
Games  with Randomly  Disturbed Payof f s :  

A N e w  Rationale  for Mixed-Stra tegy  Equilibrium Points  

By JOHN C. HARSANYI 1"2) 

Abstract: Equilibrium points in mixed strategies seem to be unstable, because any player can deviate 
without penalty from his equilibrium strategy even if he expects all other players to stick to theirs. 
This paper proposes a model under which most mixed-strategy equilibrium points have full stability. 
It is argued that for any game F the players' uncertainty about the other players' exact payoffs can 
be modeled as a disturbed game F*, i.e., as a game with small random fluctuations in the payoffs. 
Any equilibrium point in F, whether it is in pure or in mixed strategies, can "almost always" be 
obtained as a limit of a pure-strategy equilibrium point in the corresponding disturbed game F* when 
all disturbances go to zero. Accordingly, mixed-strategy equilibrium points are stable - even though 
the players may make no deliberate effort to use their pure strategies with the probability weights 
prescribed by their mixed equilibrium strategies - because the random fluctuations in their payoffs 
will make them use their pure strategies approximately with the prescribed probabilities. 

1. Introduction 

On the face of it, equilibrium points in mixed strategies are unstable because any 
player can deviate without penalty from his equilibrium strategy even if all other 
players stick to theirs. (He can shift to any pure strategy to which his mixed 

equilibrium strategy assigns a positive probability; he can also shift to any 
arbitrary probability mixture of these pure strategies.) This instability seems 
to pose a serious problem because many games have only mixed-strategy equili- 
brium points. 

However, as we shall see, the stability of these equilibrium points will appear 
in a different light if we take due account of the uncertainty in which every player 
finds himself about the precise payoffs that other players associate with alternative 
strategy combinations. Classical game theory assumes that in any game F every 
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player has precise knowledge of the payoff function of every other player (as well 
as of his own). But it is more realistic to assume t h a t - e v e n  if each player i does 
have exact knowledge of his own payoff function U~-he can have at best only 
somewhat inexact information about the other players' payoff functions U j, 
j ~ i. This assumption, of course, formally transforms the game into a game with 
incomplete information. However, it can be shown [HARSANYI, 1967--68] that 
such games can also be modeled, more conveniently, as games with complete 
information involving appropriate random variables (chance moves), where the 
players' ignorance about any aspect of the game situation is represented as 
ignorance about the actual values of these random variables. 

Accordingly, we shall propose the following model, to be called a disturbed 
game F* = F*(e). The payoff function U i of every player i is subject to small 
random disturbances within a given range [ - e ,  +e] ,  due to small stochastic 
fluctuations in his subjective and objective conditions (e.g., in his mood, taste, 
resources, social situation, etc.). The probability laws governing these disturbances 
are known to. all players, but their precise effects on any given player's payoff 
function Ui at the time of his strategy choice are known only to this player i 
himself. As we shall see, under our assumptions (see below), all equilibrium 
points of any disturbed game F*(,) will be in pure strategies. Moreover, any 
mixed-strategy equilibrium point s in an ordinary game F can "almost always" 
be obtained as the limit of a pure-strategy equilibrium point s(e) in the corre- 
sponding disturbed game F*(e) when all random disturbances go to zero (i.e., 
when the parameter e goes to zero). Therefore, such a mixed-strategy equilibrium 
point s can be interpreted as a somewhat unprecise description of this pure- 
strategy equilibrium point s(e) of the disturbed game F* (~), and can be regarded 
as having the same stability as s(e) has. 

More specifically, our results imply the fol lowing-somewhat  surprising- 
conclusion. The players may make no deliberate effort to use their pure strategies 
with the probability weights prescribed by their mixed equilibrium strategies 
s 1 . . . . .  s,. Nevertheless, as a result of the random fluctuations in their payoffs, 
they will in fact use their pure strategies approximately with the prescribed 
probabilities. 

2. Definitions and Notations 

Let F be a finite n-person noncooperative game. The k-th pure strategy of 
player i will be called a~ while the set of all his K i pure strategies will be called A i. 
Let 

= I-[ K, .  (1) 
i 

We shall assume that the K possible n-tuples of pure strategies will be numbered 
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consecutively (e.g., in a lexicographical  order)  as a 1 . . . . .  a m, . . . .  a K - but  see 

Convent ion  (92) below). Let  

a m = 1 ,  . . . ,  a , .  . .  . ( 2 )  

Then  we shall write 
kr am(i) = a i (3) 

to denote  the pure  strategy used by player i in the strategy n-tuple am. The  set 
of  all possible pure-strategy n-tuples a m will be called A. We can write A = 

A1 x ... x A . .  
Any mixed strategy s i of  player i will be of  the form 

s, = X p~ a~ , (4) 
k 

where p~ is the probabil i ty  that  this mixed strategy s~ assigns to the pure  strategy 

a~. Of  course, 

p ~ > O  for k = 1  . . . .  ,K  i and 2 P ~ = 1 "  (5) 
k 

The  set of  all mixed strategies available to player  i will be called S~, The  set of 
all possible n-tuples s = (s~ . . . . .  s,) will be called S. We have S = $1 x -.- x S,. 
We  shall write s = (si,g 3, where ~ = (sl . . . . .  s~_~,s~+~ . . . . .  s,) is the .strategy 
(n - 1)-tuple representing the strategies of  all (n - 1) players o ther  than player i. 

The  set C(s3 of  pure strategies to which s~ assigns positive probabili t ies is 
called the carrier of  s~. The  set C* (s3 of  all mixed strategies t~ that  distribute all 
probabi l i ty  over  the pure strategies in C(s~) is called the extended carrier of si, 
Thus  C* (s-,) is the convex hull of  C(s~). 

k A mixed strategy s~ whose carrier C(si) contains only one pure strategy ai 
will be identified with this latter so that  we shall write s~ = a~. On the other  hand,  

if C(sl) contains two or more  pure  strategies, then s, will be called a proper mixed 
strategy. 

k Suppose that  the i-th componen t  of  the pure-strategy n-tuple a m is am(i) = a~, 
and that  the mixed strategy s~ of player i assigns the probabil i ty  p~ to this pure 
strategy a~. Then  we shall write 

qT'(s,) = pki. (6) 

Of  course, if s~ = a~ is a pure  strategy, then we have 

whereas 

m k qi (ai) = 1 when am(i) = a~, (7) 

m k k qi (ai) = 0 when am(i) =3 ai .  (8) 

If the n players use a pure-strategy n-tuple am, then player i (i = 1 . . . . .  n) will 
obta in  the payoff  

Ui(a m) = v[", (9) 

while if they use a mixed-strategy n-tuple s = (sl . . . . .  s,), then his payoff  will be 
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U (s) = [ [ I  qT(s,)] vT.  (lo) 
m i 

A given strategy s~ of player i is a best reply to some strategy combination ~used 
by the other (n - 1) players if 

Ui(si,~) > U~(t~,~) foraU t~ES~. (11) 

A given strategy n-tuple s = (s~ . . . . .  s,) is an equilibrium point [NASH, 1951] if 
every component s~ of s is a best reply to the corresponding strategy combination 

of the (n - 1) other players. 
An equilibrium point s is called strong 3) if all n components s~ of s satisfy (1 i) 

with the strong inequality sign > for all t~ ~ sv That is, s is a strong equilibrium 
point if every player's equilibrium strategy s~ is his only best reply to the other 
players' strategy combination ~. An equilibrium point is called weak if it is not 
strong. Any equilibrium point s is always weak if at least one player's equilibrium 
strategy s~ is a proper mixed strategy because for this player i every strategy t~ 
in the extended carrier C* (sO of his mixed equilibrium strategy s~ is a best reply 
to ~, and there are infinitely many such strategies t~ in C* (s~), 

An equilibrium point s is quasi-strong if no player i has best replies to T~ other 
than the strategies t~ belonging to the extended carrier C* (sO of his equilibrium 
strategy re, Though an equilibrium point in proper mixed strategies is never 
strong, it may be (and mostly is) quasi-strong. An equilibrium point that is not 
even quasi-strong is called extra-weak. If an equilibrium point in pure strategies 
is weak then it is always extra-wea.k. 4) 

3. Disturbed Games 

In a disturbed game, F* = F*(e), the payoff of any player i for ally given 
n-tuple a ~ of pure strategies can be written as 

U~(a") = Vda m) + ~. ' f  = v~ + ~r , i = l . . . . .  n; m = l . . . . .  K (I2) 

where l,~(a m) = v~" and e are constants with e > 0, whereas ~7' is a random variable. 
As V~ is the nonrandom part of player i's payoff function Ui, V~ will be called 
player i's basic payoff  function. We shall write 

. . . . .  Cp), i = 1  . . . .  , . .  (13) 

Thus ~ is'a random vector consisting of all random variables r occurring in 
player i's payoff function U i, 

3) I am using the term "s t rong equilibrium point"  in a sense different tu AUMANN'S [1960a, 

p. 363]. 
4) It can be Shown that games possessing extra-weak equilibrium points, whether in pure or in 

mixed strategies, are very "exceptional":  they correspond to a closed set of  measure  zero in.the space 
of  all games of  a given size. 
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We shall assume that the random vectors r associated with different players i 
are statistically independent. The probability distribution of each random vector 
r will be written as 

F~ = F,(r = F,(r ... ,r (14) 

We shall assume that the nonrandom basic payoff functions V1,..., V~, the para- 
meter 5, and the probability distributions F1, ... ,F,  are known to all n players. 
But the actual values of the variables 41 . . . . .  ~:  are known only to player i him- 
self (i = 1 . . . . .  n). 

We shall make the following assumptions about the probability distributions 
F~: 

The range of each random variable r = 1 . . . . .  n;m = 1 . . . . .  K)  (15) 
is a subset (or possibly the whole) of the closed interval I = [ -  1, + 1]. 

All probability distributions Fi are absolutely continuous. Moreover, (16) 

For each F~, the corresponding probability density function (17) 

tVK Fi 
f , ( O  . . . . .  i f )  = . . . .  

is continuously differentiable for all possible values of ~,. 
Suppose that player i uses the pure strategy a/k while the other (n - 1) players 

use the mixed-strategy combination T/= (sl .... ,si_~,si+ 1 . . . . .  sn). Then, in view 
of (10) and (12), player i will receive the payoff 

U, (a~, ~) = ~ [qm (a~) 1--[ q7 (s j)] vT' + e ~ [qm (a~) I-[ q7 (sj)] r (18) 
m j ~ : i  m j=/:i 

For convenience, we shall write 

Vi(a~,~) = ~ [q~(a~) I-I qT(s)] v~' (19) 
and ,, j§ 

(~ = ~ [q~' (~) l-[ q~' (sj)] ~ ' ,  (20) 
m j ~ i  

so that (18) can now be written as 

U,(af,N) = V~(a~,~) + e(~. (21) 

The quantity ff~ is obviously a random variable whose probability distribution 
depends on the strategy combination ~ used by the other ( n -  1) players. 
Corresponding to the K, pure strategies a~ . . . . ,  a K'~ available to any given 15layer 
i, Eq. (20) defines Ki random variables ff] . . . . .  (K,~ for him. Let ~i be the random 
vector 

( , = ( ~  .... , ~ ' ) ,  i =  1 . . . . .  n. (22) 

Clearly, for each player i(i = 1 . . . . .  n), the probability distribution G~ = G~(~[~) 
of this random vector will once more depend on ~. More particularly, let Q~(g~) 
be the set of all points ~ = (~  . . . . .  r satisfying the K~ inequalities of the form 

~ [ q m ( a ~ ) I ~ q T ( s j ) ] r  <= ~ ,  for k =  1 , . . . , K ~ .  (23) 
m j ~ i  
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Then  we can define 
~K G,(~, ] ~) = G, ( ~  . . . . .  ~.~ '[ s,) = j" d { ] . . .  J" d {ff~ (~,). (24) 

For  any r a n d o m  variable or r a n d o m  vector, we define its range space as the set 
of  all possible values it can take in game F*. Thus,  we define the range  spaces 
= ' ~ = { ~ 7 ' } , Z ~ = { ~ } , ~ , = { r 1 6 2  1, , n ; m =  1 , . . . , K :  
k = 1 . . . . .  Kv  In view of (15), we have 

~ ' '  c I = [ -  1, + 1] for all i and m,  (25) 

which, by (20), in turn implies 

Z ~ _ c I =  [ - 1 , + 1 ]  for all i and  k .  (26) 

= �9 . . .  Moreover ,  z i  ~. • .- • ~. a n d Z i = Z ~  • • Z~'. 

4. Strategies and Equilibrium Points in Disturbed Games 

The dis turbed game F* (e) as defined in Section 3 is not  in no rma l  form. One  
reason for this is that  our  definitions have  not  m a d e  explicit the dependence  

of each player 's  s t rategy choice on his r a n d o m  payoff -d is turbance  vector  ~i. 

We shall now define normalized strategies (i.e., strategies appropr ia t e  to the no rma l  

form of F*@)). 5) In contrast ,  the pure  strategies a/~ and  the mixed strategies s i 

in t roduced in Section 2 will be called ordinary strategies. When  we speak of a 
pure  or mixed strategy without  further specification we shall always mean  an 

ord inary  pure  or mixed strategy a~ or s v 
A normalized pure strategy, or n-pure strategy, a* of  any player  i (i = 1 , . . .  ,n) 

will be defined as a measurab le  function f rom the range space ~i of  player  i's 

r a n d o m  vector  ~i to the set A i of  his o rd inary  pure  strategies a~. Fo r  any specific 
value of  the r a n d o m  vector  ~i, this n-pure s trategy a* will select some specific 

ord inary  pure  strategy 
k = a, (g,) (27) ai 

as the strategy to be used by player  i whenever  ~ takes this par t icular  value. Let 

X~ = X~(a*) = {r and a~(~) = a~}. (28) 

Thus,  X~ is the set of  all possible ~ values that  will m a k e  player  i choose the 
ord inary  pure  strategy a~ if he follows the n-pure s trategy a*. Clearly, any n-pure 
s trategy a* can also be defined as a par t i t ioning of  the range space - i  = into Ki 
disjoint measurab le  subsets X 1~ , . . .  ,X~  ~. (Of these K~ sets, as m a n y  as (K~ - 1) 
sets m a y  be empty.)  The  set of  all n-pure strategies a* will be called A*. 

An n-pure strategy a* is called a constant n-pure s trategy and will be denoted  
as a* = [a~] if it assigns the same ordinary  pure  s t rategy a~ = a* (~) to all possible 

~i values, ~i ~ ~i. 

5) However, for convenience, we shall keep the payoff functions U i in their present form and shall 
not introduce normalized payoff functions (which would have to be defined as the expected values 
of the. Ui's). That is, we shall use the semi-normal form of F* (e) [HA~SANYI, 1967--68, p. 182]. 
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Let D(a*,a*') be the set of all ~i values where the two n-pure strategies a* 
and a*' disagree, i.e., where a*(~) ~ a*'(~t). Two n-pure strategies a* and a*' 
will be called essentially identical if D(a*,a*') is a set of measure zero. In view of 
(16), if two n-pure strategies are essentially identical, then with probability one 
they will prescribe choosing the same ordinary pure strategies. Two n-tuples of 
n-pure strategies, a* = (aT,.. . ,a*) and a*' = (aT', *' �9 .. ,a,  ), are called essentially 
identical if their corresponding components a* and a*' are essentially identical 
(for i = l , . . . ,n ) .  If two n-pure strategies, or two n-tuples of such strategies, are 
not essentially identical, then they are called essentially different. 

A normalized mixed strategy, or n-mixed strategy, s* of any player i is a prob- 
ability distribution over the set A* of his n-pure strategies. As A* is a function 
space, proper definition of such probability distributions poses certain technical 
difficulties, which can be overcome in various ways [AUMANN, 1960b, 1961]. 
We shall not go into these problems because we are introducing n-mixed strategies 
only ir~ order to show that there is no need for them in disturbed games F*(e). 
We shall simply assume that any n-mixed strategy s* to be discussed has been 
defined in a mathematically satisfactory way. 

If an n-mixed strategy s* is a probability mixture of two or more essentially 
identical strategies _.~a.*, _~,,*',..., then s* will be called an essentially pure normalized 
strategy, and will be regarded as being essentially identical with each one of 
these n-pure strategies a* ,,.*' 

Lemma 1 : 
If player i follows the n-pure strategy a* then he will use any ordinary pure 

strategy a~ of his with the probability 

p~ = n~(a*)= ~ d ~ . . . ~ d ~ f ~ ( ~ i ) ,  k -= 1 . . . . .  Ki,  (29) 
~ieX~(at) 

where, for each particular value ~ of k, X~(a*) is the set defined by (28). Therefore, 
his behavior will be such as if he followed the ordinary mixed strategy 

s~ ~(a*)= 2p~a~ = Z k , k = ni (ai)a~ . (30) 
k k 

This strategy st = re(a*) will be called the mixed strategy induced by the n-pure 
strategy a*. 

Proof: 
In view of (27), if player i follows the n-pure strategy a*, then the ordinary pure 

strategy he will be using will become a function of the random vector ~t- He will 
k whenever ~t e X~(a*). But the probability of this event is given by (29). use at 

Lernma 1 directly implies: 

Lemma 2: 
Let s* be an n-mixed strategy of player i, representing a probability mixture 

of two or more n-pure strategies _,,~,a-* ,~*', . . . .  Let sl r~(a*), s~ ~z(a~ ),... be the 
ordinary mixed strategies induced by these component strategies a.* a*' Let i t ,  i , . . . .  
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t~ be the ordinary mixed strategy representing a probability mixture of these 
induced mixed strategies s~, s'~ . . . .  such that assigns the same probability weights 
(or the same probability densities) to s~, s'~ . . . .  as s* itself assigns to the correspond- 
ing n-pure strategies a*,a*',  . . . .  Then, whenever player i follows this n-mixed 
strategy s*, he will be using all his ordinary pure strategies a~ with probabilities 
p~ corresponding to the ordinary mixed strategy h. 

This strategy ti will be called the ordinary mixed strategy induced by s*, and 
we shall write t i = re(S*).  

Let a* = (a* . . . . .  a*) and let s i = 7r(a*) be the mixed strategy induced by 
a*, for i = 1 . . . . .  n. Let s = (s~ . . . .  ,s,). Then we shall write s = re(a*). Moreover, 
let a* = (a*,...,ai_l,ai+l,...* * ,a*) and ~ = (s 1 , . . . , s i _ l , s~+  x . . . .  ,s,). Then we 
shall write si = re(@). 

Likewise, let s* = (s* . . . . .  s*) and let ti = n (s*) for i = 1 . . . . .  n. Let t = (t ~ . . . . .  t,). 
Then we shall write t = rr(s*). Finally, let s* = (s~;, .. . ,si-* 1,si+* 1, . . . , s* )  and 

= (tl . . . . .  ti_ 1,t i+l . . . . .  t,). Then we shall write ~ = rc(~). 

L e m m a  3: 
Suppose that player i uses the n-pure strategy a*, and therefore chooses the 

k ordinary pure strategy a~ = a* (~) at the point r If at the same time the other 
(n - 1) players use the n-pure-strategy combination a* then player i will obtain 
the (expected) payoff 

Ui(a*,~.*,) = U,(ak,~) = V~(ak,~) + e~k(r (31) 
where 

= rt(~) (32) 

and where (~ = (~(~i,~) is the random variable defined by (20). On the other 
hand, if the other (n - 1) players use the n-mixed-strategy combination s* then 
he will obtain the payoff 

U , ( a * , ~ )  = Ui(a~,T~) = V~(a~,7~) + e(~(~,,~), (33) 
where 

= ~r(~). (34) 

Proof :  
By Lemmas 1 and 2, each player j :p i will use his ordinary pure strategies 

with probabilities corresponding to the mixed strategy s i = z(a*) ,  or to the 
mixed strategy tj = 7r (s*). On the other hand, player i himself will use the ordinary 

k pure strategy a i = a*(~3. Therefore, in view of (21), Eqs. (31) and (33) follow. 
A given n-pure strategy a* of player i will be called a (uniformly) best reply  to 

some combination a~.* of n-pure strategies (or to some combination s~ of n-mixed 
s t ra tegies)usedbytheother(n-  l ) p layers  if, for  every  poss ib le  va lue  o f  the  r a n d o m  

vector ~i, this strategy a* maximizes player i's payoff Ui as specified by (31) 
(or by (33)) when the strategy combination a~ (or ~ )  is kept constant. In view 
of (31) and (33), in this case we shall also say that a* is a best reply to the com- 
bination ~ = rc(a~) (or to the combination T~ = ~z(~)) of ordinary mixed strategies. 
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Equilibrium points in a disturbed game F* (e) will be defined in terms of this 
concept of uniformly best replies. 

Theorem 1 : 

The best reply of any player i to some combination ~ of n-pure strategies, 
or to some combination ~ of n-mixed strategies, used by the other (n - 1) players 
is always an essentially unique n-pure strategy a*. (That is, if both a* and a*' are 
best replies to a* or to s* then a* and a*' must be essentially identical.) 

Proof:  

We shall discuss only the case where the other (n - 1) players use some com- 
bination ~ of n-pure strategies. The proof is basically the same in the case where 
they use some combination ~* of n-mixed strategies. 

In view of (31), for any specific value of the random vector ~, a given ordinary 
pure strategy ~ will maximize player i's payoff U~ if and only if 

V~(a~,~ - V~(a~',~) > e. ((~' - (~), for all k' ~ k. (35) 

This maximizing strategy a~ will be unique only if 

V~(a~,~) - V~(a~',~) > e . ( ( ~ ' -  ~) ,  for all k' ~ k. (36) 
k' On the other hand, two different strategies a~ and ai can both yield a maximal 

payoff only if 
V~(a~,~) - V~(a~',~) = e. ( ( ~ ' -  (~). (37) 

But in view of (20), for any given ~, the variables ff~ and ~'  are convex combinations 
k of the variables ~ . . . .  , ~ .  Consequently, for any given choice of U i, and of a i 

and a~k', the locus /kk' of all points ~i = (~,  ... , r satisfying (20) and (37) is a 
(K - 1)-dimensional hyperplane. Let /~k' be the intersection of /~k' with the 
K-dimensional range space ~i of the random vector ~i. Clearly,/~k' will be a set 
of measure zero in this range space S i. Let L* be the union of the K~(K i - 1)/2 
sets/~k' defined for all possible pairs (k,k') with k,k '  = 1 . . . . .  K i  and with k' 7 ~ k. 
Obviously, L* will be again a set of measure zero in ~ .  

Let y k = yik(~) be the set of all points ~i = (~  . . . . .  ~ )  satisfying (20) and (36) 
k of player i. y k will be a relatively open polyhedral subset for a given strategy a, 

of ~,, bounded by the various hyperplanes/~k,, /~k", etc. (For some values of k, 
Yi k may be empty.) 

Any n-pure strategy a* can be a best reply to f~ only if it makes player i choose 
his ordinary pure strategy in such a way that 

k for all r ~ y/k(~/) (38) a*(~i) = a i ,  

for all k = 1 . . . . .  K .  

This means that if two n-pure strategies a* and a*' are both best replies to a* 
then they must agree over all sets Y~k(k = 1 . . . . .  K~) and can disagree at most 
only over the set L* of measure zero (or over some subset of L*). Consequently, 
a* and a*' will be essentially identical. 
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Corollary to Theorem 1: 

An n-mixed strategy s* can be a best reply only if it is an essentially pure strategy 
(i.e., it must be a probability mixture of essentially identical n-pure strategies). 

This corollary and Lemma 3 in turn imply: 

Theorem 2: 

In a disturbed game F*(e)  every equilibrium point must be in pure - or at 
least in essentially pure - normalized strategies. Moreover, for every equilibrium 
point s* = (sl' . . . . .  s*) partly or wholly in mixed strategies (as we have seen, the 
latter must be "essentially pure" mixed strategies), there exists an essentially 
identical equilibrium point a* = (a* . . . . .  a*) wholly in pure strategies, yielding 
every player i the same payoff Ui(a*) = Ui(s*). 

Theorem 2 and the Corollary to Theorem 1 can be regarded as extensions of 
the results obtained by BELLMAN and BLACKWELL [-1949] and by BELLMAN 
[1952] : if the game itself already contains enough "randomness" (random variables) 
then the players themselves need not - indeed, should not - introduce any 
additional randomness by a use of mixed strategies. 

Theorem 1 also implies: 

Theorem 3: 
a* Every equilibrium point a* = (a*, . . . ,  , )  of a disturbed game is essentially 

strong, in the sense that no player i can counter the strategy combination 
of the other (n - 1) players by a best reply essentially different from his equilibrium 
strategy a*. 

N o t e :  
If a given player i does shift from his equilibrium strategy a* to another best- 

reply strategy a*' essentially identical to a*, then this will not destabilize the 
situation. This is so because, by Lemma 3, this shift will leave his own and all 
other players' payoffs unchanged, and the resulting new strategy n-tuple a*' --- 
(a*, ... ,a*_ 1,~i'~*',~i+ 1 , - - - "*  ,a*) will again be an equilibrium point. Therefore this 
shift will not give the other players any incentive to change their own strategies. 

Theorem  4 :  
Every disturbed game F* (8) has at least one equilibrium point. 

Proof:  
Let s = (sl . . . . .  s,) be an n-tuple of ordinary mixed strategies. For  each player 

i, let a* be his best reply to Ti = (sl . . . . .  s~_l,si+l . . . . .  s,) in the sense that, for 
k = (a*(~i) every possible value of the random vector ~, the ordinary pure stra,tegy a i 

k Let a* be the n-tuple prescribed by a* will satisfy (35) with respect to all a k" ~ ai. 
a* = (a* . . . . .  a*). Finally, let s' = (s'l . . . . .  s',) be the n-tuple of ordinary mixed 

strategies induced by a*, i.e., let s' = n(a*). 
Now consider the mapping M: s ---> s'. Clearly, M is a mapping of the set S 

of all possible n-tuples of ordinary mixed strategies into itself. This set S is a 
finite-dimensional convex and compact set. 
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Moreover, the mapping M is single-valued. Even though in general there will 
be many n-pure strategies a* that are best replies to a given (n - 1)-tuple ~, 
all of these strategies a* will be essentially identical (see the proof of Theorem 1). 
Therefore, all of them will induce exactly the same ordinary mixed strategy 

t s, ~(a*, ). 
Finally, the mapping M is continuous. For  any given n-tuple s, the n-tuple 

s' = M(s)  is defined by conditions (29) and (30). But in (29) the integrand is the 
k , continuous function f~ whereas the region of integration, the set X~ (a~), can be 

written as 
X~(a*) = yik(~) U O~(~), (39) 

where Yi k is defined by conditions (20) and (36), whereas D~ is a set of measure 
zero, and therefore does not affect the result of the integration in (29). On the 
other hand, the set y k itself depends continuously on the n-tuple s in terms of the 
Hausdorff metric. This continuous dependence of y k on s and the continuity 
off~ establish the continuity of the mapping M. 

Consequently, by Brouwer's Fixed-point Theorem [see, e.g., LEFSCHETZ, 
1949, p. 117], the mapping M will have at least one fixed point where s' = M (s) = s. 
Yet, any n-tuple a* corresponding to such a fixed point s' = s will be an equilibrium 
point in game F* (e). First of all, by the definition of M, each component a* of 

k a* will have the property that ai = a*(~i) will satisfy (35) with respect to all 
a~' -~ a~ for all values of ~ if we set ~-~ = ~ = u(~) .  But, by Lemma 3, this very 
property establishes the fact that a* is a best reply to a~*. As this is true for all 
players i, a* will be an equilibrium point in F* (e). 

Let a* = (a* ... .  ,a*) be an equilibrium point in some disturbed game F* (e), 
and let s = (sl . . . .  , s, = u(a*) be the n-tuple of ordinary mixed strategies induced 
by a*. Then s will be called the s-representation of the equilibrium point a*. We 
shall also say that s is an s-equilibrium point in game F* (~). 

5. Equilibrium Points in Ordinary Games as Limits of s-Equilibrium Points 
in Disturbed Games 

Let {F*(e)} be a one-parameter family of disturbed games, each game F*(e) 
being characterized by a different value of the parameter ~, but all of them having 
the same n-tuple of basic payoff functions V 1 . . . . .  V, and the same n-tuple of 
probability distributions F1 . . . . .  F,. If we set ~ = 0 then, in view of (12), we obtain 
an ordinary (undisturbed) game F = Y*(0) with the payoff functions U 1 = 
V1 . . . . .  U .  = V.. 

Theorem 5: 
Let {s(e)} be a one-parameter family of n-tuples of ordinary mixed strategies 

such that, for all e values in some open interval (O,e*) with e* > O, each n-tuple 
s(e) = (sl(e) . . . . .  s,(e)) is an s-equilibrium point in the corresponding game 
F* (e). Suppose that 
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lim s(0 = s = ( s  1 . . . . .  Sn). (40) 
~-~0 

Then s will be an equilibrium point in game F = F* (0). 

Proof: 
In view of (40), for any sufficiently small e we must have 

C(si) c C(si(e)) , for i = 1 . . . . .  n; (41) 

where C(si) and C(si(~)) are the carriers of strategies s i and si(e), respectively. 
k in the Since s(e) is an s-equilibrium point in F* (e), any ordinary pure strategy a~ 

carrier C (s i(e)) must satisfy requirement (34) with respect to all other pure strategies 
a~' of player i over some nonempty set y k of possible ~ values. When e goes to 

zero, requirement (35) will take the form 

Vi(a~,~) - Vi(a~',~) > 0, for all k' ~ k. (42) 

In view of (41), this requirement will be satisfied for all pure strategies a~ in C(s~). 
But this is precisely the condition that must be satisfied if s is to be an equilibrium 
point in game F = F* (0). This establishes the theorem. 

Let s be an equilibrium point in game F = F* (0). We shall say that s is approach- 
able by some s-equilibrium point s(e) of a disturbed game F*(e) if there is some 
s-equilibrium point s(e) (or, more exactly, if there is some family {s(e)} of s-equi- 
librium points) satisfying (40) with respect to this equilibrium point s. 

Theorems 4 and 5 imply that every ordinary game F = F* (0) has at least one 
approachable equilibrium point s. We shall now show that every strong equi- 
librium point of any game F is always approachable, and that a quasi-strong 
equilibrium point is "almost always" approachable (in the sense that this property 
can fail only for a small class of games, corresponding to a closed set of measure 

zero in the space of all games of a given size). 

Theorem 6: 
Let a = (a~', ..., a~") be a strong equilibrium point 6) in game F = F*(0). Let 

a* = (a* . . . . .  a*) be an n-tuple of constant n-pure strategies such that a* = [@] 
for i = 1 . . . .  , n. Then, for any small enough e, a* will be an equilibrium point in 

game F* (e). 

Proof'. 
Let N be the (n - l)-tuple we obtain if we omit the i-th component, the strategy 

@, from the n-tuple a. Since a is a strong equilibrium point in game F, we must have 

V i ( @ , ~ ) - V ~ ( a ~ ' , ~ ) > 0 ,  foral l  k ' ~ k , ,  andfo r  i = 1  . . . . .  n. (43) 

Consequently, for any small enough e, we can write 

V~(@,~) - V~(a~',~) _>_ ~. (~' - ~') (44) 

6) A strong equilibrium point is always in pure strategies. 
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for all possible values of (~' and (~'. Hence, @ will satisfy (35), and therefore af' 
will be a best reply to the strategy combination ~ used by the other (n - 1) players. 
As this will be true for all players i, this means that a will be an equilibrium point 
in any game F* (5) with a small enough 5. 

Consider the constant n-pure strategy a* = [@]. Clearly, if player i follows 
this constant strategy then he will choose the corresponding ordinary pure strategy 
@ with probability one. Consequently, the "mixed" strategy induced by this 

k, itself, SO that we can n-pure strategy a* = [@] is simply the pure strategy a~ 
k, Accordingly, the s-equilibrium point corresponding to the write rr(a*) = a~. 

equilibrium point a* mentioned in Theorem 6 will be simply the n-tuple a = 7r (a*) 
of ordinary pure strategies. 

Lemma 4: 
Let s = (Sl . . . . .  s,) be an n-tuple of ordinary mixed strategies, and suppose that 

the probabilities p~ characterizing these mixed strategies s i satisfy the equation 

p~ = ~d~.L. Sd~f'g~(4~lN), for i =  1 . . . . .  n; k = 1 . . . . .  K~; (45) 

where 

' 0 (~  . . . . .  8 (  K' (46) 

is the probability density function corresponding to the probability distribution 
G, (~, I~) defined by (24); whereas, 7t~ is the set of all points ~, = (~ . . . . .  ~K,) satisfy- 
ing Condition (36) for a given positive value of e, and for a given pure strategy 
aik, with respect to all other strategies alk', k' ~ k, of the same player i. 

Then s will be an s-equilibrium point in game F* (5). 

Proof: 
For each player i, let a* be his best reply to ~ = (s 1 . . . . .  si-1, Si+l . . . . .  S n )  , in 

the sense specified in the proof of Theorem 4. Let a* = (aT . . . . .  a*), We shall 
show that a* is an equilibrium point in game F* (e), and that s is the correspond- 
ing s-equilibrium point. As a* is a best reply to ~, it will select any given pure 

k whenever k satisfies Condition (36). Therefore a* will choose each strategy ai a~ 
pure strategy ~ with the probability p~ defined by Eq. (45). (To be sure, a* may 
make player i choose this pure strategy a~ also at some points ~i where (36) is 
not satisfied, though the weaker Condition (35) is. But the total probability 
mass associated with such points ~ will always be zero.) Consequently, for each 
player i, a* will induce the mixed strategy s~ corresponding to the probabilities 
p~, so that s~ = rr(a*). Therefore, the strategy n-tuple s will be a fixed point s = M(s) 
of the mapping M defined in the proof of Theorem 4, which implies, as we have 
seen, that a* is an equilibrium point in F* (e) whereas s = rc (a*) is the correspond- 
ing s-equilibrium point. 

Let s = (s 1 . . . . .  s,) be an n-tuple of ordinary mixed strategies. Suppose that the 
carriers C(Sl), ..., C(s,) of the strategies Sl . . . . .  s, contain Vl, -.., 7, pure strategies, 
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respectively. Then, wi thout  loss of  generality, we can int roduce the following 
nota t iona l  convent ion:  

The pure  strategies a, k. of  each player i are numbered  in such a way 

that  the carrier C(s~) of his mixed strategy s i will contain his f i r s t  (47) 

7i pure strategies a 1 . . . .  , a~ ~. 
Clearly, the (7~ - 1) probabil i t ies  p~ . . . . .  p p - a  fully character ize s~ since 

and 
p~ = 0, 

Let  p~ denote  the vector  

= 1 - E 
k = l  

for k = ?i + 1 , . . . , K  i .  

Pi = (P~ . . . . .  p~,- 1). (48) 

Let  fi~ denote  the composi te  vector  

P~ = (Pl . . . .  , Pi-  1, Pi+ i , - . . ,  P,) ,  (49) 

where p~ . . . . .  p ,  are the vectors  defined by (48). In order  to make  the dependence 
of the functions V~ and gi on the probabil i t ies  pk m o r e  explicit, we shall now write 

V~(a~,~) = V/(a~, ~/) (50) 

and  
17,) = [Y,). (51) 

For  each player i (i = 1 . . . . .  n), we in t roduce the r a n d o m  variables 

- r  for k , k ' =  1 . . . . .  K,;  k ' ~ k ;  (52) 

as well as the r a n d o m  vectors 

6k = (r~kl r ~ k 2  . ~ k ( k - 1 )  , ~ k ( k + l )  r~k(k+2) 6 kKi] for k = 1 ?i - 1 (53) 
~ i  , v i  , ' " , ~ i  , ~ i  ~ i  , " ' ~  i z ,  , " ' ~  �9 

For  convenience,  we shall also write 

6fk = ~ _ ~k = 0 .  (54) 

L e m m a  5: 

Let s = (Sl . . . . .  s,) be an n-tuple of  o rd inary  mixed strategies. Suppose  that  
for each player  i (i = 1 , . . .  ,n) the probabi l i t ies  pk character iz ing his mixed strategy 
s~, together  with some appropr ia te ly  chosen quanti t ies  yk and z~kk' s a t i s fy ,  the 
following condit ions with respect  to a specific positive value of ~: 

eyk = V/(af, f f l ) -  V/(ak+',ff/), for k = 1 . . . . .  ? i -  1; (55) 

k ' - i  
kk" . = k + 1 . . . . .  ?i; zi  = ~ ,  y j ,  for k =  1 . . . .  y , -  1; k' (56) 

j=k  

k - 1  
k k ' - -  = = 1 . . ,k  1" (57) zi ~ , y j ,  for k 2 . . . . .  ?i; k'  , .  - , 

j=k" 

pk = r ,k ,"  k l  7 k ( k - 1 )  7 k ( k + l )  . ,zk?i;Pii)  = ( 5 8 )  FliI,  Zi , ' " , - i  ,~i  , ' "  
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where 

but  

whereas 

~1 r 1 r + 1 (~Ki "}- 03 
d 6~ 1 . f d 6 k(k- l) I d,5 k(k + 1) kK,; k k k .  k . . . .  ~ ... ~ d6~ ~ d~h~(6~,(/), 

- o o  - o o  - o o  - o o  - o o  

a j = z ~  ~, for j =  1 . . . . .  k -  1 , k +  1 . . . . .  7/; (59) 

aj = + oe,  for j = 7i + 1 , . . .  , K i ;  (60) 

k k .  k hk. fr~k. 1 ( ~ k ( k - 1 )  (~k (k+ l )  r 
h i ( 6 i , ~ i ) - - -  _ , , v ,  , .  . . . . .  i . . . .  , v i  ,~ i ,  = 

(61) 
= + . . . . .  + . . . . .  + 

and finally V~(ak, ff~) -- V~(~',~-~) > e. (~k' _ ~k) (62) 

for all possible values of (k' and k k' k k . (i(~/ e z k '  and ~ / e Z i ) ,  and for k = 1 . . . . .  7i; 
k' = 7i + 1 . . . . .  K i . 

Then  s will be an s-equilibrium point  in game F* (~). Moreover ,  the quantities 
kk' will satisfy Zi 

kk' - 2 < z ~  < +2 .  (63) 

Proo f ' .  

As ~ > 0, (55), (56), and (57) imply that  

z k k ' =  [ V ~ ( 4 , N ) -  V~(ak',~)]/~. (64) 

Hence,  (58) can be obta ined from (45) by a change of  variables. In view of  (36), 
(52), and (64), for each variable 6 kk" with k , k '  = 1 . . . .  ,7i and with k' ~ k, the 
upper  limit of integrat ion is ak. = Z kk'. Moreover ,  since in this case both  a k and 
a k' are in C(s~), each upper  limit z kk' will have the proper ty  that  the two inequalities 

kk' and (~kk' > kk' 6 kk" < z i z i are b o t h  satisfied with positive probabilities. Therefore,  
each quant i ty  z kk' must lie in the interior of the range of  the corresponding r andom 
variable 6 kk'. By (26) and (52), this range is a subset of [ - 2 ,  + 2], which implies 
(63). 

In contrast,  for the variables 6~ k' with k < 7i < k', the upper  limit of integration 
can be taken to be a k, = + ~ .  This is so because now the inequality 6~ k" < a k, 

must  be satisfied with probabil i ty  one, since in this case, a k ~ C ( s i ) ,  whereas 
a~' q~ C (st). This completes the proof. 

L e m m a  6: 

Equat ion  (58) can also be writ ten as 

p k  k 1 - 1 . - -  
= E i ( y l  . . . . .  y~' ,P i ) ,  for i = 1 . . . .  ,n; k = 1 , . . . ,7 i  - 1. (65) 

These functions E k are cont inuously  differentiable. 

P r o o f :  

kk' functions of  the variables yR. Cont inuous  (56) and (57) make  the quantit ies zi 

differentiability follows from (17) and from Leibnitz 's Rule [OLMSTED, 1959, 
p. 417]. 
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L e m m a  7: 

Let s = (s 1 . . . . .  s,) be an n-tuple of  ordinary mixed strategies, character ized 
k k '  by the probabilit ies p~. Then,  we can always find some quantities y~ and z i 

which, together  with these probabilit ies p~, will satisfy (56) to (61). 

Proof :  

First, we shall show that  we can find quantities y~ satisfying (65) for i = 1 . . . . .  n 
and for k = 1 . . . . .  ~i - 1. Let I* be the closed interval I* = [ - 2 ,  + 2]. Fo r  each 
player i, we define a set Yi* = 11 x ... x Iv, where 11 . . . . .  I~i = I*. Fo r  each 
vector  y* = 1 = (o9~, ..,~o~') as follows. Let  (Yi . . . .  ,yp) in Yi* we define a vector  co i 

zcl~ = Ek (, 1 ~. - 1 i ,Yi . . . .  ,Yi'  ) ,  for k =  1 . . . .  , 7 i -  1; (66) 
7 i - -  1 

7rp= I - E re'k, , (67) 

and k = a 
? i -  1 

p; , i= 1 - E P~" (68) 
k = l  

Finally, we set 

k (69) k = y ~ [ l _ m a x ( O , r  h --p~)] for k =  1 ,~,. 0,)  i , , . . .  

For  each player i, Eqs. (66) to (69) establish a mapping M i ' y *  ~ ~o i. Clearly 
Mi is a mapping of the finite-dimensional convex and compact  set Yi* into itself. 
Moreover ,  by Lemma  6, M i is cont inuously  differentiable and therefore continuous.  
Consequently,  by Brouwer 's  F ixed-Point  Theorem,  M i  must have a fixed point  
where 

~ i  = Mi (y*)  = Y * .  (70) 

Fo r  each player i, the first (7~ - 1) components  y], . . . ,y~i-1 of  any vector  y* 
satisfying (70) will satisfy (65). Moreover ,  if we substitute these variables y~ in 
(56) and (57), then we shall obtain quantities z~ k' satisfying (58). This completes 

the proof. 
Any vector y* satisfying (70) must  lie in the interier of Y~* [cf. the p roof  of Lemma  

5, regarding Condi t ion (63)]. Thus we can write 

- - 2 < y / k <  + 2 ,  f o r i =  1 , . . . , n ;  k = l  . . . . .  7 ~ -  1. (71) 

(This inequali ty is, of  course, t rue also for k = 7,, but  now we do not  need this 

fact.) 
We now define 

~* = (Yi - 1) = ~ 7 i  - n ,  (72) 
and i=1  i=1  

y i = ( y ~  . . . . .  y~'-~),  for i = 1 , . . . , n .  (73) 

Let  p and y denote  the composi te  vectors 

P = (Pl . . . . .  P,) (74) 
and 

v = (y~ . . . . .  y , ) ,  (75) 
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where Pl . . . . .  p, and Yl,-.-, Y, are  the vectors defined by (48) and (73). Clearly, 
p has 7* components of form p~, and y has "1" components of form yk 

Let P be the set of all vectors p satisfying 

p k > 0 ,  for i =  1 . . . . .  n; and f o r k =  1 . . . .  , y ~ - l ;  (76) 
and 

7 ~ -  I 

p k <  1, for i =  1 . . . .  , n .  (77) 
k=l  

Let Y be the set of all vectors y satisfying (71). 
In vector notation, we can now write Eq. (65) as 

Pi = Ei(Y~;~), for i = 1 , . . . , n .  (78) 

Lemma 8: 
There exists a mapping z: p ~ y from set P to set Ywith the following properties: 

(a) For every p in P, the vectors p and y = z (p) together satisfy (65). 
(b) The set po of all points p in P where z fails to be continuously differentiable is 

closed and has measure zero as a subset of P. 

Proof: 
Let J be the Jacobian 

~(EI . . . . .  E ~ - l ;  ...; E~ . . . . .  E~"-l; "";E~" . . . . .  E~"-I) (79) 
J =  O(y~ . . . .  y2~l--llill, i . , y  I , ~lill 1 " i 

. . . . . . . . . . .  ; y .  . . . . .  y , . - 1 )  

It is easy to verify that 

J = f i  J~, (80) 
i= t  

where J~ is the smaller Jacobian 

0 (E 1 . . . . .  E~' - 1) 
J,= 3 ( y : , ~ i ~ ,  for i---1 . . . . .  n. (81) 

By Lemma 7, a mapping �9 always exists. By Lemma 6 and the Implicit Function 
Theorem, r can be chosen so as to be continuously differentiable at every point 
(p, v (p)), where the Jacobian J is nonzero; i.e., where all n Jacobians J l . . . . .  d,  are 
nonzero. We shall now show that this condition will be met everywhere except 
on a closed set po of measure zero. 

Let 0~ be the set of all points (Yi,~) where the Jacobian J~ = Ji(Yi, ~) vanishes. 
Since J~ depends continuously on (y~, ~), and since both y~ and N are bounded, 
0~ is a compact set. 

Now, consider the mapping r*: (Yi, N ) ~  (Pi,~) = P, where Pi = Ei(Yi; ~). By 
Lemma 6, this mapping z* is continuously differentiable. Therefore, by Sard's 
Theorem [Sago, 1942], the set pO = z* (0~) of all points p associated with zeroes 
of J~ is a set of measure zero in P. Moreover, as pO is the image of 0~ under the 
continuous mapping z*, pO itself is also a compact set, and therefore closed. 

As each set pO is a closed set of measure zero, their union, the set 
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tt 

po = ~ pO (82) 
i = 1  

will have  the same properties.  But cont inuous  differentiability of  z can fail only 
on  this set p 0  This establishes the lemma.  

We now introduce the (nK)-vector  

1 K v = (v 1 . . . . .  vf; ... ; vl . . . . .  vf; ... ; v . . . . . .  v , ) .  (83) 

Let  us write Eq. (55) in the form 

(p~(p,y,v,e) = ey~ - V~(a~,g) + l ~ ( a ~ + l , ~ ) =  

m k m m = e y ~ -  Z qi(ai)[ '[qi(sj)  vi (84) 
m = l  L /~i J 

mi~-- L ] 
+ V [- " 'a k+l) .jl]q';(sj) v~" = 0 for i 1, lq i  t i , = . . . . .  n; 

k =  1 , . . . , ? i -  1. 

In view of L e m m a  8, this can also be wri t ten as 

k .r qh(P, (p),v,e) -- Of(p,v,e) = 0.  (85) 

Lemma 9: 
Let s = (s 1 ...... s,) be a quasi-strong equil ibr ium point ,  character ized by the 

probabi l i ty  ~}ector p, in game  F = F* (0). Suppose  that  
(i) The  m a p p i n g  z f rom P to Yis cont inuously  differentiable on some  neighbor-  

h o o d  N of p; and that  

(ii) The  Jacob ian  

.~t,l,1 , i ,~ '~-  1 .  . ,i~1 ~ h ~ -  1 .  . d / t  ~ l j ~  - I  ] 
j ,  = e , , , w 1 ,  . . . ~  t f f l  ~ . . . ~ w i ~  . . . ~ , v i  ~ . . . ~ ' v n , . " ~ ' Y n  z 

~ 1 ....... ,,~,-1. : ,~  .~,~-1. .nl . ~_ f~ -=~0  (86) 
O t P l ,  . . . ,  t~ l  , . . . , r i ,  . . . , r i  , " ' , r n ,  " ' , r n  , 

at the point  p if we set e = 0. 
Then, there exists a family {s(e)} of  n-tuples of  o rd inary  strategies such that,  

for any sufficiently small posi t ive e, s(e) is an  s-equi l ibr ium point  in game  F*(~), 

and such that  s(e) and s satisfy (40). 

Proof: 
First,  we p ropose  to show tha t  p satisfies (55) if we set ~ = 0. The  left-hand side 

of  (55) now will be zero, and  the same  will be t rue a b o u t  the r ight -hand side since 
s is an equi l ibr ium point  in F. Therefore,  in view of(86) and  the Implici t  Func t ion  
Theorem,  for any small enough posit ive e, there exists a vector  p(e) satisfying (55) 
in conjunct ion  with the vector  y(e) = z(p(e)). This  vector  p(e) will depend  con- 
t inuously on e. In view of  L e m m a s  7 and  8, these vectors  p(e) and y(e), together  
with some  appropr ia te ly  chosen quanti t ies z~"(e), will also satisfy Condi t ions  
(56) to (61). Finally, as s is a quas i -s t rong equi l ibr ium point  in F, we have  

Vi(a~,N) - V~(a~',N) > 0, for k = 1 . . . .  ,7i; k' = 7i + 1, .. . ,  K i .  (87) 
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This is so because ~ e C ( s i )  whereas 4 '  (~C(sO. Consequently, for any small 
enough positive e, the strategy n-tuple s(e) defined by p(e) will satisfy (62). Thus, 

by Lemma  5, s(e) will be an s-equilibrium point in F* (e). Finally, (40) follows from 
the continuous dependence of S(e) on 5. 

We now define 

re(i,1) = 1, for i =  1 , . . . , n ;  (88) 

m ( l , k ) = k ,  for k = 2  . . . . .  7 1 - 1 ;  (89) 
and 

i-i i-i 

m(i,k) = 1 + ~, (7s - 2) + k = ~ Ts - 2i + k + 3,  (90) 
j=i l=~ 

for i = 2  . . . . .  n; k = 2  . . . . .  ~ - 1 .  

Thus, m(i,k) ranges over all positive integers from re(i, 1) = 1 to 

re(n ,7 , , -  1) = ~ 7 i  2n + 3 = 7* - n + 3 = 7**- (9i) 
j = l  

In addition to (47), we now introduce the following notational convention, 
which again involves no loss of generality: 

The first 7** pure-strategy n-tuples a 1, ... ,a  ~'** are numbered in 
such a way that  for any m* = m(i,k) with i = 1 . . . . .  n and with 

k =  1 . . . . .  7 1 - 1 ,  w e h a v e  
a m* = (a~,.. i k a 1 .. a~). (92) . ,a i - l ,a~ ,  i+1, ., 

We now define 

~ ) ( ] , k )  = m *  ~_ vi = v7 "'*~ Vi(al ,  1 k a~+ .. 1 .... a i -  1, at, 1, ., a . ) ,  (93) 

for i =  1 . . . . .  n; k =  1 . . . . .  7 ~ - 1 .  

Let v* be the vector formed of those 7* components  of vector v which can be 
written in form (93). Let v** be the vector formed of the remaining ( nK  - 7*) 
components  of v. Thus 

v = (v*,v**). (94) 

Let J = r (n; K1 . . . . .  K,) be the set of all ordinary (undisturbed) n-person 
games in which players 1 . . . .  , n have exactly K1 . . . .  , K ,  strategies, respectively. 
Thus r is the set of all games of a given size. Each game F in ~ can be characterized 
by its vector v = v(F) of possible payoffs for pure-strategy combinations. As v 
is an (nK)-vector, where K = I-[ K~, ~ can be regarded as an (nK)-dimensional 

i 
Euclidean space, and we can write J = {v}, L e t  ff be the. set of all games F in J 
for which a given statement 50 is false. We shall say that 5 ~ is true for almost all 
games F if, for every possible set J = J (n; K1 . . . .  , K,), this set f is closed and 
has measure zero in J .  [As to the requirement of closure for J ,  cf. DEBREV, 1970, 
p 387.] 
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Theorem 7: 

For all probability distributions F 1 . . . . .  F ,  satisfying Conditions (15) to (17), 
and for almost all games F, the following statement is true. Let s = (s~ . . . . .  sn) 
be a quasi-strong equilibrium point in F. Let {F* (~)} be a family of disturbed games 
characterized by these probability distributions F 1 . . . . .  F ,  with F*(0) = F. Then 
there exists a family {s(e)} of n-tuples of ordinary mixed strategies with the prob- 
erty that, for any small enough positive e, s(e) is an s-equilibrium point in the 
disturbed game F*(e), with 

lim s(e) = s.  (95) 
e ~ 0  

Proof: 
Each equation of form (55) (or, equivalently, of form (84) and (85)) can be written 

a s  

t)m* = .  m:~m* m ~ m *  
H m* qy (sy) 

(96) 

where m* = m(i,k). Each equation of from (55) can be written in this way because 
ttW l = qi (a l )=  1, whereas qa (sy) pj > 0 for all j + i since a~ eC(sy). Moreover, m* k 
m*/ k+ 1\ k q~ ta~ ~ = 0 since the i-th component of the strategy combination a m* is a~. 

Note that each quantity vT'* occurs only in one equation of form (96) with a nonzero 
coefficient. Consequently, the 7* equations of form (96) define a continuously 
differentiable mapp!ng p: (p,y) -~ v*, which is a mapping from (P x Y) to the 

7*-dimensional Euclidean space J *  -- {v*}. 
Let p0 be the set defined by (82), and let yO = z(pO). By the proof of Lemma 8, 

(p0 • yO) is a compact set of measure zero in (P x Y). Therefore, its image 
j , o  = p(pO • y0) under the continuously differentiable mapping p will again 
be a compact set with measure zero in J * .  Let J * *  = {v**} be the set of all 
possible vectors v**. J * *  will be an ( nK  - 7*)-dimensional Euclidean space. 
We have ~r = J *  x J** .  Let j o  = j , o  x J** .  Clearly, j o  will be a closed 
set of measure zero in ~'. 

We can use the mapping p to define another mapping p* :(p,v**)~ (v*,v**) = v, 
by setting v* = p(p,z(p)). This mapping p* is from set (P x J**)  to J ,  and is 
continuously differentiable whenever v ~ ( J - j o )  because in this case, v will 
be continuously differentiable. Therefore, by Sard's Theorem, the set J oo of all 
points v in ( ~r - j o )  corresponding to zeroes of the Jacobian J* of (86) will have 
measure zero in ( 5 t -  j o )  and therefore also in J .  

We shall now show that ~r will be a dosed set. We set 

= = m for i =  1, n. (97) u i minvT' and w i m a x v l ,  ..., 
m m 
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We define 

/)~'=/x(v~')- v ~ ' - u / ,  if u i < w i ,  (98) 
W i - -  U i 

and 
-/it vi -- /x(v~')=0, if u i wl, for i =  1 , . . . ,n ;  m =  1 . . . .  , K .  (99) 

We shall write 
= , ( v )  = . . . ,  ; . . . . .  " . . . . . . .  v, . . . .  ,v , ) ,  (100) 

and also 
/J* =/x(v*) and b** =/~(v**). (101) 

We also define 
J =  {~}, J *  = {b*}, and J * *  = {/J**}. (102) 

Any component ~ '  of any vector/J in J will satisfy 

0</JT' < 1 ,  for i =  1 . . . .  ,n; m =  1 , . . . , K .  (103) 

Clearly, #: v ~ b is a linear mapping from J to J ,  which normalizes each player's 
payoff so as to satisfy Condition (103). 

Let o~ be the set of all points (p,/)**) where the Jacobian J* vanishes. As J* is 
a continuous function of (p, b**), ~ will be a closed set. Indeed, ~ will be a com- 
pact set since both P = {p} and 3**  = {b**} are bounded. Consequently, 
j 0o  = p*(o~) will also be compact since p* is continuous. But j0o  = #(yoo), 
and/x is continuous. Therefore, j o 0  will be a closed set. 

Thus, we can conclude that the assumptions of Lemma 9 are everywhere satisfied 
on J ,  except on a closed set 3 = J o u j o o  with measure zero in J .  This com- 
pletes the proof. 

6. Numerical Examples 

Consider the following three games: 

Game FI Game F2 Game F3 
a~ a~ a~ a~ a 1 a~ 

a I (3,4) (2,2) a I (1,5)(4,1) al (1,1)(1,1) 
a 2 (1,1) (2,1) a~ (2,1)(0,3) a 2 (1,1)(1,1) 

In all three games player i's payoff funtion will be called V~ (i = 1, 2). For each 
game F~ we shall define a disturbed game F~* (e) by assuming that each player's 
payoff function Ui will be of form (12). For the sake of simplicity, we shall also 
assume that in each game Ft* the probability functions F 1 and F 2 are such that the 
random variables 6~ k' = 6~ z defined by (52) are uniformly distributed and that this 
distribution is independent of the other player's strategy sj,j ~ i. More particularly, 
612 is uniformly distributed over the interval [ - e ,  + ~] whereas 6212 is uniformly 
distributed over the interval [ - f l ,  + fl], with ~r < 1 and fl < 1. We shall write 
~* = e~ and fl* = eft. 
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Let s = (s 1, s2) be a pair of proper  ordinary mixed strategies with s I = qa~ + 
(1 - q)a~ and s2 = ra~ + (1 - r)a2 z. In view of  (58), s will be an s-equilibrium 
point  in Ft* if we have 

I-rv~l + ( 1 - r ) v ~ 2 ] - [ r v ~ I + ( 1 - r ) v 2 2 ] = ~ * ( q - l w -  ~ (104) 

and 

where 

[qv~ 1 + ( 1 - q ) v 2 1 ] - [ q v ~ + ( l -  q)v22] = fl* (r - 2 ) ,  (105) 

and 
l *  

These quantities q and r are close to the probabili t ies q = 0 and r = 0 characteriz- 
ing a 2 but  they are negative and so cannot  be probabilities. Therefore  a 2 is not  
approachable  by any s-equilibrium point  of  game FI* (e). 

F2 has only one quasi-strong equil ibrium point  in mixed strategies, viz. s = (Sl, s2) 
1 1 2a~)and 4 i 1 2 with sl = (Ta~ -'b S 2 = ( g a 2  q- 5a2). By (104) and (105), s is approachable  

by the s-equilibrium point  s(e*, fl*), characterized by the probabilities 

q(e*,fl*) = - ~  i + fl* + - ~  fl* fl* 
and 

Clearly, for small values of c~* and fl*, these probabili t ies will be very close to the 
probabili t ies q = �89 and r = ~ characterizing s itself. 

Finally, /'3 has infinitely many  equil ibrium points. In fact, any possible pair 
s = (Sl, s2) of pure or mixed strategies is an equil ibrium point. Those  equil ibrium 
points where one or both  players use pure strategies are extra weak. Those  where 
both  use proper  mixed strategies are quasi-strong. However ,  the Jacobian J* of 
(86) vanishes at all these equil ibrium points. (Actually, it can be shown that  J*  
will always vanish at all equil ibrium points belonging to any infinite connected 
family of equil ibrium points. This is not  inconsistent with Theorem 7 since all 
games containing such families of equil ibrium points form a closed set of  measure 
zero in any ~r Eqs. (104) and (105) now yield the probabilit ies 

kin= V~(a~,a"~), for i,k,m = 1,2.  (106) vi 

More  particularly, F 1 has two equil ibrium points in pure strategies. Of  these, 
a I = (al, a,  ~) is strong so that the pair a* = ([a~], [a~]) of constant  n-pure strate- 
gies is an equil ibrium point  in F* (5) with a small e. In contrast ,  a 2 = (a~, a~) is an 
extra weak equil ibrium point. Eqs. (104) and (105) yield: 
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1 
q(e*,/~*) = r(e*,/~*) - 2 ' 

which happen to be independent of e* and j~*. This means that, out of the infinitely 
many equilibrium points in game F3, only one is approachable, and this is the 

= 1 i ~ a f o r i =  1,2. But it is easy to verify strategy pair s = (s~,s2) with s~ 7a~ + 7a~ 
that, in general, different choices of probability distributions for the random 
variables 6~ 2 and 312 would have made other equilibrium points of F3 approach- 
able. (Once more, it is a common occurrence that, out of any infinite connected 
family of equilibrium points, only a finite subset is approachable, and that this 
subset itself strongly depends on the choice of the probability distributions 
F1 .. . . .  F.  used in defining the disturbed game F*(e).) 

7. Conclusion 

We have found that the players' uncertainty about the exact payoffs that the 
other players will associate with various strategy combinations can be modeled 
as a game F* (~) with randomly disturbed payoffs. Under this model, every ordi- 
nary game F will have at least one stable (i.e., approachable) equilibrium point. 
Indeed, all strong and "almost all" quasi-strong equilibrium points will be stable, 
including "almost all" equilibrium points in mixed strategies. Moreover, under 
this model, these equilibrium points will be stable, not because the players will 
make any deliberate effort to use their pure strategies with the probabilities 
prescribed by their mixed equilibrium strategies, but rather because the random 
fluctuations in their payoffs will make them use their pure strategies approximately 
with the prescribed probabilities. 
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