)[k - y(1)] - 3w(T)x(7) }dr

and

(*) Again, there is no need to introduce time, t, as a state component; this can be easily verified.

(**) Here we disregard constant terms which depend only on the given initial state.
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and

mn
[{Bru(r) +B2w(r)[k = y(r)] - B3w(r)x(7)}dr

where the @, and B;, i=1,2,3, are prescribed non-negative constants. If we
assume equal weighting assigned to the three motivation terms, we are faced with
a two-person zero-sum game.

It is convenient to use x(7 ) and z(T) = y(T ) = x(7) as state variables,
so that termination takes place when z (7,) = 0. In terms of these variables, the
cost is

fiu(f) +w(t)[ k-2(r) -2x(r)] }dr (5.19)

Now consider strategies(*)u (.) and (v(.), w(.)) where
u(r) = px(), z(1))
v(r) = v(x(1), 2(7))
w(r) = w(x(r), z(1))

Here,  (.) is the strategy of the minimizing player, management, and (v(,), w(.))

H

is the strategy of the maximizing player, labor. We seek a saddle-point { u*(,),
(@*(.), w*(.))}on

X = {(x,2)€ R? : 0<x <k, z>0}
with target set

0 = {(x,2)eR?*: 0 <x <k, z =0}

Upon use of the necessary conditions of Theorem 5.2 and of the
sufficient conditions of Theorem 5.3(**), one can establish the following saddle-
-point (Ref. 5.9):

b (x,2) =

v* (%, z)

]
o

(X,E)e Xy

w* (x,2)

(*) Again, it can be readily verified that time, t not be considered as an additional state variable.

{**) Since XN @ =¢, we use X¥ in place of Xin Theorem 5.3.
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b (x,2) =1

—

vt (x,2) = (x,2)e Xz

w* (x,-i) =1

Mt (x,2) =1

w(x,2) =1 (x,2)€X; N XN X
w*(x,2) =1 or O}

M (x,%) =0

»(x,2) =1 (x,2)€ X3

W (x,2) =0

where for k < 2

X; = {(x,2) : 2x <k - 2z}NX
X, = {(x,2) : k-22<2x<k-z}NX
X3 = {(x,2) : k-z<2x}NX
and fork > 2
X, = {(x,2) : 2x <1+k-3z and
2x S k-2z}NX
X = {(x,2) : k-22<2x<k-2z or
1+k-3z <2x <k-2z}NX
X3 = {(x,2) : k~-z <2x}NX

In particular, the saddle-point strategy for labor calls for a strike whenever
the offer falls below the potential profit, x <k —y.
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Appendix A: Integral and Terminal Costs

Let us consider a terminal cost g; (x( 7)) where g.(): R"->R’ is of class
C'. We wish to deal with an equivalent cost in integral form.
We note that
n

g, (x(1)) = gi(x<0)>+:fgrad g (x(MIE(T) ,ut (1), ,u’ (1))d7

o

However, since x(0) =x°is specified, so is g;(x (0)). Thus, the integral cost
differs from the terminal only by a constant. Thus, we need consider only the
integral cost
|
v, (x%,u()) }=fngmﬂﬂnmun&uummﬁﬂw
V. (x°,p(.),%(.)) ‘

which is of type (2.6).
Conversely, given an integal cost
n

ffl(x(r>,u‘<r),.n,u”<r))dr

[o]
we wish to deal with an equivalent cost in terminal form.

Letx . (7) be an additional state component such that
nwi

%41 () = £ () 0! (1), yu (1))
with
Xn‘l'i (0) =0

so that
y

%, (T) = ffl(x(r),u' ()5 eyt (1))dT

Thus, if we have integral costs for all i€{1,2,...,N } and we convert to

e R™*Nand

terminal costs, we have an augmented state x = (x, X 410 XaN
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terminal cost functions g; (): R™N, R' where

g, X(ry)) = X i (t1)

Appendix B: Change of Interval

Consider a system with state equation

d n
E’E‘. = f(x,t,u)€ R (B.1)
with x(t) = x°, telt ,t;] with ;> ¢ .

Suppose whish to convert to an equivalent system with independent
variable 7 €[ 0,1] . To do so introduce

xn+l =t
xn-i-2 =t -to
t
T =
xn+2
so that (B.1) becomes

dx
ar = X FOOX L H0) (8.2)

with x(0) = x°, 7€ [0,1] , where

dx dx
n+1l n+2
& "2 @ 0 (8.3)

with X . l(0) =t .
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Errata Corrige
Title: “Many player” instead of “Many players”

Page 62, following line 5, add:
% ) o~

and {p!™ (), B2()} and {Bl(), p2*()} are

playable x°,

Title of paragraph 3: “Cooperative Differential Games”
instead of “Cooperative Dipartimental Games”
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